Download citation
Download citation
link to html
An intra­molecular Diels–Alder-type cyclo­addition between an indole and a 1,2,4,5-tetra­zine produced the title compound, C29H26N4O4, the first example of a penta­heterocyclic structure obtained via loss of nitro­gen and addition of the elements of acetic anhydride. Of the four N atoms in the mol­ecule, one is in a dihydro­indole, while the other three are in an N,N′-diacyl­amidrazone unit, of which there are no previous examples. The N,N′-diacyl­amidrazone is almost planar and is involved in π–π stacking with the N-benzyl phenyl ring. There are inter­molecular C—H...O hydrogen bonds, linking the mol­ecules into chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807011166/sg2145sup1.cif
Contains datablocks global, 3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807011166/sg21453sup2.hkl
Contains datablock 3

CCDC reference: 643090

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.045
  • wR factor = 0.115
  • Data-to-parameter ratio = 15.6

checkCIF/PLATON results

No syntax errors found



Datablock: 3


Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 200 Deg.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Computing details top

Data collection: SMART [PLEASE PROVIDE YEAR/VERSION NUMBER/REFERENCE]; cell refinement: SMART; data reduction: SAINT [PLEASE PROVIDE YEAR/VERSION NUMBER/REFERENCE]; program(s) used to solve structure: SHELXTL [PLEASE PROVIDE YEAR/VERSION NUMBER/REFERENCE]; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

5,7-diacetyl-13-benzyl-7,8-dihydro-5H,8aH,13H-diindolo[2,3 - c;2,3 - d]pyrimidin- 8-yl acetate top
Crystal data top
C29H26N4O4Z = 2
Mr = 494.54F(000) = 520
Triclinic, P1Dx = 1.377 Mg m3
a = 9.8170 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.2404 (14) ÅCell parameters from 2177 reflections
c = 11.5762 (14) Åθ = 2.2–28.0°
α = 109.371 (2)°µ = 0.09 mm1
β = 95.624 (2)°T = 100 K
γ = 93.782 (2)°Plate, yellow
V = 1192.7 (3) Å30.60 × 0.20 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5269 independent reflections
Radiation source: fine-focus sealed tube4159 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1013
Tmin = 0.946, Tmax = 0.991k = 1414
7514 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.4497P]
where P = (Fo2 + 2Fc2)/3
5269 reflections(Δ/σ)max < 0.001
337 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Experimental. Preparation of 1-benzyl-2-(2-nitrophenyl)indole: to an ice-cooled stirred solution of hexane-washed sodium hydride (177 mg, 4.6 mmol) in DMF (10 ml, anhydrous) under N2, a solution of 2-(o-nitrophenyl)indole (Dalton et al., 1983) (1 g, 4.2 mmol) in DMF (5 ml, anhydrous) was added over a period of 15 min. The mixture was left for a further 15 min, then benzyl bromide (1.1 ml, 9.2 mmol) was added dropwise, and the mixture left for 1 h at 273 K. The reaction was quenched with saturated aqueous NH4Cl, CH2Cl2 (10 ml) added, the organic layer separated, washed with brine, dried with Na2SO4, filtered, and the solvent removed by distillation under vacuum to afford the benzylated indole as an essentially pure red solid (1.3 g, 94%; m.p. 382–385 K). δH (CDCl3): 5.26 (2H, s, benzyl-CH2), 6.61 (1H, s, indol-3-yl), 6.96–7.00 (2H, m, ArH), 7.17–7.31 (5H, m, ArH), 7.38–7.43 (2H, m, ArH), 7.56–7.60 (2H, m, ArH), 7.69–7.74 (1H, dd, J = 7.3, 1.2 Hz, ArH), 8.00–8.06 (1H, m, ArH). δC (CDCl3): 47.88, 103.22, 110.41, 120.11, 120.84, 122.36, 124.06, 126.18, 127.23, 127.26, 127.94, 128.54, 29.58, 132.14, 133.40, 135.27, 137.37, 137.46, 149.86, m/z [CI]: 330 (M + 2, 8%), 329 (M + 1, 28%), 299 (100%), 288 (42%), 209 (22%), 108 (32%), 105 (30%), 91 (49%), [EI] 239 (M + 1, 3%), 328 (M+, 15%), 204 (10%), 105 (12%), 91 (100%), 49 (48%). C21H16N2O2 requires C 76.81, H 4.91, N 8.53%; found C 76.65, H 4.80, N 8.35%.

Preparation of 1-benzyl-2-(2-aminophenyl)indole: to 1-benzyl-2-(2-nitrophenyl)indole (1 g, 3 mmol) dissolved with a minimum amount of CH2Cl2 in EtOH (100 ml) palladium on carbon (120 mg, 10%) was added and the mixture treated with hydrogen at room pressure with stirring overnight. The mixture was filtered through Celite and the solvent removed by distillation under vacuum, to afford the amine as an essentially pure clear oil which solidified as a wax (0.89 g, 98%; m.p. 373–377 K). δH (CDCl3): 3.59 (2H, bs, NH2), 5.19 (2H, s, benzyl-CH2), 6.48 (1H, s, indol-3-yl-H), 6.69–6.72 (2H, d, J = 7.0 Hz, ArH), 6.82–6.91 (2H, m, ArH), 7.09–7.18 (8H, m, ArH), 7.64 (1H, m, ArH). δC (CDCl3): 47.47, 102.61, 110.59, 115.28, 117.99, 119.94, 120.49, 121.75, 126.38, 127.07, 127.78, 128.16, 128.47, 129.85, 131.54, 137.22, 137.83, 138.03, 145.59. m/z [CI]: 301 (M + 3, 3%), 300 (M + 2, 20%), 299 (M + 1, 100%), 209 (7%), [EI] 299 (M + 1, 10%), 298 (M+, 63%), 221 (25%), 207 (41%), 206 (100%), 91 (50%), 49 (55%). C20H18N2 requires [M] 298.1470; found [M+] 298.1468.

Preparation of 1-benzyl-2-(2-(1,2,4,5-tetrazin-3-ylamino)phenyl)indole: n-nutyllithium (0.18 ml, 1.6 M in hexanes) was added slowly to a solution of 1-benzyl-2-(2-aminophenyl)indole (100 mg, 0.3 mmol) in tetrahydrofuran (1 ml, anhydrous), at 233 K and the mixture stirred for 20 min. 3-(Methylsulfanyl)-1,2,4,5-tetrazine (Grasa et al., 2001) (40 mg, 0.3 mmol) in tetrahydrofuran (1 ml, anhydrous) was added dropwise and the temperature maintained at 233 K for 1 h, then allowed to warm to room temperature. The reaction was quenched with saturated aqueous NH4Cl, and CH2Cl2 (5 ml) added, the organic layer separated, dried with Na2SO4, filtered, and solvent removed by distillation under vacuum to give a red oil (185 mg). The oil was purified by flash chromatography to afford the title compound as a bright-red oil (72 mg, 63%). δH (CDCl3): 5.21 (2H, bs, benzyl-CH2), 6.76 (1H, s, indol-3-yl-H), 6.81–6.86 (2H, d, J 8.7, ArH), 6.95–7.09 (3H, m, ArH), 7.23–7.36 (4H, m, ArH), 7.38–7.45 (1H, m, ArH), 7.52–7.58 (1H, m, ArH), 7.69 (1H, bs, NH), 7.76–7.79 (1H, d, J = 7.6 Hz, ArH), 8.39–8.44 (1H, d, J = 8.1 Hz, ArH), 9.74 (1H, s, tetrazin-3-yl-H). δC (CDCl3): 47.41, 104.16, 110.37, 120.02, 120.43, 120.97, 122.70, 122.88, 123.82, 126.69, 127.95, 128.50, 130.02, 131.45, 134.95, 135.96, 137.35, 137.86, 153.88, 161.39. m/z (CI): 382 (M + 3, 10%), 381 (M + 2, 100%), 379 (M + 1, 72%), 299 (10%), 205 (22%), 108 (12%). (EI) 378 (M+, 3%), 322 (7%), 83 (3%), 49 (100%). C23H12N6 requires [M] 378.1592; found [M+] 378.1595.

Preparation of pentacycle (3): 1-benzyl-2-[2-(1,2,4,5-tetrazin-3-ylamino)phenyl]indole (80 mg, 0.21 mmol) dissolved in acetic anhydride (1 ml) was heated at reflux for 3 h. The Ac2O was removed by distillation under vacuum and the resulting oil was purified by flash chromatography to afford the pentacycle as a white solid (46 mg, 63%). The spectroscopic solution data showed the presence of two amide rotamers. Data for the major rotamer are reported here. δH (CDCl3): 1.93 (3H, s, NAc), 1.96 (3H, s, NAc), 2.08 (3H, s, OAc), 3.26–4.18 (2H, m, benzyl-CH2), 4.10 (1H, s, CH), 6.32–6.36 (1H, d, J = 7.8 Hz, ArH), 6.77 (1H, s, CH), 6.78–6.84 (1H, t, J = 7.4 Hz, ArH), 6.94–7.04 (3H, m, ArH), 7.04–7.17 (4H, m, ArH), 7.30–7.43 (2H, m, ArH), 7.56–7.60 (1H, d, J = 7.4 Hz, ArH), 8.28–8.34 (1H, d, J = 8.2 Hz, ArH). m/z (EI) 393 (M-OAc) (32%), 341 (15%), 332 (25%), 208 (68%), 119 (100%), 108 (70%), 77 (95%).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.11134 (12)0.33701 (10)0.07327 (10)0.0217 (3)
O20.15831 (14)0.95401 (11)0.44132 (12)0.0293 (3)
O30.16566 (11)0.86451 (10)0.16542 (10)0.0185 (3)
O40.15330 (13)1.05788 (12)0.14730 (12)0.0290 (3)
N10.12035 (13)0.55021 (11)0.13084 (11)0.0136 (3)
N20.00939 (13)0.69152 (12)0.26750 (11)0.0143 (3)
N30.02978 (13)0.82048 (12)0.31650 (12)0.0157 (3)
N40.27975 (13)0.84166 (12)0.27116 (12)0.0143 (3)
C10.20606 (15)0.56391 (14)0.04140 (13)0.0138 (3)
C20.26322 (16)0.47064 (15)0.04707 (14)0.0169 (3)
H20.24710.38350.05620.020*
C30.34489 (17)0.51082 (16)0.12148 (15)0.0198 (3)
H30.38620.44950.18200.024*
C40.36819 (17)0.63795 (16)0.11029 (15)0.0199 (3)
H40.42350.66200.16340.024*
C50.31032 (16)0.72991 (15)0.02101 (14)0.0168 (3)
H50.32530.81690.01260.020*
C60.23082 (15)0.69195 (14)0.05496 (13)0.0138 (3)
C70.17114 (15)0.77162 (14)0.16750 (13)0.0133 (3)
C80.08526 (15)0.67217 (14)0.19810 (13)0.0132 (3)
C90.03043 (16)0.89815 (14)0.23869 (14)0.0154 (3)
H90.02230.98940.29210.018*
C100.08520 (15)0.87819 (14)0.15452 (14)0.0139 (3)
H100.04670.86030.06650.017*
C110.19288 (16)0.99178 (14)0.19872 (13)0.0139 (3)
C120.19083 (16)1.10831 (14)0.18364 (14)0.0161 (3)
H120.11481.12610.13680.019*
C130.30314 (17)1.19974 (15)0.23884 (14)0.0180 (3)
H130.30461.28020.22850.022*
C140.41228 (17)1.17327 (15)0.30860 (14)0.0184 (3)
H140.48731.23670.34620.022*
C150.41490 (16)1.05566 (14)0.32505 (14)0.0168 (3)
H150.49001.03850.37330.020*
C160.30380 (16)0.96465 (14)0.26845 (13)0.0140 (3)
C170.08150 (16)0.43470 (14)0.14608 (14)0.0152 (3)
C180.00639 (17)0.43655 (15)0.25245 (15)0.0193 (3)
H18A0.08700.45890.23810.029*
H18B0.05510.49940.32830.029*
H18C0.00170.35250.26090.029*
C190.11128 (17)0.85215 (15)0.41157 (15)0.0193 (3)
C200.13559 (19)0.75664 (17)0.47392 (16)0.0255 (4)
H20A0.17730.79560.54930.038*
H20B0.04770.72760.49520.038*
H20C0.19770.68420.41810.038*
C210.21793 (17)0.95751 (16)0.13152 (15)0.0204 (3)
C220.36440 (18)0.91917 (19)0.07458 (17)0.0294 (4)
H22A0.42530.96010.13480.044*
H22B0.38390.82690.04950.044*
H22C0.38010.94540.00210.044*
C230.38708 (16)0.77433 (15)0.30949 (14)0.0162 (3)
H23A0.46840.83550.35240.019*
H23B0.41520.71160.23540.019*
C240.34071 (15)0.70640 (14)0.39457 (14)0.0147 (3)
C250.37201 (16)0.58401 (15)0.37962 (14)0.0172 (3)
H250.42000.54060.31330.021*
C260.33333 (17)0.52432 (15)0.46144 (15)0.0197 (3)
H260.35500.44050.45070.024*
C270.26344 (17)0.58741 (15)0.55809 (14)0.0195 (3)
H270.23760.54710.61410.023*
C280.23110 (17)0.70966 (16)0.57334 (15)0.0197 (3)
H280.18310.75290.63970.024*
C290.26891 (16)0.76862 (15)0.49149 (14)0.0173 (3)
H290.24570.85190.50160.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0339 (7)0.0101 (6)0.0220 (6)0.0046 (5)0.0084 (5)0.0050 (5)
O20.0378 (7)0.0174 (6)0.0355 (7)0.0114 (5)0.0184 (6)0.0071 (5)
O30.0161 (6)0.0151 (6)0.0225 (6)0.0028 (4)0.0002 (4)0.0044 (5)
O40.0303 (7)0.0241 (7)0.0377 (7)0.0045 (5)0.0007 (6)0.0182 (6)
N10.0176 (6)0.0088 (6)0.0143 (6)0.0023 (5)0.0030 (5)0.0034 (5)
N20.0179 (6)0.0087 (6)0.0162 (6)0.0030 (5)0.0019 (5)0.0037 (5)
N30.0209 (7)0.0091 (6)0.0182 (6)0.0039 (5)0.0056 (5)0.0046 (5)
N40.0168 (6)0.0092 (6)0.0164 (6)0.0007 (5)0.0015 (5)0.0052 (5)
C10.0139 (7)0.0134 (7)0.0142 (7)0.0004 (6)0.0003 (6)0.0057 (6)
C20.0196 (8)0.0125 (8)0.0185 (8)0.0038 (6)0.0031 (6)0.0044 (6)
C30.0201 (8)0.0201 (8)0.0175 (8)0.0058 (6)0.0050 (6)0.0028 (6)
C40.0196 (8)0.0236 (9)0.0183 (8)0.0007 (6)0.0049 (6)0.0089 (7)
C50.0171 (8)0.0160 (8)0.0186 (8)0.0003 (6)0.0022 (6)0.0079 (6)
C60.0146 (7)0.0118 (7)0.0146 (7)0.0030 (6)0.0002 (6)0.0042 (6)
C70.0151 (7)0.0117 (7)0.0137 (7)0.0019 (6)0.0023 (6)0.0047 (6)
C80.0169 (7)0.0095 (7)0.0129 (7)0.0016 (6)0.0015 (6)0.0041 (6)
C90.0171 (7)0.0107 (7)0.0171 (7)0.0027 (6)0.0008 (6)0.0036 (6)
C100.0178 (7)0.0099 (7)0.0142 (7)0.0029 (6)0.0009 (6)0.0045 (6)
C110.0173 (7)0.0116 (7)0.0132 (7)0.0008 (6)0.0029 (6)0.0044 (6)
C120.0212 (8)0.0129 (7)0.0154 (7)0.0042 (6)0.0027 (6)0.0060 (6)
C130.0268 (9)0.0099 (7)0.0188 (8)0.0019 (6)0.0053 (7)0.0062 (6)
C140.0219 (8)0.0129 (8)0.0183 (8)0.0023 (6)0.0034 (6)0.0030 (6)
C150.0191 (8)0.0146 (8)0.0160 (7)0.0012 (6)0.0004 (6)0.0048 (6)
C160.0194 (8)0.0106 (7)0.0129 (7)0.0026 (6)0.0043 (6)0.0043 (6)
C170.0177 (8)0.0118 (7)0.0165 (7)0.0018 (6)0.0007 (6)0.0062 (6)
C180.0236 (8)0.0145 (8)0.0228 (8)0.0032 (6)0.0057 (7)0.0094 (6)
C190.0203 (8)0.0159 (8)0.0201 (8)0.0028 (6)0.0061 (6)0.0027 (6)
C200.0331 (10)0.0227 (9)0.0245 (9)0.0078 (7)0.0151 (8)0.0089 (7)
C210.0215 (8)0.0230 (9)0.0188 (8)0.0067 (7)0.0045 (6)0.0084 (7)
C220.0209 (9)0.0410 (11)0.0294 (9)0.0072 (8)0.0009 (7)0.0162 (8)
C230.0168 (8)0.0151 (8)0.0186 (8)0.0031 (6)0.0010 (6)0.0082 (6)
C240.0153 (7)0.0131 (7)0.0154 (7)0.0013 (6)0.0026 (6)0.0055 (6)
C250.0190 (8)0.0153 (8)0.0170 (7)0.0038 (6)0.0020 (6)0.0046 (6)
C260.0244 (8)0.0132 (8)0.0225 (8)0.0026 (6)0.0001 (7)0.0082 (6)
C270.0227 (8)0.0202 (8)0.0172 (8)0.0022 (6)0.0005 (6)0.0104 (7)
C280.0220 (8)0.0208 (8)0.0155 (7)0.0033 (6)0.0029 (6)0.0048 (6)
C290.0205 (8)0.0120 (7)0.0179 (8)0.0041 (6)0.0000 (6)0.0033 (6)
Geometric parameters (Å, º) top
O1—C171.2162 (18)C12—C131.399 (2)
O2—C191.217 (2)C12—H120.9500
O3—C211.347 (2)C13—C141.386 (2)
O3—C91.4577 (18)C13—H130.9500
O4—C211.206 (2)C14—C151.398 (2)
N1—C171.4008 (19)C14—H140.9500
N1—C81.4181 (18)C15—C161.391 (2)
N1—C11.4364 (19)C15—H150.9500
N2—C81.270 (2)C17—C181.491 (2)
N2—N31.4065 (17)C18—H18A0.9800
N3—C191.389 (2)C18—H18B0.9800
N3—C91.447 (2)C18—H18C0.9800
N4—C161.3981 (19)C19—C201.498 (2)
N4—C231.4548 (19)C20—H20A0.9800
N4—C71.4861 (19)C20—H20B0.9800
C1—C21.393 (2)C20—H20C0.9800
C1—C61.397 (2)C21—C221.494 (2)
C2—C31.391 (2)C22—H22A0.9800
C2—H20.9500C22—H22B0.9800
C3—C41.393 (2)C22—H22C0.9800
C3—H30.9500C23—C241.517 (2)
C4—C51.394 (2)C23—H23A0.9900
C4—H40.9500C23—H23B0.9900
C5—C61.380 (2)C24—C251.387 (2)
C5—H50.9500C24—C291.394 (2)
C6—C71.512 (2)C25—C261.396 (2)
C7—C81.511 (2)C25—H250.9500
C7—C101.548 (2)C26—C271.383 (2)
C9—C101.547 (2)C26—H260.9500
C9—H91.0000C27—C281.389 (2)
C10—C111.514 (2)C27—H270.9500
C10—H101.0000C28—C291.388 (2)
C11—C121.379 (2)C28—H280.9500
C11—C161.402 (2)C29—H290.9500
C21—O3—C9115.61 (12)C13—C14—H14119.1
C17—N1—C8127.75 (13)C15—C14—H14119.1
C17—N1—C1124.37 (12)C16—C15—C14117.76 (14)
C8—N1—C1107.89 (12)C16—C15—H15121.1
C8—N2—N3112.69 (12)C14—C15—H15121.1
C19—N3—N2115.85 (12)C15—C16—N4129.41 (14)
C19—N3—C9116.97 (13)C15—C16—C11120.49 (14)
N2—N3—C9120.06 (12)N4—C16—C11110.08 (13)
C16—N4—C23123.21 (12)O1—C17—N1119.06 (14)
C16—N4—C7107.55 (12)O1—C17—C18122.43 (14)
C23—N4—C7119.78 (12)N1—C17—C18118.50 (13)
C2—C1—C6121.28 (14)C17—C18—H18A109.5
C2—C1—N1128.92 (14)C17—C18—H18B109.5
C6—C1—N1109.79 (13)H18A—C18—H18B109.5
C3—C2—C1116.97 (15)C17—C18—H18C109.5
C3—C2—H2121.5H18A—C18—H18C109.5
C1—C2—H2121.5H18B—C18—H18C109.5
C2—C3—C4122.22 (15)O2—C19—N3120.01 (15)
C2—C3—H3118.9O2—C19—C20123.10 (15)
C4—C3—H3118.9N3—C19—C20116.89 (14)
C3—C4—C5119.94 (15)C19—C20—H20A109.5
C3—C4—H4120.0C19—C20—H20B109.5
C5—C4—H4120.0H20A—C20—H20B109.5
C6—C5—C4118.61 (15)C19—C20—H20C109.5
C6—C5—H5120.7H20A—C20—H20C109.5
C4—C5—H5120.7H20B—C20—H20C109.5
C5—C6—C1120.95 (14)O4—C21—O3123.38 (15)
C5—C6—C7129.36 (14)O4—C21—C22125.81 (16)
C1—C6—C7109.40 (13)O3—C21—C22110.80 (15)
N4—C7—C8111.34 (12)C21—C22—H22A109.5
N4—C7—C6112.14 (12)C21—C22—H22B109.5
C8—C7—C6101.78 (12)H22A—C22—H22B109.5
N4—C7—C10102.54 (11)C21—C22—H22C109.5
C8—C7—C10111.47 (12)H22A—C22—H22C109.5
C6—C7—C10117.84 (12)H22B—C22—H22C109.5
N2—C8—N1124.08 (13)N4—C23—C24112.47 (13)
N2—C8—C7126.42 (13)N4—C23—H23A109.1
N1—C8—C7109.40 (12)C24—C23—H23A109.1
N3—C9—O3104.65 (12)N4—C23—H23B109.1
N3—C9—C10114.36 (12)C24—C23—H23B109.1
O3—C9—C10110.91 (12)H23A—C23—H23B107.8
N3—C9—H9108.9C25—C24—C29119.23 (14)
O3—C9—H9108.9C25—C24—C23120.95 (14)
C10—C9—H9108.9C29—C24—C23119.79 (14)
C11—C10—C9110.75 (12)C24—C25—C26120.39 (15)
C11—C10—C7101.48 (12)C24—C25—H25119.8
C9—C10—C7111.30 (12)C26—C25—H25119.8
C11—C10—H10111.0C27—C26—C25119.91 (15)
C9—C10—H10111.0C27—C26—H26120.0
C7—C10—H10111.0C25—C26—H26120.0
C12—C11—C16121.32 (14)C26—C27—C28120.06 (15)
C12—C11—C10130.05 (14)C26—C27—H27120.0
C16—C11—C10108.57 (13)C28—C27—H27120.0
C11—C12—C13118.51 (14)C29—C28—C27119.97 (15)
C11—C12—H12120.7C29—C28—H28120.0
C13—C12—H12120.7C27—C28—H28120.0
C14—C13—C12120.16 (14)C28—C29—C24120.43 (15)
C14—C13—H13119.9C28—C29—H29119.8
C12—C13—H13119.9C24—C29—H29119.8
C13—C14—C15121.75 (14)
C8—N2—N3—C19167.67 (13)N3—C9—C10—C73.56 (17)
C8—N2—N3—C942.72 (18)O3—C9—C10—C7114.48 (13)
C17—N1—C1—C21.8 (2)N4—C7—C10—C1129.17 (14)
C8—N1—C1—C2178.50 (14)C8—C7—C10—C11148.38 (12)
C17—N1—C1—C6176.86 (13)C6—C7—C10—C1194.49 (14)
C8—N1—C1—C62.81 (16)N4—C7—C10—C988.69 (14)
C6—C1—C2—C30.5 (2)C8—C7—C10—C930.53 (16)
N1—C1—C2—C3179.01 (14)C6—C7—C10—C9147.66 (13)
C1—C2—C3—C40.7 (2)C9—C10—C11—C1278.53 (19)
C2—C3—C4—C50.9 (2)C7—C10—C11—C12163.21 (15)
C3—C4—C5—C60.2 (2)C9—C10—C11—C1698.62 (14)
C4—C5—C6—C11.4 (2)C7—C10—C11—C1619.64 (15)
C4—C5—C6—C7171.82 (14)C16—C11—C12—C130.6 (2)
C2—C1—C6—C51.5 (2)C10—C11—C12—C13177.40 (15)
N1—C1—C6—C5179.66 (13)C11—C12—C13—C141.1 (2)
C2—C1—C6—C7172.88 (13)C12—C13—C14—C150.7 (2)
N1—C1—C6—C75.93 (16)C13—C14—C15—C160.2 (2)
C16—N4—C7—C8149.37 (13)C14—C15—C16—N4179.06 (15)
C23—N4—C7—C863.19 (17)C14—C15—C16—C110.7 (2)
C16—N4—C7—C697.32 (14)C23—N4—C16—C1516.9 (2)
C23—N4—C7—C650.12 (18)C7—N4—C16—C15162.96 (15)
C16—N4—C7—C1030.06 (15)C23—N4—C16—C11164.64 (13)
C23—N4—C7—C10177.50 (12)C7—N4—C16—C1118.58 (16)
C5—C6—C7—N466.2 (2)C12—C11—C16—C150.4 (2)
C1—C6—C7—N4107.59 (14)C10—C11—C16—C15177.09 (13)
C5—C6—C7—C8174.70 (15)C12—C11—C16—N4178.98 (13)
C1—C6—C7—C811.50 (15)C10—C11—C16—N41.53 (17)
C5—C6—C7—C1052.5 (2)C8—N1—C17—O1173.86 (14)
C1—C6—C7—C10133.71 (14)C1—N1—C17—O16.5 (2)
N3—N2—C8—N1175.74 (13)C8—N1—C17—C186.9 (2)
N3—N2—C8—C70.2 (2)C1—N1—C17—C18172.69 (13)
C17—N1—C8—N214.3 (2)N2—N3—C19—O2164.34 (15)
C1—N1—C8—N2166.07 (14)C9—N3—C19—O213.8 (2)
C17—N1—C8—C7169.22 (14)N2—N3—C19—C2016.2 (2)
C1—N1—C8—C710.45 (15)C9—N3—C19—C20166.82 (14)
N4—C7—C8—N277.17 (18)C9—O3—C21—O48.2 (2)
C6—C7—C8—N2163.17 (14)C9—O3—C21—C22171.12 (13)
C10—C7—C8—N236.7 (2)C16—N4—C23—C24136.03 (14)
N4—C7—C8—N1106.42 (13)C7—N4—C23—C2481.80 (16)
C6—C7—C8—N113.24 (15)N4—C23—C24—C25136.79 (14)
C10—C7—C8—N1139.74 (12)N4—C23—C24—C2945.03 (19)
C19—N3—C9—O371.56 (15)C29—C24—C25—C260.7 (2)
N2—N3—C9—O377.72 (15)C23—C24—C25—C26177.52 (14)
C19—N3—C9—C10166.90 (13)C24—C25—C26—C270.0 (2)
N2—N3—C9—C1043.83 (18)C25—C26—C27—C280.4 (2)
C21—O3—C9—N3149.60 (13)C26—C27—C28—C290.0 (2)
C21—O3—C9—C1086.60 (15)C27—C28—C29—C240.7 (2)
N3—C9—C10—C11108.54 (14)C25—C24—C29—C281.1 (2)
O3—C9—C10—C11133.42 (13)C23—C24—C29—C28177.16 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.952.262.814 (2)116
C10—H10···O1i1.002.573.2685 (19)127
C29—H29···O2ii0.952.313.242 (2)167
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds