organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4-Di­iodo-2,5-di­methyl­thio­phene

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Hull, Hull HU6 7RX, England
*Correspondence e-mail: s.j.archibald@hull.ac.uk

(Received 9 February 2007; accepted 14 February 2007; online 23 February 2007)

In the crystal structure of the title compound, C6H6I2S, the molecules pack to form one-dimensional chains connected by inter­molecular S⋯I inter­actions.

Comment

The title compound, (I)[link] (Fig. 1[link]), was prepared as part of a study aimed at producing new photochromic materials. Thio­phene derivatives are important inter­mediates in the synthesis of photochromic compounds, organic light emitting diodes (OLED) and organic conductors. For photochromic compounds, potential applications are in the areas of optical recording, full-colour display and photoswitches.

[Scheme 1]

The molecule of compound (I)[link] possesses normal geometric parameters and is essentially planar. Inter­molecular S⋯I inter­actions are observed in the structure with a distance of 3.641 (4) Å (Fig. 2[link]). Such inter­molecular inter­actions are also observed in the structure of tetra­iodo­thio­phene cocrystallized with tetra­butyl­ammonium iodide (Bock & Holl, 2002[Bock, H. & Holl, S. (2002). Z. Naturforsch. Teil B, 57, 835-842.]), with S⋯I distances of 3.58 and 3.59 Å, and other work involving I2 inter­actions with thio­ethers suggest the distances are typical e.g. 3.70 Å in the formation of extended structural networks (Blake et al., 1997[Blake, A. J., Cristiani, F., Devillanova, F. A., Garau, A., Gilby, L. M., Gould, R. O., Isaia, F., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1337-1346.] and 1998[Blake, A. J., Devillanova, F. A., Garau, A., Gilby, L. M., Gould, R. O., Isaia, F., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1998). J. Chem. Soc. Dalton Trans. pp. 2037-2046.]). Weak inter­molecular C—H⋯I inter­actions are not observed in this structure.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing 50% probability ellipsoids for non-H atoms.
[Figure 2]
Figure 2
The unit-cell contents of (I)[link], viewed along [010] (50% probability ellipsoids). The dashed lines indicate the closest inter­molecular S⋯I contacts.
[Figure 3]
Figure 3
The unit-cell contents of (I)[link], viewed along [100] (50% probability ellipsoids). The dashed lines indicate the closest inter­molecular S⋯I contacts.

Experimental

To a vigorously stirred mixture of iodine (11.5 g, 45 mmol), water (25 ml), iodic acid (3.9 g, 22 mmol), sulfuric acid (3 ml) and glacial acetic acid (75 ml) was added 2,5-dimethyl­thio­phene (5 ml, 44 mmol). The solution was stirred at 323 K for 3 h and saturated aqueous sodium thio­sulfate (150 ml) was added. The organic phase was extracted with diethyl ether (4 × 50 ml), dried over MgSO4 and the solvent was removed under reduced pressure. The crude product was dissolved in dichloro­methane and the solution was passed through a column of silica gel to remove the coloured material (9.15 g, 57%). The compound was recrystallized from dichloro­methane at room temperature, giving crystals of (I)[link] suitable for X-ray analysis (yield 9.15 g, 57%).

Crystal data
  • C6H6I2S

  • Mr = 363.97

  • Monoclinic, P 21 /c

  • a = 10.0141 (13) Å

  • b = 6.7478 (6) Å

  • c = 13.4597 (17) Å

  • β = 98.156 (10)°

  • V = 900.31 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.14 mm−1

  • T = 150 (2) K

  • 0.49 × 0.45 × 0.35 mm

Data collection
  • Stoe IPDSII image-plate diffractometer

  • Absorption correction: numerical (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]) Tmin = 0.073, Tmax = 0.145

  • 7570 measured reflections

  • 3171 independent reflections

  • 2876 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.094

  • S = 1.08

  • 3171 reflections

  • 85 parameters

  • H-atom parameters constrained

  • Δρmax = 1.84 e Å−3

  • Δρmin = −1.56 e Å−3

H atoms were placed in idealized positions (C—H = 0.98 Å) and refined as riding atoms, with Uiso(H) = 1.2 Ueq(C). The highest residual electron-density peak is located 1.05 Å from atom I1 and the deepest hole is located 0.67 Å from the same atom.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]) and WinGX (Farrugia,1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and WinGX (Farrugia,1999).

3,4-diiodo-2,5-dimethylthiophene top
Crystal data top
C6H6I2SF(000) = 656
Mr = 363.97Dx = 2.685 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1487 reflections
a = 10.0141 (13) Åθ = 3.1–34.8°
b = 6.7478 (6) ŵ = 7.14 mm1
c = 13.4597 (17) ÅT = 150 K
β = 98.156 (10)°Block, colourless
V = 900.31 (18) Å30.49 × 0.45 × 0.35 mm
Z = 4
Data collection top
Stoe IPDSII image plate
diffractometer
3171 independent reflections
Radiation source: fine-focus sealed tube2876 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scans,125 frames at 1o intervals, exposure time 1 minuteθmax = 32.5°, θmin = 3.1°
Absorption correction: numerical
(X-RED32; Stoe & Cie, 2002)
h = 1512
Tmin = 0.073, Tmax = 0.145k = 108
7570 measured reflectionsl = 1920
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0455P)2 + 2.0477P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.041
3171 reflectionsΔρmax = 1.84 e Å3
85 parametersΔρmin = 1.56 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0094 (5)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.95491 (2)0.33976 (4)0.148780 (18)0.02573 (9)
I20.72610 (3)0.78586 (4)0.149067 (19)0.02665 (9)
S10.65840 (10)0.41677 (16)0.13796 (7)0.02577 (19)
C10.7839 (4)0.3079 (6)0.0553 (3)0.0224 (6)
C20.8076 (3)0.4170 (6)0.0308 (3)0.0208 (6)
C40.6355 (4)0.6116 (6)0.0584 (3)0.0241 (6)
C30.7227 (4)0.5899 (6)0.0289 (3)0.0223 (6)
C60.8507 (5)0.1212 (7)0.0829 (3)0.0301 (8)
H20.94090.15210.09890.036*
H30.79660.06090.14150.036*
H10.85840.02840.02640.036*
C50.5330 (4)0.7677 (8)0.0880 (4)0.0336 (9)
H50.47440.72670.14920.040*
H40.57830.89200.10060.040*
H60.47850.78740.03380.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02439 (13)0.02973 (15)0.02117 (13)0.00487 (8)0.00335 (9)0.00026 (8)
I20.02565 (13)0.02720 (15)0.02611 (14)0.00265 (8)0.00028 (9)0.00559 (8)
S10.0258 (4)0.0318 (5)0.0183 (4)0.0018 (3)0.0021 (3)0.0003 (3)
C10.0227 (15)0.0244 (16)0.0201 (15)0.0015 (12)0.0032 (12)0.0020 (12)
C20.0191 (13)0.0227 (16)0.0201 (14)0.0022 (11)0.0011 (11)0.0026 (11)
C40.0222 (14)0.0266 (17)0.0227 (16)0.0025 (13)0.0001 (12)0.0009 (13)
C30.0200 (14)0.0254 (17)0.0205 (15)0.0015 (12)0.0003 (12)0.0004 (12)
C60.0346 (19)0.031 (2)0.0253 (18)0.0046 (16)0.0065 (15)0.0039 (15)
C50.0266 (18)0.039 (2)0.034 (2)0.0124 (17)0.0003 (16)0.0070 (17)
Geometric parameters (Å, º) top
I1—C22.074 (4)C4—C51.486 (6)
I2—C32.085 (4)C6—H20.9800
S1—C11.721 (4)C6—H30.9800
S1—C41.731 (4)C6—H10.9800
C1—C21.365 (5)C5—H50.9800
C1—C61.498 (6)C5—H40.9800
C2—C31.442 (5)C5—H60.9800
C4—C31.369 (5)
C1—S1—C494.18 (19)C1—C6—H2109.5
C2—C1—C6129.4 (4)C1—C6—H3109.5
C2—C1—S1110.0 (3)H2—C6—H3109.5
C6—C1—S1120.6 (3)C1—C6—H1109.5
C1—C2—C3113.0 (3)H2—C6—H1109.5
C1—C2—I1122.2 (3)H3—C6—H1109.5
C3—C2—I1124.8 (3)C4—C5—H5109.5
C3—C4—C5129.6 (4)C4—C5—H4109.5
C3—C4—S1109.0 (3)H5—C5—H4109.5
C5—C4—S1121.3 (3)C4—C5—H6109.5
C4—C3—C2113.8 (4)H5—C5—H6109.5
C4—C3—I2122.5 (3)H4—C5—H6109.5
C2—C3—I2123.7 (3)
C4—S1—C1—C20.1 (3)C5—C4—C3—C2179.5 (4)
C4—S1—C1—C6179.4 (3)S1—C4—C3—C20.3 (4)
C6—C1—C2—C3179.5 (4)C5—C4—C3—I21.4 (6)
S1—C1—C2—C30.0 (4)S1—C4—C3—I2177.81 (19)
C6—C1—C2—I10.9 (6)C1—C2—C3—C40.2 (5)
S1—C1—C2—I1178.60 (18)I1—C2—C3—C4178.4 (3)
C1—S1—C4—C30.2 (3)C1—C2—C3—I2177.9 (3)
C1—S1—C4—C5179.5 (4)I1—C2—C3—I23.6 (4)
 

Acknowledgements

We thank the EPSRC for funds which enabled the purchase of the Stoe IPDSII diffractometer. We acknowledge the use of the EPSRC's Chemical Database Service at Daresbury (Fletcher et al., 1996[Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.]).

References

First citationBlake, A. J., Cristiani, F., Devillanova, F. A., Garau, A., Gilby, L. M., Gould, R. O., Isaia, F., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1337–1346.  CSD CrossRef Web of Science Google Scholar
First citationBlake, A. J., Devillanova, F. A., Garau, A., Gilby, L. M., Gould, R. O., Isaia, F., Lippolis, V., Parsons, S., Radek, C. & Schröder, M. (1998). J. Chem. Soc. Dalton Trans. pp. 2037–2046.  Web of Science CSD CrossRef Google Scholar
First citationBock, H. & Holl, S. (2002). Z. Naturforsch. Teil B, 57, 835–842.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds