Download citation
Download citation
link to html
Ions of the title compound, C11H16NO+·Cl, are linked by an N—H...Cl and four C—H...Cl inter­actions, generating a two-dimensional layer with no inter­actions between different morpholinium groups; the morpholinium group adopts an approximately ideal chair conformation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807017060/gg3089sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807017060/gg3089Isup2.hkl
Contains datablock I

CCDC reference: 647581

Key indicators

  • Single-crystal X-ray study
  • T = 297 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.048
  • wR factor = 0.109
  • Data-to-parameter ratio = 17.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT480_ALERT_4_C Long H...A H-Bond Reported H7B .. CL1 .. 2.86 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H8B .. CL1 .. 2.87 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Many morpholine derivatives and their salts show bacteriostatic activity and have potential as drugs (Dega-Szafran et al., 2004; Calas et al., 1997). The atomic numbering scheme and the conformation of 4-benzylmorpholin-4-ium chloride (I) are depicted in Fig. 1. The morpholium N—H forms an interaction with the Cl- ion (Table 1) with a H1···Cl1 distance similar to the N—H···Cl interaction in C8H8NO4+.Cl-.H2O (2.3 Å) (Bruno et al., 2006) and C12H15Cl2FNO2 +.Cl- (2.21 Å) (Cao & Hu, 2006). The Cl- ion is also involved in four other intermolecular contacts with three molecules (details in Table 1). These C—H···Cl interactions lead to the formation of a 2-D network which contains units with graph-set motifs R24(10) and R12(6) (Bernstein et al., 1995). There are no hydrogen-bonding interactions between different morpholinium groups.

Related literature top

Bernstein et al. (1995); Bruno et al. (2006); Calas et al. (1997); Cao & Hu (2006); Dega-Szafran, Szafran & Katrusiak (2004); Stone et al. (1958).

Experimental top

To a solution of 4-benzylmorpholine (83 mg, 0.46 mmol) in methanol (10 ml) was added HCl (0.06 ml, 12 M) and the reaction mixture was stirred at room temperature for 1 h. Colourless crystals suitable for X-ray diffraction were grown by slow evaporation of the solution. Yield: 84 mg (90%). M.p.: 244–246°C [243–244 °C (Stone et al., 1958)]. Compound (I) was also obtained during the work up of [2-{O(CH2CH2)2NCH2}C6H4]2SbCl. Spectroscopic analysis: 1H NMR (D2O, 300 MHz): δ 3.16 (m, 2H, CH2), 3.36 (m, 2H, CH2), 3.69 (m, 2H, CH2), 4.01 (m, 2H, CH2), 4.28 (s, 2H, CH2, C6H5CH2), 7.45 (m, 5H, C6H5). 13C NMR (D2O, 75.46 MHz): δ 51.13 (s, N—CH2), 60.72 (s, C6H5CH2), 63.56 (s, O—CH2), 127.77 (s, C6H5, Cp), 129.24 (s, C6H5, Cm), 130.28 (s, C6H5, Co), 131.22 (s, C6H5, Ci).

Refinement top

All C-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and treated using a riding model with Uiso= 1.2Ueq(C) for aryl H atoms. The hydrogen H1 atom bonded to N1 atom was calculated and fixed at a standard N—H distance of 0.88 (2) Å.

Structure description top

Many morpholine derivatives and their salts show bacteriostatic activity and have potential as drugs (Dega-Szafran et al., 2004; Calas et al., 1997). The atomic numbering scheme and the conformation of 4-benzylmorpholin-4-ium chloride (I) are depicted in Fig. 1. The morpholium N—H forms an interaction with the Cl- ion (Table 1) with a H1···Cl1 distance similar to the N—H···Cl interaction in C8H8NO4+.Cl-.H2O (2.3 Å) (Bruno et al., 2006) and C12H15Cl2FNO2 +.Cl- (2.21 Å) (Cao & Hu, 2006). The Cl- ion is also involved in four other intermolecular contacts with three molecules (details in Table 1). These C—H···Cl interactions lead to the formation of a 2-D network which contains units with graph-set motifs R24(10) and R12(6) (Bernstein et al., 1995). There are no hydrogen-bonding interactions between different morpholinium groups.

Bernstein et al. (1995); Bruno et al. (2006); Calas et al. (1997); Cao & Hu (2006); Dega-Szafran, Szafran & Katrusiak (2004); Stone et al. (1958).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL (Bruker, 2001); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND 3 (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. : A view of compound (I) showing the atom-numbering scheme at 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. : A view of the two-dimensional supramolecular motif showing the hydrogen bonds (indicated as dotted lines).
4-Benzylmorpholin-4-ium chloride top
Crystal data top
C11H16NO+·ClF(000) = 456
Mr = 213.70Dx = 1.251 Mg m3
Monoclinic, P21/nMelting point: 518 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.0181 (6) ÅCell parameters from 4130 reflections
b = 9.3458 (9) Åθ = 2.4–27.9°
c = 17.3003 (16) ŵ = 0.31 mm1
β = 90.958 (2)°T = 297 K
V = 1134.56 (18) Å3Block, colourless
Z = 40.49 × 0.34 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2321 independent reflections
Radiation source: fine-focus sealed tube2180 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 26.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 88
Tmin = 0.865, Tmax = 0.947k = 1111
11765 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0345P)2 + 0.5699P]
where P = (Fo2 + 2Fc2)/3
2321 reflections(Δ/σ)max = 0.001
131 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C11H16NO+·ClV = 1134.56 (18) Å3
Mr = 213.70Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.0181 (6) ŵ = 0.31 mm1
b = 9.3458 (9) ÅT = 297 K
c = 17.3003 (16) Å0.49 × 0.34 × 0.18 mm
β = 90.958 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2321 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2180 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.947Rint = 0.036
11765 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.20 e Å3
2321 reflectionsΔρmin = 0.21 e Å3
131 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4842 (3)0.5884 (2)0.61068 (11)0.0375 (4)
C20.3416 (4)0.6760 (3)0.58221 (13)0.0550 (6)
H20.22070.67230.60330.066*
C30.3779 (5)0.7696 (3)0.52235 (15)0.0745 (8)
H30.28130.82860.50340.089*
C40.5550 (5)0.7758 (3)0.49090 (14)0.0714 (8)
H40.57890.83930.45080.086*
C50.6962 (4)0.6889 (3)0.51822 (14)0.0624 (7)
H50.81640.69280.49650.075*
C60.6620 (3)0.5954 (3)0.57785 (12)0.0481 (5)
H60.75950.53640.59620.058*
C70.4460 (3)0.4873 (2)0.67572 (11)0.0380 (4)
H7A0.49970.39460.66350.046*
H7B0.30940.47550.68050.046*
C80.4605 (3)0.68275 (19)0.77400 (11)0.0344 (4)
H8A0.32240.68370.77560.041*
H8B0.50030.75200.73580.041*
C90.5421 (3)0.7227 (2)0.85218 (11)0.0427 (5)
H9A0.67980.72820.84930.051*
H9B0.49520.81640.86670.051*
C100.5645 (3)0.4847 (2)0.89033 (12)0.0462 (5)
H10A0.53340.41700.93070.055*
H10B0.70220.48960.88710.055*
C110.4822 (3)0.4336 (2)0.81445 (11)0.0404 (5)
H11A0.53450.34050.80210.049*
H11B0.34500.42390.81830.049*
Cl10.96354 (7)0.55740 (6)0.75391 (3)0.04869 (18)
N10.5280 (2)0.53743 (15)0.75195 (8)0.0298 (3)
O10.4920 (2)0.62161 (16)0.90967 (8)0.0474 (4)
H10.653 (3)0.539 (2)0.7483 (11)0.035 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0425 (10)0.0391 (10)0.0307 (9)0.0011 (8)0.0046 (8)0.0078 (8)
C20.0561 (14)0.0662 (15)0.0426 (12)0.0132 (12)0.0063 (10)0.0028 (11)
C30.104 (2)0.0709 (18)0.0483 (14)0.0241 (17)0.0155 (15)0.0058 (13)
C40.122 (3)0.0585 (16)0.0336 (12)0.0110 (16)0.0023 (14)0.0046 (11)
C50.0741 (17)0.0709 (17)0.0426 (12)0.0183 (14)0.0092 (12)0.0018 (12)
C60.0469 (12)0.0565 (13)0.0411 (11)0.0007 (10)0.0011 (9)0.0041 (10)
C70.0377 (10)0.0376 (10)0.0387 (10)0.0044 (8)0.0013 (8)0.0083 (8)
C80.0358 (10)0.0286 (9)0.0388 (10)0.0001 (7)0.0007 (8)0.0012 (7)
C90.0502 (12)0.0367 (10)0.0412 (11)0.0036 (9)0.0002 (9)0.0056 (9)
C100.0529 (12)0.0467 (12)0.0390 (11)0.0001 (10)0.0021 (9)0.0094 (9)
C110.0473 (11)0.0307 (10)0.0434 (11)0.0041 (8)0.0053 (9)0.0050 (8)
Cl10.0277 (3)0.0459 (3)0.0725 (4)0.0008 (2)0.0016 (2)0.0025 (3)
N10.0263 (8)0.0293 (8)0.0339 (8)0.0013 (6)0.0019 (6)0.0002 (6)
O10.0565 (9)0.0516 (9)0.0343 (7)0.0019 (7)0.0076 (6)0.0022 (6)
Geometric parameters (Å, º) top
C1—C21.378 (3)C8—N11.490 (2)
C1—C61.381 (3)C8—C91.507 (3)
C1—C71.497 (3)C8—H8A0.9700
C2—C31.382 (4)C8—H8B0.9700
C2—H20.9300C9—O11.420 (2)
C3—C41.366 (4)C9—H9A0.9700
C3—H30.9300C9—H9B0.9700
C4—C51.359 (4)C10—O11.419 (3)
C4—H40.9300C10—C111.504 (3)
C5—C61.376 (3)C10—H10A0.9700
C5—H50.9300C10—H10B0.9700
C6—H60.9300C11—N11.492 (2)
C7—N11.505 (2)C11—H11A0.9700
C7—H7A0.9700C11—H11B0.9700
C7—H7B0.9700N1—H10.88 (2)
C2—C1—C6118.7 (2)C9—C8—H8B109.7
C2—C1—C7120.37 (19)H8A—C8—H8B108.2
C6—C1—C7120.88 (18)O1—C9—C8111.65 (16)
C1—C2—C3120.1 (2)O1—C9—H9A109.3
C1—C2—H2119.9C8—C9—H9A109.3
C3—C2—H2119.9O1—C9—H9B109.3
C4—C3—C2120.4 (3)C8—C9—H9B109.3
C4—C3—H3119.8H9A—C9—H9B108.0
C2—C3—H3119.8O1—C10—C11111.00 (17)
C5—C4—C3119.9 (2)O1—C10—H10A109.4
C5—C4—H4120.0C11—C10—H10A109.4
C3—C4—H4120.0O1—C10—H10B109.4
C4—C5—C6120.3 (3)C11—C10—H10B109.4
C4—C5—H5119.8H10A—C10—H10B108.0
C6—C5—H5119.8N1—C11—C10109.97 (16)
C5—C6—C1120.5 (2)N1—C11—H11A109.7
C5—C6—H6119.7C10—C11—H11A109.7
C1—C6—H6119.7N1—C11—H11B109.7
C1—C7—N1113.07 (15)C10—C11—H11B109.7
C1—C7—H7A109.0H11A—C11—H11B108.2
N1—C7—H7A109.0C8—N1—C11109.52 (14)
C1—C7—H7B109.0C8—N1—C7112.93 (14)
N1—C7—H7B109.0C11—N1—C7110.42 (14)
H7A—C7—H7B107.8C8—N1—H1109.0 (13)
N1—C8—C9109.75 (15)C11—N1—H1106.8 (13)
N1—C8—H8A109.7C7—N1—H1107.9 (13)
C9—C8—H8A109.7C10—O1—C9109.93 (15)
N1—C8—H8B109.7
C6—C1—C2—C30.5 (3)N1—C8—C9—O157.6 (2)
C7—C1—C2—C3179.7 (2)O1—C10—C11—N158.7 (2)
C1—C2—C3—C40.1 (4)C9—C8—N1—C1154.2 (2)
C2—C3—C4—C50.4 (4)C9—C8—N1—C7177.69 (15)
C3—C4—C5—C60.5 (4)C10—C11—N1—C855.0 (2)
C4—C5—C6—C10.0 (4)C10—C11—N1—C7179.95 (16)
C2—C1—C6—C50.5 (3)C1—C7—N1—C856.0 (2)
C7—C1—C6—C5179.80 (19)C1—C7—N1—C11179.01 (16)
C2—C1—C7—N1104.2 (2)C11—C10—O1—C961.0 (2)
C6—C1—C7—N176.1 (2)C8—C9—O1—C1060.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.88 (2)2.19 (2)3.062 (2)172 (2)
C7—H7B···Cl1i0.972.863.725 (2)149
C8—H8A···Cl1i0.972.803.690 (2)153
C8—H8B···Cl1ii0.972.873.576 (2)130
C11—H11A···Cl1iii0.972.823.731 (2)157
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y+1/2, z+3/2; (iii) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC11H16NO+·Cl
Mr213.70
Crystal system, space groupMonoclinic, P21/n
Temperature (K)297
a, b, c (Å)7.0181 (6), 9.3458 (9), 17.3003 (16)
β (°) 90.958 (2)
V3)1134.56 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.49 × 0.34 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.865, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
11765, 2321, 2180
Rint0.036
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.109, 1.17
No. of reflections2321
No. of parameters131
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXTL (Bruker, 2001), ORTEP-3 (Farrugia, 1997) and DIAMOND 3 (Brandenburg, 2006), publCIF (Westrip, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.88 (2)2.19 (2)3.062 (2)172 (2)
C7—H7B···Cl1i0.972.863.725 (2)149
C8—H8A···Cl1i0.972.803.690 (2)153
C8—H8B···Cl1ii0.972.873.576 (2)130
C11—H11A···Cl1iii0.972.823.731 (2)157
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y+1/2, z+3/2; (iii) x+3/2, y1/2, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds