Download citation
Download citation
link to html
The title compound, C12H14O4, was prepared from the condensation reaction of 3,4-dihydroxy­benzaldehyde, Meldrum's acid and propan-1-ol. The acyclic double bond is E configured. Intra- and inter­molecular hydrogen bonds stabilize the mol­ecular conformation and the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807017849/bt2339sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807017849/bt2339Isup2.hkl
Contains datablock I

CCDC reference: 647584

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C)= 0.002 Å
  • R factor = 0.034
  • wR factor = 0.101
  • Data-to-parameter ratio = 16.1

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

Caffeic acid and its derivatives are widely distributed in the plant kingdom (Chen et al., 1999). The compounds are known to have antiatherosclerotic, antibacterial, anti-inflammatory, antiproliferative, immunostimulatory, antioxidative, antiviral and neuroprotective properties (Son & Lewis, 2002). In a continuation of our work on the structure–activity relationship of caffeic acid derivatives, we have obtained the title light-brown crystalline compound, (I), synthesized by a one-pot method (Hu et al., 2006).

The molecular structure of (I) is illustrated in Fig. 1. The acyclic double bond is E configured. The crystal packing (Fig. 2) is stabilized by intermolecular O—H···O and C—H···O hydrogen bonds (Table 1). The molecules of the caffeic acid ester form stacks along the a axis in a head-to-head manner

to form a dimeric structure.

Related literature top

For related literature, see: Chen et al. (1999); Hu et al. (2006); Son & Lewis (2002).

Experimental top

Compound (I) was obtained by the method of Hu et al. (2006). Crystals suitable for structure analysis were obtained by slow evaporation of a solution in a mixture of tetrafuaran and acetone (2:1 v/v) as light-brown crystalline prisms.

Refinement top

The hydroxyl H atoms were located in difference Fourier maps and refined isotropically, with the O—H bond restrained to 0.82 (2) Å. Carbon-bound H atoms were added in calculated positions and refined using a riding model, with

C—H = 0.93–0.98 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). The methyl group was allowed to rotate but not to tip.

Structure description top

Caffeic acid and its derivatives are widely distributed in the plant kingdom (Chen et al., 1999). The compounds are known to have antiatherosclerotic, antibacterial, anti-inflammatory, antiproliferative, immunostimulatory, antioxidative, antiviral and neuroprotective properties (Son & Lewis, 2002). In a continuation of our work on the structure–activity relationship of caffeic acid derivatives, we have obtained the title light-brown crystalline compound, (I), synthesized by a one-pot method (Hu et al., 2006).

The molecular structure of (I) is illustrated in Fig. 1. The acyclic double bond is E configured. The crystal packing (Fig. 2) is stabilized by intermolecular O—H···O and C—H···O hydrogen bonds (Table 1). The molecules of the caffeic acid ester form stacks along the a axis in a head-to-head manner

to form a dimeric structure.

For related literature, see: Chen et al. (1999); Hu et al. (2006); Son & Lewis (2002).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I), shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing diagram for (I), showing the hydrogen-bond pattern (dashed lines).
Propyl 3-(3,4-dihydroxyphenyl)prop-2-enoate top
Crystal data top
C12H14O4F(000) = 944
Mr = 222.23Dx = 1.282 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2969 reflections
a = 18.883 (3) Åθ = 2.2–27.9°
b = 10.9652 (16) ŵ = 0.10 mm1
c = 12.4783 (18) ÅT = 296 K
β = 116.948 (2)°Block, light brown
V = 2303.2 (6) Å30.30 × 0.20 × 0.15 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2495 independent reflections
Radiation source: fine-focus sealed tube1949 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2423
Tmin = 0.972, Tmax = 0.983k = 1314
7001 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.7676P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2495 reflectionsΔρmax = 0.18 e Å3
155 parametersΔρmin = 0.15 e Å3
2 restraintsExtinction correction: SHELXTL (Bruker, 2003), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0041 (6)
Crystal data top
C12H14O4V = 2303.2 (6) Å3
Mr = 222.23Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.883 (3) ŵ = 0.10 mm1
b = 10.9652 (16) ÅT = 296 K
c = 12.4783 (18) Å0.30 × 0.20 × 0.15 mm
β = 116.948 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2495 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1949 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.983Rint = 0.018
7001 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0352 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.18 e Å3
2495 reflectionsΔρmin = 0.15 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20300 (7)1.15279 (9)0.16760 (9)0.0566 (3)
H1X0.2248 (10)1.2043 (16)0.1107 (15)0.084 (6)*
O20.25503 (6)1.11303 (8)0.07069 (8)0.0499 (3)
H2X0.2829 (9)1.0814 (15)0.1383 (13)0.067 (5)*
O30.15173 (6)0.50624 (8)0.21782 (8)0.0529 (3)
O40.10009 (6)0.47109 (8)0.02084 (8)0.0505 (3)
C10.13035 (8)0.84559 (12)0.17544 (11)0.0480 (3)
H10.10230.78660.23260.058*
C20.14602 (8)0.95669 (12)0.21239 (11)0.0491 (3)
H20.12850.97200.29380.059*
C30.18741 (7)1.04461 (11)0.12904 (11)0.0410 (3)
C40.21382 (7)1.02111 (10)0.00688 (10)0.0366 (3)
C50.19794 (7)0.91036 (10)0.02980 (10)0.0368 (3)
H50.21540.89540.11130.044*
C60.15580 (7)0.82035 (10)0.05418 (11)0.0381 (3)
C70.13882 (7)0.70091 (11)0.01975 (11)0.0398 (3)
H70.11400.64480.08160.048*
C80.15487 (7)0.66342 (11)0.08999 (11)0.0415 (3)
H80.17930.71800.15330.050*
C90.13650 (7)0.54176 (11)0.11710 (11)0.0407 (3)
C100.08026 (8)0.34821 (12)0.04033 (12)0.0487 (3)
H10A0.04270.35030.07350.058*
H10B0.12760.30570.09650.058*
C110.04452 (9)0.28422 (13)0.07845 (13)0.0552 (4)
H11A0.08260.28290.11070.066*
H11B0.00200.32870.13440.066*
C120.02101 (10)0.15461 (14)0.06656 (18)0.0691 (5)
H12A0.06740.10950.01390.104*
H12B0.00290.11660.14430.104*
H12C0.01630.15570.03400.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0909 (8)0.0354 (5)0.0421 (5)0.0036 (5)0.0288 (5)0.0071 (4)
O20.0726 (6)0.0288 (4)0.0381 (5)0.0043 (4)0.0161 (5)0.0008 (4)
O30.0723 (6)0.0436 (5)0.0362 (5)0.0049 (4)0.0188 (5)0.0033 (4)
O40.0716 (6)0.0367 (5)0.0377 (5)0.0134 (4)0.0200 (4)0.0017 (4)
C10.0613 (8)0.0415 (7)0.0352 (6)0.0052 (6)0.0166 (6)0.0055 (5)
C20.0674 (9)0.0438 (7)0.0314 (6)0.0013 (6)0.0183 (6)0.0040 (5)
C30.0537 (7)0.0319 (6)0.0388 (6)0.0062 (5)0.0220 (6)0.0060 (5)
C40.0456 (6)0.0281 (5)0.0352 (6)0.0041 (5)0.0174 (5)0.0005 (4)
C50.0469 (6)0.0323 (6)0.0311 (6)0.0040 (5)0.0175 (5)0.0018 (4)
C60.0445 (6)0.0331 (6)0.0368 (6)0.0017 (5)0.0186 (5)0.0001 (5)
C70.0462 (7)0.0332 (6)0.0387 (6)0.0029 (5)0.0179 (5)0.0039 (5)
C80.0505 (7)0.0334 (6)0.0391 (6)0.0027 (5)0.0191 (5)0.0044 (5)
C90.0461 (7)0.0368 (6)0.0361 (6)0.0006 (5)0.0159 (5)0.0000 (5)
C100.0579 (8)0.0363 (7)0.0473 (7)0.0085 (6)0.0198 (6)0.0019 (5)
C110.0589 (8)0.0487 (8)0.0561 (8)0.0080 (6)0.0244 (7)0.0092 (6)
C120.0677 (10)0.0474 (8)0.0927 (12)0.0124 (7)0.0367 (9)0.0176 (8)
Geometric parameters (Å, º) top
O1—C31.3615 (15)C5—H50.9300
O1—H1X0.853 (14)C6—C71.4586 (16)
O2—C41.3696 (14)C7—C81.3265 (17)
O2—H2X0.840 (13)C7—H70.9300
O3—C91.2192 (14)C8—C91.4563 (17)
O4—C91.3295 (15)C8—H80.9300
O4—C101.4482 (15)C10—C111.4960 (19)
C1—C21.3813 (19)C10—H10A0.9700
C1—C61.3921 (17)C10—H10B0.9700
C1—H10.9300C11—C121.516 (2)
C2—C31.3731 (18)C11—H11A0.9700
C2—H20.9300C11—H11B0.9700
C3—C41.3963 (17)C12—H12A0.9599
C4—C51.3779 (16)C12—H12B0.9599
C5—C61.3963 (16)C12—H12C0.9599
C3—O1—H1X112.5 (13)C7—C8—C9123.82 (11)
C4—O2—H2X107.6 (12)C7—C8—H8118.1
C9—O4—C10117.25 (10)C9—C8—H8118.1
C2—C1—C6121.17 (12)O3—C9—O4121.93 (11)
C2—C1—H1119.4O3—C9—C8124.22 (11)
C6—C1—H1119.4O4—C9—C8113.84 (10)
C3—C2—C1120.06 (11)O4—C10—C11107.75 (11)
C3—C2—H2120.0O4—C10—H10A110.2
C1—C2—H2120.0C11—C10—H10A110.2
O1—C3—C2118.95 (11)O4—C10—H10B110.2
O1—C3—C4121.27 (11)C11—C10—H10B110.2
C2—C3—C4119.77 (11)H10A—C10—H10B108.5
O2—C4—C5123.59 (10)C10—C11—C12111.31 (13)
O2—C4—C3116.31 (10)C10—C11—H11A109.4
C5—C4—C3120.10 (11)C12—C11—H11A109.4
C4—C5—C6120.62 (11)C10—C11—H11B109.4
C4—C5—H5119.7C12—C11—H11B109.4
C6—C5—H5119.7H11A—C11—H11B108.0
C1—C6—C5118.29 (11)C11—C12—H12A109.5
C1—C6—C7119.01 (11)C11—C12—H12B109.5
C5—C6—C7122.69 (11)H12A—C12—H12B109.5
C8—C7—C6127.19 (11)C11—C12—H12C109.5
C8—C7—H7116.4H12A—C12—H12C109.5
C6—C7—H7116.4H12B—C12—H12C109.5
C6—C1—C2—C30.1 (2)C4—C5—C6—C10.06 (18)
C1—C2—C3—O1179.16 (12)C4—C5—C6—C7178.80 (11)
C1—C2—C3—C40.2 (2)C1—C6—C7—C8176.34 (13)
O1—C3—C4—O20.75 (17)C5—C6—C7—C84.8 (2)
C2—C3—C4—O2179.66 (11)C6—C7—C8—C9179.45 (12)
O1—C3—C4—C5179.33 (11)C10—O4—C9—O31.15 (18)
C2—C3—C4—C50.42 (18)C10—O4—C9—C8179.58 (11)
O2—C4—C5—C6179.75 (11)C7—C8—C9—O3179.28 (13)
C3—C4—C5—C60.34 (18)C7—C8—C9—O41.47 (19)
C2—C1—C6—C50.1 (2)C9—O4—C10—C11176.71 (11)
C2—C1—C6—C7179.04 (12)O4—C10—C11—C12179.36 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1X···O20.85 (1)2.30 (2)2.7109 (14)110 (2)
O1—H1X···O2i0.85 (1)2.06 (2)2.7956 (14)144 (2)
O2—H2X···O3ii0.84 (1)1.85 (1)2.6878 (13)176 (2)
C8—H8···O1iii0.932.513.3979 (16)160
Symmetry codes: (i) x+1/2, y+5/2, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H14O4
Mr222.23
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)18.883 (3), 10.9652 (16), 12.4783 (18)
β (°) 116.948 (2)
V3)2303.2 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.972, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
7001, 2495, 1949
Rint0.018
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.101, 1.03
No. of reflections2495
No. of parameters155
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.15

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SAINT, SHELXTL (Bruker, 2003), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1X···O20.853 (14)2.298 (19)2.7109 (14)110.0 (15)
O1—H1X···O2i0.853 (14)2.057 (17)2.7956 (14)144.4 (18)
O2—H2X···O3ii0.840 (13)1.849 (14)2.6878 (13)175.9 (17)
C8—H8···O1iii0.932.513.3979 (16)160.0
Symmetry codes: (i) x+1/2, y+5/2, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds