Download citation
Download citation
link to html
The title compound, C13H14O4, known as 8-methyl­eugenitin, is a chromone isolated from the leaves of Mellaleuca cajuputi Powell. The chromone unit is essentially planar. The methyl and hydroxyl groups lie in the plane of the benzene ring while the meth­oxy substituent is perpendicular to it. An intra­molecular O—H...O hydrogen bond generates an S(6) ring motif. The crystal structure is stabilized by intra­molecular O—H...O and weak C—H...O hydrogen bonds, together with C—H...π and π–π inter­actions. Mol­ecules are arranged in an anti­parallel fashion into columns along the [100] direction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807013402/sj2263sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807013402/sj2263Isup2.hkl
Contains datablock I

CCDC reference: 643661

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.001 Å
  • R factor = 0.038
  • wR factor = 0.111
  • Data-to-parameter ratio = 20.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

5-Hydroxy-7-methoxy-2,6,8-trimethyl-4H-chromen-4-one top
Crystal data top
C13H14O4F(000) = 496
Mr = 234.24Dx = 1.404 Mg m3
Monoclinic, P21/cMelting point = 387–388 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.0816 (2) ÅCell parameters from 3216 reflections
b = 8.6719 (2) Åθ = 2.5–30.0°
c = 15.8187 (4) ŵ = 0.10 mm1
β = 91.301 (1)°T = 100 K
V = 1108.33 (5) Å3Block, yellow
Z = 40.58 × 0.45 × 0.36 mm
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
3216 independent reflections
Radiation source: fine-focus sealed tube2884 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 2.5°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1212
Tmin = 0.942, Tmax = 0.964l = 2222
11518 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0625P)2 + 0.3003P]
where P = (Fo2 + 2Fc2)/3
3216 reflections(Δ/σ)max = 0.001
158 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.29 e Å3
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.45444 (8)0.98891 (8)0.18460 (4)0.01713 (15)
O20.12897 (8)1.24365 (7)0.01685 (4)0.01417 (14)
O30.12841 (9)0.86712 (8)0.17293 (4)0.02054 (16)
O40.29691 (9)0.71736 (8)0.06228 (4)0.01978 (16)
H4A0.24700.73280.10600.030*
C10.05830 (11)1.24958 (10)0.09393 (5)0.01449 (17)
C20.05932 (11)1.12901 (10)0.14796 (5)0.01617 (17)
H2A0.01211.14020.20070.019*
C30.13212 (11)0.98330 (10)0.12561 (5)0.01518 (17)
C40.21122 (10)0.97993 (10)0.04387 (5)0.01320 (16)
C50.29497 (11)0.84741 (10)0.01466 (5)0.01445 (17)
C60.37587 (10)0.84872 (10)0.06211 (5)0.01468 (17)
C70.36988 (10)0.98535 (10)0.10962 (5)0.01350 (17)
C80.28655 (10)1.11859 (9)0.08511 (5)0.01328 (16)
C90.20920 (10)1.11126 (9)0.00746 (5)0.01253 (16)
C100.01879 (12)1.40291 (10)0.10875 (6)0.01838 (18)
H10A0.06031.40680.16510.028*
H10B0.10831.41840.06870.028*
H10C0.06251.48240.10200.028*
C110.28008 (12)1.26296 (10)0.13767 (6)0.01793 (18)
H11A0.31971.34850.10440.027*
H11C0.16801.28210.15610.027*
H11D0.34841.25050.18600.027*
C120.35243 (13)0.94221 (12)0.25522 (6)0.0231 (2)
H12A0.41520.94740.30600.035*
H12D0.25851.00960.26030.035*
H12B0.31530.83830.24680.035*
C130.46790 (12)0.70899 (11)0.09241 (6)0.01997 (19)
H13A0.50430.64860.04470.030*
H13B0.56210.74130.12380.030*
H13C0.39590.64800.12810.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0155 (3)0.0208 (3)0.0153 (3)0.0022 (2)0.0038 (2)0.0039 (2)
O20.0158 (3)0.0137 (3)0.0132 (3)0.0020 (2)0.0022 (2)0.0009 (2)
O30.0229 (3)0.0213 (3)0.0175 (3)0.0005 (3)0.0017 (2)0.0070 (2)
O40.0249 (3)0.0150 (3)0.0194 (3)0.0023 (2)0.0001 (2)0.0044 (2)
C10.0126 (4)0.0176 (4)0.0133 (4)0.0007 (3)0.0006 (3)0.0030 (3)
C20.0150 (4)0.0205 (4)0.0130 (4)0.0004 (3)0.0013 (3)0.0005 (3)
C30.0134 (4)0.0183 (4)0.0137 (4)0.0013 (3)0.0014 (3)0.0017 (3)
C40.0129 (4)0.0142 (4)0.0125 (3)0.0003 (3)0.0010 (3)0.0004 (3)
C50.0144 (4)0.0127 (3)0.0161 (4)0.0003 (3)0.0031 (3)0.0009 (3)
C60.0133 (4)0.0138 (4)0.0169 (4)0.0006 (3)0.0013 (3)0.0023 (3)
C70.0116 (4)0.0155 (4)0.0133 (4)0.0014 (3)0.0001 (3)0.0023 (3)
C80.0130 (4)0.0138 (4)0.0131 (3)0.0007 (3)0.0001 (3)0.0002 (3)
C90.0117 (3)0.0124 (3)0.0135 (4)0.0006 (3)0.0008 (3)0.0010 (3)
C100.0200 (4)0.0171 (4)0.0182 (4)0.0026 (3)0.0026 (3)0.0031 (3)
C110.0220 (4)0.0155 (4)0.0164 (4)0.0001 (3)0.0036 (3)0.0024 (3)
C120.0252 (5)0.0299 (5)0.0145 (4)0.0069 (4)0.0027 (3)0.0051 (3)
C130.0189 (4)0.0157 (4)0.0253 (4)0.0027 (3)0.0005 (3)0.0038 (3)
Geometric parameters (Å, º) top
O1—C71.3824 (10)C6—C131.5058 (12)
O1—C121.4318 (11)C7—C81.3967 (11)
O2—C11.3591 (10)C8—C91.3923 (11)
O2—C91.3775 (10)C8—C111.5031 (12)
O3—C31.2558 (10)C10—H10A0.9600
O4—C51.3562 (10)C10—H10B0.9600
O4—H4A0.8200C10—H10C0.9600
C1—C21.3504 (12)C11—H11A0.9600
C1—C101.4892 (12)C11—H11C0.9600
C2—C31.4412 (12)C11—H11D0.9600
C2—H2A0.9300C12—H12A0.9600
C3—C41.4557 (11)C12—H12D0.9600
C4—C91.3986 (11)C12—H12B0.9600
C4—C51.4165 (11)C13—H13A0.9600
C5—C61.3922 (12)C13—H13B0.9600
C6—C71.4035 (12)C13—H13C0.9600
C7—O1—C12112.09 (7)O2—C9—C8115.59 (7)
C1—O2—C9119.48 (7)O2—C9—C4121.06 (7)
C5—O4—H4A109.5C8—C9—C4123.35 (7)
C2—C1—O2122.81 (8)C1—C10—H10A109.5
C2—C1—C10126.03 (8)C1—C10—H10B109.5
O2—C1—C10111.15 (7)H10A—C10—H10B109.5
C1—C2—C3121.35 (8)C1—C10—H10C109.5
C1—C2—H2A119.3H10A—C10—H10C109.5
C3—C2—H2A119.3H10B—C10—H10C109.5
O3—C3—C2122.81 (8)C8—C11—H11A109.5
O3—C3—C4122.02 (8)C8—C11—H11C109.5
C2—C3—C4115.18 (7)H11A—C11—H11C109.5
C9—C4—C5118.07 (8)C8—C11—H11D109.5
C9—C4—C3119.99 (7)H11A—C11—H11D109.5
C5—C4—C3121.92 (7)H11C—C11—H11D109.5
O4—C5—C6119.44 (8)O1—C12—H12A109.5
O4—C5—C4119.54 (8)O1—C12—H12D109.5
C6—C5—C4121.02 (8)H12A—C12—H12D109.5
C5—C6—C7117.57 (7)O1—C12—H12B109.5
C5—C6—C13121.08 (8)H12A—C12—H12B109.5
C7—C6—C13121.34 (8)H12D—C12—H12B109.5
O1—C7—C8118.07 (7)C6—C13—H13A109.5
O1—C7—C6117.81 (7)C6—C13—H13B109.5
C8—C7—C6124.11 (8)H13A—C13—H13B109.5
C9—C8—C7115.86 (7)C6—C13—H13C109.5
C9—C8—C11121.02 (7)H13A—C13—H13C109.5
C7—C8—C11123.12 (7)H13B—C13—H13C109.5
C9—O2—C1—C21.67 (12)C12—O1—C7—C691.12 (9)
C9—O2—C1—C10178.85 (7)C5—C6—C7—O1177.97 (7)
O2—C1—C2—C31.94 (14)C13—C6—C7—O11.37 (12)
C10—C1—C2—C3177.46 (8)C5—C6—C7—C80.77 (13)
C1—C2—C3—O3176.72 (8)C13—C6—C7—C8179.88 (8)
C1—C2—C3—C43.40 (12)O1—C7—C8—C9177.38 (7)
O3—C3—C4—C9178.64 (8)C6—C7—C8—C91.36 (13)
C2—C3—C4—C91.48 (12)O1—C7—C8—C112.08 (12)
O3—C3—C4—C52.87 (13)C6—C7—C8—C11179.19 (8)
C2—C3—C4—C5177.01 (8)C1—O2—C9—C8176.23 (7)
C9—C4—C5—O4178.92 (7)C1—O2—C9—C43.60 (12)
C3—C4—C5—O42.57 (13)C7—C8—C9—O2179.22 (7)
C9—C4—C5—C61.29 (13)C11—C8—C9—O20.25 (12)
C3—C4—C5—C6177.22 (8)C7—C8—C9—C40.60 (12)
O4—C5—C6—C7179.60 (8)C11—C8—C9—C4179.93 (8)
C4—C5—C6—C70.61 (12)C5—C4—C9—O2179.52 (7)
O4—C5—C6—C131.05 (12)C3—C4—C9—O21.94 (12)
C4—C5—C6—C13178.74 (8)C5—C4—C9—C80.67 (13)
C12—O1—C7—C890.07 (9)C3—C4—C9—C8177.88 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O30.821.862.5909 (10)149
C13—H13B···Cg1i0.962.873.5729 (10)131
Symmetry code: (i) x+1, y+2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds