Download citation
Download citation
link to html
The ligand of the title compound, {[Cu(C12H11NO2)(H2O)]·H2O}n, has been synthesized from o-amino­benzoic acid and acetyl acetone. Bond lengths and angles show normal values. The crystal structure is stabilized by several hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807019514/bt2346sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807019514/bt2346Isup2.hkl
Contains datablock I

CCDC reference: 646654

Key indicators

  • Single-crystal X-ray study
  • T = 292 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.047
  • wR factor = 0.124
  • Data-to-parameter ratio = 17.4

checkCIF/PLATON results

No syntax errors found



Alert level C RINTA01_ALERT_3_C The value of Rint is greater than 0.10 Rint given 0.110 PLAT020_ALERT_3_C The value of Rint is greater than 0.10 ......... 0.11
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The crystal structure and some properties of a substituted benzoate-copper(II) complex were previously reported by Plesch et al., (1991) and Shi et al., (2006).

In the title compound, each Cu atom is five-coordinated by one oxygen atom of a water molecule, one carboxylate O atom and one amino N atom of the ligand ((E)-2-(4-oxopentan-2-ylideneamino)-benzoato) and one µ2-O atom from another ligand, forming a slightly distorted trigonal bipyramid (Fig. 1). The crystal structure is stabilized by several hydrogen bonds (Table 2).

Related literature top

For related literature, see: Plesch et al. (1991); Shi & Hu (2006).

Experimental top

To an ethanol solution of o-aminobenzic acid (6.85 g, 0.1 mol), acetylacetone (5 g, 0.05 mol) was slowly added with continuous stirring at reflux for 5 h. The reaction mixture was cooled to room temperature, and the Schiff base ligand, viz. (E)-2-(4-oxopentan-2-ylideneamino)benzoic acid, precipitated after one night as a yellow solid. White crystals of the ligand were recrystallized from ethanol. 1 mmol of the Schiff base ligand, 0.5 mmol Cu(OAc)2, dimethylformamide (15 ml) and 2 drops of triethylamine were stirred for 5 h at room temperature. The solution was filtered and allowed to stand at room temperature without disturbing, crystals of of the title compound were obtained after about 3 weeks.

Refinement top

After having located them in a difference map, all H-atoms were fixed geometrically at ideal positions and allowed to ride on their parent atoms with C—H = 0.93 Å, or Cmethyl—H = 0.96 Å. The O—H distances were kept as initially found in the difference map Uiso(H) was set to 1.2Ueq(C,O) or Uiso(H) = 1.5Ueq(Cmethyl). The methyl groups were allowed to rotate but not to tip.

Structure description top

The crystal structure and some properties of a substituted benzoate-copper(II) complex were previously reported by Plesch et al., (1991) and Shi et al., (2006).

In the title compound, each Cu atom is five-coordinated by one oxygen atom of a water molecule, one carboxylate O atom and one amino N atom of the ligand ((E)-2-(4-oxopentan-2-ylideneamino)-benzoato) and one µ2-O atom from another ligand, forming a slightly distorted trigonal bipyramid (Fig. 1). The crystal structure is stabilized by several hydrogen bonds (Table 2).

For related literature, see: Plesch et al. (1991); Shi & Hu (2006).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing 30% probability displacement ellipsoids. [Symmetry codes: (a) 1/2 - x, -1/2 + y, z; (b) 1/2 - x, 1/2 + y, z].
catena-Poly[[[aquacopper(II)]-µ-[(E)-2-(4-oxopentan-2-ylideneamino)benzoato- κ4O,N,O':O''] monohydrate] top
Crystal data top
[Cu(C12H11NO2)(H2O)]·H2OF(000) = 1304
Mr = 316.79Dx = 1.655 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3438 reflections
a = 8.1933 (7) Åθ = 2.7–25.1°
b = 8.8144 (7) ŵ = 1.73 mm1
c = 35.209 (3) ÅT = 292 K
V = 2542.7 (4) Å3Block, green
Z = 80.20 × 0.10 × 0.02 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3029 independent reflections
Radiation source: fine-focus sealed tube2209 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
φ and ω scansθmax = 28.0°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1010
Tmin = 0.723, Tmax = 0.966k = 119
17406 measured reflectionsl = 4146
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0644P)2]
where P = (Fo2 + 2Fc2)/3
3029 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Cu(C12H11NO2)(H2O)]·H2OV = 2542.7 (4) Å3
Mr = 316.79Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.1933 (7) ŵ = 1.73 mm1
b = 8.8144 (7) ÅT = 292 K
c = 35.209 (3) Å0.20 × 0.10 × 0.02 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3029 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2209 reflections with I > 2σ(I)
Tmin = 0.723, Tmax = 0.966Rint = 0.110
17406 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 0.99Δρmax = 0.55 e Å3
3029 reflectionsΔρmin = 0.62 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.06114 (4)0.28463 (4)0.410032 (10)0.02286 (15)
C10.1120 (4)0.0753 (4)0.33769 (9)0.0251 (7)
C20.1813 (4)0.0274 (4)0.30336 (10)0.0377 (8)
H20.26580.04300.30390.045*
C30.1284 (5)0.0812 (5)0.26910 (10)0.0465 (10)
H30.17470.04590.24670.056*
C40.0047 (5)0.1891 (4)0.26804 (10)0.0408 (9)
H40.02880.22990.24500.049*
C50.0676 (4)0.2348 (4)0.30134 (11)0.0361 (8)
H50.15150.30580.30050.043*
C60.0183 (4)0.1776 (4)0.33641 (8)0.0246 (7)
C70.2511 (4)0.2408 (3)0.37425 (9)0.0249 (7)
C80.3701 (4)0.1592 (4)0.34817 (10)0.0398 (9)
H8A0.42010.23120.33130.060*
H8B0.45280.11040.36310.060*
H8C0.31250.08430.33360.060*
C90.3244 (4)0.3229 (4)0.40459 (9)0.0276 (7)
H90.43730.31620.40670.033*
C100.2457 (4)0.4110 (4)0.43107 (9)0.0257 (7)
C110.3420 (4)0.4982 (4)0.45991 (9)0.0320 (8)
H11A0.32480.45500.48460.048*
H11B0.45590.49330.45360.048*
H11C0.30700.60210.45990.048*
C120.1892 (4)0.0166 (4)0.37355 (9)0.0257 (7)
N10.0924 (3)0.2318 (3)0.37032 (7)0.0230 (6)
O10.0887 (2)0.4241 (3)0.43399 (7)0.0326 (6)
O20.1718 (3)0.0870 (2)0.40485 (6)0.0266 (5)
O30.2711 (3)0.1019 (3)0.37077 (7)0.0399 (6)
O40.2098 (3)0.3404 (3)0.45295 (7)0.0393 (6)
H4A0.27860.28190.46030.059*
H4B0.20190.41850.46400.059*
O50.0519 (3)0.6591 (3)0.47715 (7)0.0411 (6)
H5A0.00320.59650.45900.062*
H5B0.00820.64770.49950.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0211 (2)0.0222 (2)0.0253 (2)0.00220 (15)0.00185 (15)0.00432 (15)
C10.0225 (15)0.0237 (16)0.0292 (18)0.0017 (13)0.0015 (13)0.0027 (13)
C20.0340 (19)0.043 (2)0.036 (2)0.0065 (16)0.0054 (16)0.0098 (17)
C30.051 (2)0.063 (3)0.026 (2)0.005 (2)0.0076 (17)0.0108 (19)
C40.052 (2)0.049 (2)0.0209 (18)0.0052 (19)0.0057 (16)0.0011 (16)
C50.0362 (19)0.038 (2)0.034 (2)0.0001 (16)0.0036 (15)0.0015 (16)
C60.0258 (16)0.0248 (17)0.0233 (17)0.0047 (13)0.0016 (12)0.0031 (13)
C70.0253 (15)0.0214 (16)0.0280 (17)0.0008 (13)0.0049 (13)0.0019 (13)
C80.0289 (18)0.046 (2)0.044 (2)0.0029 (17)0.0074 (16)0.0110 (19)
C90.0191 (15)0.0300 (18)0.0337 (18)0.0006 (13)0.0008 (13)0.0016 (14)
C100.0235 (16)0.0229 (16)0.0306 (17)0.0049 (13)0.0002 (13)0.0031 (14)
C110.0261 (17)0.035 (2)0.0349 (19)0.0080 (14)0.0010 (14)0.0064 (15)
C120.0194 (14)0.0257 (17)0.0320 (18)0.0040 (13)0.0005 (13)0.0006 (14)
N10.0238 (13)0.0196 (13)0.0257 (14)0.0016 (10)0.0024 (10)0.0007 (11)
O10.0221 (11)0.0309 (13)0.0449 (15)0.0026 (9)0.0021 (10)0.0164 (11)
O20.0324 (13)0.0205 (11)0.0268 (12)0.0041 (10)0.0022 (9)0.0027 (9)
O30.0448 (15)0.0365 (14)0.0385 (15)0.0230 (12)0.0048 (12)0.0094 (11)
O40.0385 (14)0.0382 (14)0.0411 (14)0.0152 (12)0.0173 (11)0.0181 (12)
O50.0456 (16)0.0429 (15)0.0349 (14)0.0157 (12)0.0022 (11)0.0004 (12)
Geometric parameters (Å, º) top
Cu1—O11.931 (2)C7—C81.521 (4)
Cu1—N11.938 (3)C8—H8A0.9600
Cu1—O21.972 (2)C8—H8B0.9600
Cu1—O42.002 (2)C8—H8C0.9600
Cu1—O3i2.191 (2)C9—C101.374 (4)
C1—C61.399 (4)C9—H90.9300
C1—C21.400 (4)C10—O11.296 (4)
C1—C121.504 (4)C10—C111.498 (4)
C2—C31.367 (5)C11—H11A0.9600
C2—H20.9300C11—H11B0.9600
C3—C41.390 (6)C11—H11C0.9600
C3—H30.9300C12—O31.246 (4)
C4—C51.374 (5)C12—O21.273 (4)
C4—H40.9300O3—Cu1ii2.191 (2)
C5—C61.394 (5)O4—H4A0.8066
C5—H50.9300O4—H4B0.7933
C6—N11.422 (4)O5—H5A0.9344
C7—N11.310 (4)O5—H5B0.8690
C7—C91.423 (4)
O1—Cu1—N193.19 (10)C7—C8—H8A109.5
O1—Cu1—O2153.49 (10)C7—C8—H8B109.5
N1—Cu1—O291.10 (10)H8A—C8—H8B109.5
O1—Cu1—O484.30 (9)C7—C8—H8C109.5
N1—Cu1—O4176.97 (10)H8A—C8—H8C109.5
O2—Cu1—O490.40 (9)H8B—C8—H8C109.5
O1—Cu1—O3i112.57 (10)C10—C9—C7126.8 (3)
N1—Cu1—O3i93.54 (10)C10—C9—H9116.6
O2—Cu1—O3i93.23 (9)C7—C9—H9116.6
O4—Cu1—O3i89.00 (10)O1—C10—C9124.8 (3)
C6—C1—C2118.4 (3)O1—C10—C11115.0 (3)
C6—C1—C12124.7 (3)C9—C10—C11120.2 (3)
C2—C1—C12116.8 (3)C10—C11—H11A109.5
C3—C2—C1121.9 (3)C10—C11—H11B109.5
C3—C2—H2119.0H11A—C11—H11B109.5
C1—C2—H2119.0C10—C11—H11C109.5
C2—C3—C4119.5 (3)H11A—C11—H11C109.5
C2—C3—H3120.3H11B—C11—H11C109.5
C4—C3—H3120.3O3—C12—O2122.5 (3)
C5—C4—C3119.5 (4)O3—C12—C1116.7 (3)
C5—C4—H4120.3O2—C12—C1120.8 (3)
C3—C4—H4120.3C7—N1—C6122.2 (3)
C4—C5—C6121.6 (3)C7—N1—Cu1123.6 (2)
C4—C5—H5119.2C6—N1—Cu1114.16 (19)
C6—C5—H5119.2C10—O1—Cu1122.6 (2)
C5—C6—C1118.9 (3)C12—O2—Cu1124.2 (2)
C5—C6—N1119.9 (3)C12—O3—Cu1ii132.2 (2)
C1—C6—N1121.0 (3)Cu1—O4—H4A120.7
N1—C7—C9121.9 (3)Cu1—O4—H4B122.2
N1—C7—C8123.0 (3)H4A—O4—H4B117.0
C9—C7—C8115.0 (3)H5A—O5—H5B112.1
C6—C1—C2—C32.0 (5)C1—C6—N1—C7135.7 (3)
C12—C1—C2—C3175.6 (3)C5—C6—N1—Cu1132.7 (3)
C1—C2—C3—C41.5 (6)C1—C6—N1—Cu142.7 (4)
C2—C3—C4—C53.0 (6)O1—Cu1—N1—C726.1 (3)
C3—C4—C5—C61.1 (6)O2—Cu1—N1—C7127.7 (3)
C4—C5—C6—C12.4 (5)O3i—Cu1—N1—C7139.0 (3)
C4—C5—C6—N1177.8 (3)O1—Cu1—N1—C6155.5 (2)
C2—C1—C6—C53.8 (5)O2—Cu1—N1—C650.7 (2)
C12—C1—C6—C5173.5 (3)O3i—Cu1—N1—C642.6 (2)
C2—C1—C6—N1179.2 (3)C9—C10—O1—Cu115.8 (5)
C12—C1—C6—N11.9 (5)C11—C10—O1—Cu1162.9 (2)
N1—C7—C9—C105.7 (5)N1—Cu1—O1—C1026.3 (3)
C8—C7—C9—C10177.1 (3)O2—Cu1—O1—C1072.6 (3)
C7—C9—C10—O15.2 (6)O4—Cu1—O1—C10151.9 (3)
C7—C9—C10—C11176.2 (3)O3i—Cu1—O1—C10121.5 (3)
C6—C1—C12—O3160.9 (3)O3—C12—O2—Cu1174.0 (2)
C2—C1—C12—O321.7 (4)C1—C12—O2—Cu15.2 (4)
C6—C1—C12—O219.8 (5)O1—Cu1—O2—C12134.0 (2)
C2—C1—C12—O2157.6 (3)N1—Cu1—O2—C1234.6 (2)
C9—C7—N1—C6166.8 (3)O4—Cu1—O2—C12148.0 (2)
C8—C7—N1—C616.2 (5)O3i—Cu1—O2—C1259.0 (2)
C9—C7—N1—Cu114.9 (4)O2—C12—O3—Cu1ii10.7 (5)
C8—C7—N1—Cu1162.1 (2)C1—C12—O3—Cu1ii168.5 (2)
C5—C6—N1—C748.9 (4)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O4iii0.872.453.264 (3)156
O5—H5B···O1iii0.872.513.227 (3)140
O5—H5A···O10.931.912.815 (3)162
O4—H4B···O50.792.493.208 (4)150
O4—H4A···O5ii0.811.862.663 (3)176
Symmetry codes: (ii) x+1/2, y1/2, z; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C12H11NO2)(H2O)]·H2O
Mr316.79
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)292
a, b, c (Å)8.1933 (7), 8.8144 (7), 35.209 (3)
V3)2542.7 (4)
Z8
Radiation typeMo Kα
µ (mm1)1.73
Crystal size (mm)0.20 × 0.10 × 0.02
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.723, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
17406, 3029, 2209
Rint0.110
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.124, 0.99
No. of reflections3029
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.62

Computer programs: SMART (Bruker, 2001), SMART, SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Bruker, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O4i0.872.453.264 (3)155.9
O5—H5B···O1i0.872.513.227 (3)139.8
O5—H5A···O10.931.912.815 (3)162.4
O4—H4B···O50.792.493.208 (4)150.3
O4—H4A···O5ii0.811.862.663 (3)175.7
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y1/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds