metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(di­phenyl­methyl­phosphine-κP)(disulfurdinitrido-κ2N,S)platinum(II) di­chloro­methane solvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of St Andrews, St Andrews KY16 9ST, Scotland
*Correspondence e-mail: jdw3@st-and.ac.uk

(Received 31 January 2007; accepted 6 February 2007; online 14 February 2007)

The title compound, [Pt(N2S2)(C13H13P)2]·CH2Cl2, contains PtII in a square-planar coordination. The five-membered PtS2N2 ring contains two short and one long S—N bonds. Inter­estingly, the S—N bond lengths have a different pattern from those in the PMe2Ph analogue and one of the published PPh3 analogues, but are comparable with those in most other systems containing the disulfurdinitride anion.

Comment

The disulfurdintride dianion is not known in simple salts but can be isolated in metal complexes (Kelly & Woollins, 1986[Kelly, P. F. & Woollins, J. D. (1986). Polyhedron, 5, 607-632.]; Jones et al., 1985a[Jones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1985a). J. Chem. Soc. Chem. Commun. pp. 1325-1326.],b[Jones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1985b). Polyhedron, 4, 1947-1950.]; Bates et al., 1986[Bates, P. A., Hursthouse, M. B., Kelly, P. F. & Woollins, J. D. (1986). J. Chem. Soc. Dalton Trans. pp. 2367-2370.]). These complexes may be protonated at the metal-coordinated nitro­gen (Jones et al., 1986[Jones, R., Kelly, P. F., Warrens, C. P., Williams, D. J. & Woollins, J. D. (1986). J. Chem. Soc. Chem. Commun. pp. 711-713.], 1988[Jones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1988). J. Chem. Soc. Dalton Trans. pp. 803-807.]), and we have previously commented on the structural consequences of this protonation (Jones et al., 1987[Jones, R., Warrens, C. P., Williams, D. J. & Woollins, J. D. (1987). J. Chem. Soc. Dalton Trans. pp. 907-914.]). Recently, we developed a new route to diulfurdinitrido complexes (Aucott et al., 2002[Aucott, S. M., Slawin, A. M. Z. & Woollins, J. D. (2002). Can. J. Chem. 80, 1481-1487.]) and have examined the metallation of the IrS2N2 and CoS2N2 rings using the AuPR3 cation as a species which is isolobal with a proton (Aucott et al., 2003[Aucott, S. M., Bhattacharyya, P., Milton, H. L., Slawin, A. M. Z. & Woollins, J. D. (2003). New J. Chem. 27, 1466-1469.]; Slawin & Woollins, 2006[Slawin, A. M. Z. & Woollins, J. D. (2006). Acta Cryst. E62, m1658-1659.]).

[Scheme 1]

The structure of the title compound, (I)[link], a dichloro­methane solvate, is shown in Fig. 1[link]. In (I)[link], the coordination of PtII is slightly distorted square-planar (Table 1[link]), the five-membered PtS2N2 ring being essentially coplanar [maximum deviation from the PtS2N2P2 mean plane is 0.06 (1) Å for P1]. The PtS2N2 ring contains two short [N1—S1 = 1.525 (7) and N2—S1 = 1.568 (8) Å] and one long S—N bonds [S2—N2 = 1.665 (7) Å]. Comparison of the S—N bond lengths for the various phosphine-substituted analogues containing this ring reveals that the S—N bond lengths have a different pattern from those in the PMe2Ph analogue (Jones et al., 1988[Jones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1988). J. Chem. Soc. Dalton Trans. pp. 803-807.]) and one of the published PPh3 analogues (Chivers et al., 1986[Chivers, T., Edelmann, F., Behrens, U. & Drews, R. (1986). Inorg. Chim. Acta, 116, 145-151.]), but are comparable with those in most others systems containing the disulfurdinitride anion (Jones et al., 1985a[Jones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1985a). J. Chem. Soc. Chem. Commun. pp. 1325-1326.]; Bates et al., 1986[Bates, P. A., Hursthouse, M. B., Kelly, P. F. & Woollins, J. D. (1986). J. Chem. Soc. Dalton Trans. pp. 2367-2370.]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with displacement ellipsoids drawn at the 50% probability level. H atoms of the complex molecule have been omitted.

Experimental

Compound (I)[link] was prepared as described previously (Belton et al., 1988[Belton, P. S., Parkin, I. P., Williams, D. J. & Woollins, J. D. (1988). J. Chem. Soc. Chem. Commun. pp. 1479-1480.]). [S4N3]Cl (0.050 g, 0.24 mmol) was added to liquid NH3 (15 ml) at 195 K. After stirring for 30 min, solid Pt(PPh2Me)2Cl2 (0.120 g, 0.18 mmol) was added and the reaction allowed to warm to room temperature over a period of 4 h, during which time the ammonia evaporated. Residual ammonia was removed in vacuo and the resulting solid was extracted into dichloro­methane, filtered through Celite and subjected to column chromatography using silica gel [CH2Cl2/hexane (1:1) eluent] to give the final product (0.075 g, 0.11 mmol) in 55% yield. Recrystallization from a dichloro­methane/hexane (1:1) mixture gave yellow plates.

Crystal data
  • [Pt(N2S2)(C13H13P)2]·CH2Cl2

  • Mr = 772.56

  • Monoclinic, P 21 /n

  • a = 12.792 (2) Å

  • b = 12.289 (2) Å

  • c = 18.564 (4) Å

  • β = 107.160 (9)°

  • V = 2788.4 (9) Å3

  • Z = 4

  • Dx = 1.840 Mg m−3

  • Mo Kα radiation

  • μ = 5.51 mm−1

  • T = 93 (2) K

  • Plate, yellow

  • 0.10 × 0.10 × 0.03 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan CrystalClear (Rigaku, 2004[Rigaku (2004). CrystalClear. Version 1.36. Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.]) Tmin = 0.587, Tmax = 0.856

  • 16094 measured reflections

  • 4810 independent reflections

  • 3935 reflections with I > 2σ(I)

  • Rint = 0.070

  • θmax = 25.4°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.115

  • S = 1.05

  • 4810 reflections

  • 328 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0544P)2 + 24.9689P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.003

  • Δρmax = 1.28 e Å−3

  • Δρmin = −2.11 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pt1—N1 2.052 (7)
Pt1—P2 2.243 (2)
Pt1—S2 2.271 (2)
Pt1—P1 2.281 (2)
N1—Pt1—S2 87.7 (2)
P2—Pt1—S2 89.67 (8)
N1—Pt1—P1 83.6 (2)
P2—Pt1—P1 99.00 (8)

All H atoms were included in calculated positions (C—H = 0.98 Å for methyl H atoms, 0.99 Å for methyl­ene H atoms and 0.95 Å for aryl H atoms) and were refined as riding atoms, with Uiso(H) = 1.2Ueq(methyl­ene and aryl C) or 1.5Ueq(methyl C). The highest peak in the difference map is 1.48 Å from atom Pt1 and the deepest hole is 0.89 Å from the same atom.

Data collection: CrystalClear (Rigaku, 2004[Rigaku (2004). CrystalClear. Version 1.36. Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 2003[Sheldrick, G. M. (2003). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: CrystalClear (Rigaku, 2004); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2003); software used to prepare material for publication: SHELXTL.

Bis(diphenylmethylphosphine-κP)(disulfurdinitrido-κ2N,S)platinum(II) dichloromethane solvate top
Crystal data top
[Pt(N2S2)(C13H13P)2]·CH2Cl2F(000) = 1512
Mr = 772.56Dx = 1.840 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8893 reflections
a = 12.792 (2) Åθ = 1.7–27.4°
b = 12.289 (2) ŵ = 5.51 mm1
c = 18.564 (4) ÅT = 93 K
β = 107.160 (9)°Plate, yellow
V = 2788.4 (9) Å30.10 × 0.10 × 0.03 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
4810 independent reflections
Radiation source: rotating anode3935 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.070
Detector resolution: 0.83 pixels mm-1θmax = 25.4°, θmin = 2.0°
ω and φ scansh = 1412
Absorption correction: multi-scan
CrystalClear (Rigaku, 2004)
k = 1214
Tmin = 0.587, Tmax = 0.856l = 1722
16094 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0544P)2 + 24.9689P]
where P = (Fo2 + 2Fc2)/3
4810 reflections(Δ/σ)max = 0.003
328 parametersΔρmax = 1.28 e Å3
0 restraintsΔρmin = 2.11 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.56215 (2)0.08329 (2)0.763103 (18)0.01649 (12)
N10.6647 (6)0.0010 (6)0.8524 (4)0.0215 (16)
S10.68253 (19)0.11842 (19)0.83715 (14)0.0289 (5)
N20.6204 (6)0.1630 (5)0.7568 (4)0.0214 (16)
S20.54256 (18)0.07438 (17)0.69660 (13)0.0244 (5)
P10.60903 (17)0.22984 (16)0.84141 (12)0.0166 (5)
C10.5754 (6)0.3682 (7)0.8097 (4)0.0161 (17)
C20.6506 (7)0.4331 (7)0.7873 (5)0.023 (2)
H2A0.71780.40280.78500.028*
C30.6270 (8)0.5408 (7)0.7686 (5)0.029 (2)
H3A0.67870.58480.75440.035*
C40.5286 (8)0.5848 (7)0.7706 (5)0.029 (2)
H4A0.51270.65900.75760.035*
C50.4538 (7)0.5219 (7)0.7912 (5)0.0200 (19)
H5A0.38550.55200.79140.024*
C60.4773 (6)0.4157 (7)0.8115 (4)0.0164 (17)
H6A0.42580.37340.82720.020*
C70.5597 (6)0.2266 (6)0.9228 (5)0.0176 (18)
C80.4935 (7)0.1416 (7)0.9343 (5)0.025 (2)
H8A0.47590.08250.89990.030*
C90.4533 (8)0.1440 (8)0.9966 (6)0.034 (2)
H9A0.40800.08681.00450.041*
C100.4799 (7)0.2303 (7)1.0469 (5)0.026 (2)
H10A0.45240.23211.08920.031*
C110.5451 (7)0.3122 (8)1.0360 (5)0.025 (2)
H11A0.56350.37071.07090.030*
C120.5847 (7)0.3108 (7)0.9745 (5)0.0229 (19)
H12A0.62990.36880.96750.027*
C130.7547 (6)0.2322 (7)0.8806 (5)0.0207 (19)
H13A0.77550.29000.91860.031*
H13B0.78850.24610.84050.031*
H13C0.77990.16180.90430.031*
P20.44798 (17)0.16590 (17)0.66274 (12)0.0178 (5)
C140.3725 (6)0.0744 (7)0.5899 (5)0.0207 (18)
C150.3913 (7)0.0640 (7)0.5210 (5)0.025 (2)
H15A0.44630.10730.51020.030*
C160.3322 (7)0.0080 (7)0.4672 (5)0.025 (2)
H16A0.34620.01320.41990.030*
C170.2532 (7)0.0718 (7)0.4822 (5)0.024 (2)
H17A0.21190.12110.44520.028*
C180.2341 (7)0.0642 (7)0.5515 (5)0.026 (2)
H18A0.18070.10960.56260.032*
C190.2916 (6)0.0085 (7)0.6042 (5)0.0201 (18)
H19A0.27650.01430.65120.024*
C200.3393 (7)0.2459 (8)0.6810 (5)0.027 (2)
C210.3000 (7)0.2178 (7)0.7389 (5)0.027 (2)
H21A0.33010.15740.77010.033*
C220.2154 (8)0.2781 (9)0.7524 (6)0.042 (3)
H22A0.18670.25900.79240.050*
C230.1737 (8)0.3669 (9)0.7062 (7)0.045 (3)
H23A0.11680.40900.71550.054*
C240.2121 (8)0.3941 (9)0.6488 (7)0.040 (3)
H24A0.18280.45490.61780.049*
C250.2939 (7)0.3335 (8)0.6355 (6)0.035 (2)
H25A0.32020.35160.59430.041*
C260.5160 (7)0.2584 (8)0.6160 (5)0.028 (2)
H26A0.46230.29050.57220.042*
H26B0.57130.21880.59940.042*
H26C0.55160.31630.65110.042*
C270.4448 (13)0.5725 (11)0.5806 (9)0.077 (5)
H27A0.43080.54030.62580.093*
H27B0.51800.54810.57940.093*
Cl10.4442 (3)0.7125 (3)0.5876 (2)0.0641 (9)
Cl20.3467 (3)0.5255 (3)0.50033 (19)0.0733 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01529 (17)0.01477 (19)0.01922 (18)0.00008 (13)0.00479 (12)0.00056 (13)
N10.026 (4)0.018 (4)0.022 (4)0.002 (3)0.009 (3)0.004 (3)
S10.0283 (12)0.0254 (12)0.0347 (14)0.0044 (9)0.0118 (10)0.0079 (10)
N20.029 (4)0.010 (4)0.031 (4)0.001 (3)0.016 (3)0.002 (3)
S20.0267 (11)0.0185 (12)0.0293 (12)0.0005 (9)0.0103 (9)0.0003 (9)
P10.0176 (11)0.0116 (11)0.0195 (11)0.0012 (8)0.0041 (8)0.0003 (8)
C10.019 (4)0.021 (4)0.008 (4)0.008 (3)0.004 (3)0.006 (3)
C20.017 (4)0.027 (5)0.027 (5)0.002 (4)0.008 (4)0.006 (4)
C30.028 (5)0.020 (5)0.037 (6)0.007 (4)0.006 (4)0.013 (4)
C40.033 (5)0.023 (5)0.030 (5)0.011 (4)0.006 (4)0.009 (4)
C50.017 (4)0.022 (5)0.020 (5)0.003 (3)0.005 (3)0.002 (3)
C60.019 (4)0.019 (4)0.014 (4)0.005 (3)0.008 (3)0.003 (3)
C70.015 (4)0.016 (4)0.020 (4)0.003 (3)0.002 (3)0.001 (3)
C80.026 (5)0.025 (5)0.023 (5)0.002 (4)0.006 (4)0.003 (4)
C90.036 (6)0.031 (6)0.038 (6)0.001 (4)0.016 (5)0.012 (5)
C100.027 (5)0.029 (5)0.023 (5)0.005 (4)0.010 (4)0.005 (4)
C110.030 (5)0.029 (5)0.016 (5)0.002 (4)0.005 (4)0.005 (4)
C120.023 (5)0.026 (5)0.020 (5)0.010 (4)0.008 (4)0.003 (4)
C130.015 (4)0.025 (5)0.018 (4)0.006 (3)0.003 (3)0.003 (3)
P20.0137 (10)0.0182 (11)0.0202 (12)0.0004 (8)0.0032 (8)0.0030 (9)
C140.013 (4)0.023 (5)0.024 (5)0.002 (3)0.002 (3)0.000 (4)
C150.023 (5)0.023 (5)0.030 (5)0.009 (4)0.009 (4)0.002 (4)
C160.023 (5)0.026 (5)0.027 (5)0.003 (4)0.007 (4)0.004 (4)
C170.023 (4)0.024 (5)0.021 (5)0.001 (4)0.000 (4)0.007 (4)
C180.024 (5)0.025 (5)0.029 (5)0.004 (4)0.006 (4)0.007 (4)
C190.015 (4)0.019 (5)0.026 (5)0.000 (3)0.006 (3)0.001 (4)
C200.024 (5)0.025 (5)0.029 (5)0.000 (4)0.001 (4)0.005 (4)
C210.021 (5)0.025 (5)0.033 (5)0.005 (4)0.004 (4)0.012 (4)
C220.029 (5)0.054 (7)0.048 (7)0.022 (5)0.021 (5)0.034 (6)
C230.020 (5)0.044 (7)0.064 (8)0.003 (5)0.002 (5)0.020 (6)
C240.027 (5)0.038 (6)0.049 (7)0.010 (4)0.000 (5)0.009 (5)
C250.020 (5)0.033 (6)0.044 (6)0.008 (4)0.002 (4)0.013 (5)
C260.022 (5)0.030 (5)0.033 (5)0.000 (4)0.011 (4)0.001 (4)
C270.075 (10)0.067 (10)0.069 (10)0.007 (8)0.011 (8)0.013 (7)
Cl10.078 (2)0.0510 (19)0.062 (2)0.0059 (16)0.0180 (17)0.0076 (15)
Cl20.092 (3)0.070 (2)0.047 (2)0.0116 (19)0.0031 (17)0.0013 (16)
Geometric parameters (Å, º) top
Pt1—N12.052 (7)C13—H13C0.9800
Pt1—P22.243 (2)P2—C261.802 (9)
Pt1—S22.271 (2)P2—C141.804 (8)
Pt1—P12.281 (2)P2—C201.815 (9)
N1—S11.525 (7)C14—C151.374 (13)
S1—N21.568 (8)C14—C191.400 (12)
N2—S21.665 (7)C15—C161.380 (12)
P1—C131.789 (8)C15—H15A0.9500
P1—C71.801 (9)C16—C171.371 (13)
P1—C11.809 (8)C16—H16A0.9500
C1—C61.393 (11)C17—C181.381 (13)
C1—C21.404 (12)C17—H17A0.9500
C2—C31.378 (13)C18—C191.368 (12)
C2—H2A0.9500C18—H18A0.9500
C3—C41.381 (14)C19—H19A0.9500
C3—H3A0.9500C20—C211.358 (13)
C4—C51.370 (13)C20—C251.385 (14)
C4—H4A0.9500C21—C221.394 (14)
C5—C61.367 (12)C21—H21A0.9500
C5—H5A0.9500C22—C231.392 (16)
C6—H6A0.9500C22—H22A0.9500
C7—C121.384 (12)C23—C241.340 (17)
C7—C81.400 (12)C23—H23A0.9500
C8—C91.397 (14)C24—C251.365 (14)
C8—H8A0.9500C24—H24A0.9500
C9—C101.387 (14)C25—H25A0.9500
C9—H9A0.9500C26—H26A0.9800
C10—C111.361 (13)C26—H26B0.9800
C10—H10A0.9500C26—H26C0.9800
C11—C121.378 (12)C27—Cl11.726 (14)
C11—H11A0.9500C27—Cl21.740 (14)
C12—H12A0.9500C27—H27A0.9900
C13—H13A0.9800C27—H27B0.9900
C13—H13B0.9800
N1—Pt1—P2177.4 (2)H13A—C13—H13C109.5
N1—Pt1—S287.7 (2)H13B—C13—H13C109.5
P2—Pt1—S289.67 (8)C26—P2—C14105.1 (4)
N1—Pt1—P183.6 (2)C26—P2—C20104.7 (4)
P2—Pt1—P199.00 (8)C14—P2—C20102.0 (4)
S2—Pt1—P1170.46 (8)C26—P2—Pt1113.4 (3)
S1—N1—Pt1114.8 (4)C14—P2—Pt1114.4 (3)
N1—S1—N2116.9 (4)C20—P2—Pt1115.9 (3)
S1—N2—S2116.4 (4)C15—C14—C19117.7 (8)
N2—S2—Pt1104.2 (3)C15—C14—P2123.6 (7)
C13—P1—C7103.9 (4)C19—C14—P2118.7 (7)
C13—P1—C1103.7 (4)C14—C15—C16121.6 (9)
C7—P1—C1100.7 (4)C14—C15—H15A119.2
C13—P1—Pt1108.6 (3)C16—C15—H15A119.2
C7—P1—Pt1115.2 (3)C17—C16—C15120.0 (9)
C1—P1—Pt1122.8 (3)C17—C16—H16A120.0
C6—C1—C2118.0 (8)C15—C16—H16A120.0
C6—C1—P1121.0 (6)C16—C17—C18119.6 (8)
C2—C1—P1120.8 (6)C16—C17—H17A120.2
C3—C2—C1120.1 (8)C18—C17—H17A120.2
C3—C2—H2A119.9C19—C18—C17120.3 (9)
C1—C2—H2A119.9C19—C18—H18A119.8
C2—C3—C4120.2 (9)C17—C18—H18A119.8
C2—C3—H3A119.9C18—C19—C14120.8 (8)
C4—C3—H3A119.9C18—C19—H19A119.6
C5—C4—C3120.3 (8)C14—C19—H19A119.6
C5—C4—H4A119.9C21—C20—C25119.6 (9)
C3—C4—H4A119.9C21—C20—P2119.5 (7)
C6—C5—C4120.0 (8)C25—C20—P2120.9 (8)
C6—C5—H5A120.0C20—C21—C22119.6 (10)
C4—C5—H5A120.0C20—C21—H21A120.2
C5—C6—C1121.3 (8)C22—C21—H21A120.2
C5—C6—H6A119.3C23—C22—C21118.9 (10)
C1—C6—H6A119.3C23—C22—H22A120.6
C12—C7—C8118.6 (8)C21—C22—H22A120.6
C12—C7—P1119.9 (6)C24—C23—C22121.4 (10)
C8—C7—P1121.5 (6)C24—C23—H23A119.3
C9—C8—C7119.9 (9)C22—C23—H23A119.3
C9—C8—H8A120.1C23—C24—C25119.1 (11)
C7—C8—H8A120.1C23—C24—H24A120.4
C10—C9—C8119.7 (9)C25—C24—H24A120.4
C10—C9—H9A120.1C24—C25—C20121.3 (11)
C8—C9—H9A120.1C24—C25—H25A119.3
C11—C10—C9120.3 (9)C20—C25—H25A119.3
C11—C10—H10A119.9P2—C26—H26A109.5
C9—C10—H10A119.9P2—C26—H26B109.5
C10—C11—C12120.4 (8)H26A—C26—H26B109.5
C10—C11—H11A119.8P2—C26—H26C109.5
C12—C11—H11A119.8H26A—C26—H26C109.5
C11—C12—C7121.2 (8)H26B—C26—H26C109.5
C11—C12—H12A119.4Cl1—C27—Cl2112.2 (8)
C7—C12—H12A119.4Cl1—C27—H27A109.2
P1—C13—H13A109.5Cl2—C27—H27A109.2
P1—C13—H13B109.5Cl1—C27—H27B109.2
H13A—C13—H13B109.5Cl2—C27—H27B109.2
P1—C13—H13C109.5H27A—C27—H27B107.9
S2—Pt1—N1—S10.4 (4)C10—C11—C12—C70.3 (14)
P1—Pt1—N1—S1175.6 (4)C8—C7—C12—C110.4 (13)
Pt1—N1—S1—N20.6 (6)P1—C7—C12—C11177.9 (7)
N1—S1—N2—S20.6 (6)S2—Pt1—P2—C26107.1 (3)
S1—N2—S2—Pt10.2 (5)P1—Pt1—P2—C2668.9 (3)
N1—Pt1—S2—N20.1 (3)S2—Pt1—P2—C1413.4 (3)
P2—Pt1—S2—N2179.6 (3)P1—Pt1—P2—C14170.6 (3)
N1—Pt1—P1—C1348.4 (4)S2—Pt1—P2—C20131.7 (3)
P2—Pt1—P1—C13131.9 (3)P1—Pt1—P2—C2052.3 (3)
N1—Pt1—P1—C767.6 (4)C26—P2—C14—C1515.6 (8)
P2—Pt1—P1—C7112.1 (3)C20—P2—C14—C15124.6 (8)
N1—Pt1—P1—C1169.3 (4)Pt1—P2—C14—C15109.4 (7)
P2—Pt1—P1—C111.0 (3)C26—P2—C14—C19165.6 (7)
C13—P1—C1—C6147.0 (6)C20—P2—C14—C1956.6 (7)
C7—P1—C1—C639.8 (7)Pt1—P2—C14—C1969.3 (7)
Pt1—P1—C1—C689.8 (6)C19—C14—C15—C160.6 (12)
C13—P1—C1—C228.7 (8)P2—C14—C15—C16179.4 (7)
C7—P1—C1—C2136.0 (7)C14—C15—C16—C170.6 (13)
Pt1—P1—C1—C294.5 (7)C15—C16—C17—C180.5 (13)
C6—C1—C2—C30.6 (12)C16—C17—C18—C191.6 (13)
P1—C1—C2—C3175.2 (7)C17—C18—C19—C141.6 (13)
C1—C2—C3—C41.1 (14)C15—C14—C19—C180.5 (12)
C2—C3—C4—C50.1 (14)P2—C14—C19—C18178.4 (7)
C3—C4—C5—C61.4 (13)C26—P2—C20—C21154.5 (7)
C4—C5—C6—C11.9 (12)C14—P2—C20—C2196.2 (7)
C2—C1—C6—C50.9 (12)Pt1—P2—C20—C2128.8 (8)
P1—C1—C6—C5176.7 (6)C26—P2—C20—C2527.2 (8)
C13—P1—C7—C1260.6 (8)C14—P2—C20—C2582.1 (8)
C1—P1—C7—C1246.5 (7)Pt1—P2—C20—C25152.9 (6)
Pt1—P1—C7—C12179.2 (6)C25—C20—C21—C220.7 (13)
C13—P1—C7—C8121.2 (7)P2—C20—C21—C22179.0 (6)
C1—P1—C7—C8131.7 (7)C20—C21—C22—C230.6 (13)
Pt1—P1—C7—C82.6 (8)C21—C22—C23—C241.0 (15)
C12—C7—C8—C90.7 (12)C22—C23—C24—C250.0 (16)
P1—C7—C8—C9177.6 (7)C23—C24—C25—C201.3 (15)
C7—C8—C9—C100.4 (14)C21—C20—C25—C241.7 (14)
C8—C9—C10—C110.2 (14)P2—C20—C25—C24180.0 (8)
C9—C10—C11—C120.6 (14)
 

References

First citationAucott, S. M., Bhattacharyya, P., Milton, H. L., Slawin, A. M. Z. & Woollins, J. D. (2003). New J. Chem. 27, 1466–1469.  CSD CrossRef CAS Google Scholar
First citationAucott, S. M., Slawin, A. M. Z. & Woollins, J. D. (2002). Can. J. Chem. 80, 1481–1487.  CSD CrossRef CAS Google Scholar
First citationBates, P. A., Hursthouse, M. B., Kelly, P. F. & Woollins, J. D. (1986). J. Chem. Soc. Dalton Trans. pp. 2367–2370.  CSD CrossRef Google Scholar
First citationBelton, P. S., Parkin, I. P., Williams, D. J. & Woollins, J. D. (1988). J. Chem. Soc. Chem. Commun. pp. 1479–1480.  CrossRef Web of Science Google Scholar
First citationChivers, T., Edelmann, F., Behrens, U. & Drews, R. (1986). Inorg. Chim. Acta, 116, 145–151.  CSD CrossRef CAS Web of Science Google Scholar
First citationJones, R., Kelly, P. F., Warrens, C. P., Williams, D. J. & Woollins, J. D. (1986). J. Chem. Soc. Chem. Commun. pp. 711–713.  CrossRef Google Scholar
First citationJones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1985a). J. Chem. Soc. Chem. Commun. pp. 1325–1326.  CrossRef Google Scholar
First citationJones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1985b). Polyhedron, 4, 1947–1950.  CSD CrossRef CAS Google Scholar
First citationJones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1988). J. Chem. Soc. Dalton Trans. pp. 803–807.  CSD CrossRef Google Scholar
First citationJones, R., Warrens, C. P., Williams, D. J. & Woollins, J. D. (1987). J. Chem. Soc. Dalton Trans. pp. 907–914.  CSD CrossRef Google Scholar
First citationKelly, P. F. & Woollins, J. D. (1986). Polyhedron, 5, 607–632.  CrossRef CAS Google Scholar
First citationRigaku (2004). CrystalClear. Version 1.36. Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSlawin, A. M. Z. & Woollins, J. D. (2006). Acta Cryst. E62, m1658–1659.  Web of Science CSD CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds