Download citation
Download citation
link to html
The title dinuclear compound, [Cu2(C11H9N2O2)2(C5H5N)2](ClO4)2, was obtained by the reaction of di-2-pyridyl ketone, copper(II) acetate, pyridine and sodium perchlorate. The two CuII atoms are coordinated by two hydroxydi-2-pyridylmethano­late ligands and two pyridine ligands, resulting in a distorted [CuN3O2] square-pyramidal coordination geometry. The mol­ecular structure is stabilized by intra­molecular π–π (face-to-face distances of about 3.40 Å) and C—H...π (H...centroid distances of about 2.80 Å) inter­actions of aromatic rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807019599/gk2068sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807019599/gk2068Isup2.hkl
Contains datablock I

CCDC reference: 646657

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.041
  • wR factor = 0.106
  • Data-to-parameter ratio = 15.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for Cl1 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for Cl2 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 Cl O4
Alert level G FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C32 H28 Cl2 Cu2 N6 O12 Atom count from _chemical_formula_moiety:C32 H28 Cl4 Cu2 N6 O20 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Di-2-pyridylketone [(C5H4N2)CO] and its hydrolyzed derivative, di-2-pyridylmethanediol [(C5H4N)2C(OH)2], are considered as excellent ligands because of their various coordination modes. Some complexes based on the monoanion and dianion of di-2-pyridylmethanediol have been reported (Lalioti et al., 2001; Papaefstathiou & Perlepes, 2002; Boudalis et al., 2004; Steel & Sumby, 2003; Tong et al., 2002; Serna et al., 2000; Li et al., 2006). However, it is seldom reported that these ligands chelate the metal ion in N,N',O,O-tridentate mode (Breeze et al., 1996; Boudalis et al., 2003). Herein we present the crystal structure of the dinuclear compoud, (I), containing N,N',O,O-tridentate hydroxy-di-2-pyridylmethnolato ligand.

The structure of (I) consists of the cation, [bispyridyl-bis(hydroxy-di-2-pyridylmethanolato)]dicopper, and two percholrate anions (Fig. 1). In the cation, the two copper atoms, chelated by two N,N',O,O-tridentate hydroxy-di-2-pyridylmethanolato ligands, are not crystallographically equivalent. Each copper atom is also bound to one nitrogen atom from pyridine, resulting in a distorted square pyramidal coordination geometry. The Cu···Cu distance is 3.0375 (4) Å. The Cu—N and Cu—O bond lengths are 2.002 (2)—2.034 (2) Å and 1.9208 (17)—2.2837 (18) Å, respectively.

It is also noteworthy that the dinuclear structure is stabilized by intramolecular pyridine-pyridine π···π interation (the interplanar distance of 3.40 Å) and CH···π interaction (C14—H···the pyridine N5 centroid of 2.80 Å) (Fig. 2).

Related literature top

Some complexes based on di-2-pyridylketone hydrolysed derivative have been already isolated and structurally characterized (Lalioti et al., 2001; Papaefstathiou & Perlepes, 2002; Boudalis et al., 2003, 2004; Steel & Sumby, 2003; Tong et al., 2002; Serna et al., 2000; Li et al., 2006; Breeze et al., 1996).

Experimental top

The title compound was synthesized by refluxing a 20 ml EtOH/H2O solution (3:1, v/v) of Cu(OAc)2.H2O (0.257 g, 1.3 mmol), di-2-pyridylketone (0.185 g, 1 mmol) and pyridine (2.6 ml) for 1 h with stirring. After cooing, the solid NaClO4.H2O (0.210 g, 1.5 mmol) was added and the solution filtered. Blue prism crystals of (I) were obtained by slow evaporation of the blue filtrate for several days. Yield: 47.4% based on di-2-pyridylketone (0.210 g). (Anal. Calc. for C32H28Cl2Cu2N6O12: C, 43.35; H, 3.18; N 9.48. Found: C, 43.11; H, 2.97; N 9.49%).

Refinement top

All H atoms were positioned geometrically and were treated as riding, with C—H distances of 0.93 Å and O—H distances of 0.82 Å, with Uiso(H) = 1.2 Ueq(C, N). The highest electron density peak in a difference Fourier map is located near the O11 atom from the perchlorate anion.

Structure description top

Di-2-pyridylketone [(C5H4N2)CO] and its hydrolyzed derivative, di-2-pyridylmethanediol [(C5H4N)2C(OH)2], are considered as excellent ligands because of their various coordination modes. Some complexes based on the monoanion and dianion of di-2-pyridylmethanediol have been reported (Lalioti et al., 2001; Papaefstathiou & Perlepes, 2002; Boudalis et al., 2004; Steel & Sumby, 2003; Tong et al., 2002; Serna et al., 2000; Li et al., 2006). However, it is seldom reported that these ligands chelate the metal ion in N,N',O,O-tridentate mode (Breeze et al., 1996; Boudalis et al., 2003). Herein we present the crystal structure of the dinuclear compoud, (I), containing N,N',O,O-tridentate hydroxy-di-2-pyridylmethnolato ligand.

The structure of (I) consists of the cation, [bispyridyl-bis(hydroxy-di-2-pyridylmethanolato)]dicopper, and two percholrate anions (Fig. 1). In the cation, the two copper atoms, chelated by two N,N',O,O-tridentate hydroxy-di-2-pyridylmethanolato ligands, are not crystallographically equivalent. Each copper atom is also bound to one nitrogen atom from pyridine, resulting in a distorted square pyramidal coordination geometry. The Cu···Cu distance is 3.0375 (4) Å. The Cu—N and Cu—O bond lengths are 2.002 (2)—2.034 (2) Å and 1.9208 (17)—2.2837 (18) Å, respectively.

It is also noteworthy that the dinuclear structure is stabilized by intramolecular pyridine-pyridine π···π interation (the interplanar distance of 3.40 Å) and CH···π interaction (C14—H···the pyridine N5 centroid of 2.80 Å) (Fig. 2).

Some complexes based on di-2-pyridylketone hydrolysed derivative have been already isolated and structurally characterized (Lalioti et al., 2001; Papaefstathiou & Perlepes, 2002; Boudalis et al., 2003, 2004; Steel & Sumby, 2003; Tong et al., 2002; Serna et al., 2000; Li et al., 2006; Breeze et al., 1996).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atomic labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The intramolecular π···π and CH···π interactions between pyridyl rings. The Cu—Cu contact is shown as a thick dashed line.
Bis(µ2-hydroxydi-2-pyridylmethanolato- κ4N,O:O,N')bis[(pyridine-κN)copper(II)] bis(perchlorate) top
Crystal data top
[Cu2(C11H9N2O2)2(C5H5N)2](ClO4)2F(000) = 1800
Mr = 886.58Dx = 1.754 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.2269 (6) ÅCell parameters from 8489 reflections
b = 15.7136 (8) Åθ = 3.2–27.5°
c = 19.6142 (12) ŵ = 1.50 mm1
β = 104.034 (3)°T = 293 K
V = 3357.0 (3) Å3Prism, blue
Z = 40.40 × 0.20 × 0.15 mm
Data collection top
Rigaku Mercury CCD
diffractometer
7663 independent reflections
Radiation source: fine-focus sealed tube6773 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
h = 1413
Tmin = 0.657, Tmax = 0.798k = 2020
25710 measured reflectionsl = 2025
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0526P)2 + 2.8234P]
where P = (Fo2 + 2Fc2)/3
7663 reflections(Δ/σ)max = 0.001
487 parametersΔρmax = 1.21 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Cu2(C11H9N2O2)2(C5H5N)2](ClO4)2V = 3357.0 (3) Å3
Mr = 886.58Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.2269 (6) ŵ = 1.50 mm1
b = 15.7136 (8) ÅT = 293 K
c = 19.6142 (12) Å0.40 × 0.20 × 0.15 mm
β = 104.034 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
7663 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
6773 reflections with I > 2σ(I)
Tmin = 0.657, Tmax = 0.798Rint = 0.042
25710 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.08Δρmax = 1.21 e Å3
7663 reflectionsΔρmin = 0.72 e Å3
487 parameters
Special details top

Experimental. IR (KBr pellet, cm-1): v(OH) 3449, v(C–O) 1605, v(C?N, C?C) 1473, 1448, 1384, v(ClO4-)1089, 624.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.64841 (3)0.670160 (18)0.367839 (15)0.01667 (9)
Cu20.50841 (3)0.561750 (18)0.246451 (15)0.01642 (9)
Cl11.17153 (6)0.51344 (4)0.15172 (4)0.02879 (16)
Cl20.99762 (6)0.75509 (4)0.45799 (3)0.02225 (14)
N10.7087 (2)0.59111 (13)0.45118 (11)0.0176 (4)
N20.5160 (2)0.43867 (13)0.27837 (11)0.0181 (4)
N30.6030 (2)0.54674 (13)0.17214 (11)0.0182 (4)
N40.6705 (2)0.75622 (13)0.29634 (11)0.0182 (4)
N50.42158 (19)0.66984 (13)0.20679 (11)0.0168 (4)
N60.5364 (2)0.73951 (13)0.41114 (11)0.0175 (4)
O10.26025 (16)0.63617 (11)0.32037 (9)0.0192 (4)
H1A0.24430.59520.29380.029*
O20.46562 (16)0.60058 (10)0.33105 (9)0.0164 (3)
O30.70453 (16)0.59285 (11)0.30647 (9)0.0177 (4)
O40.88631 (16)0.62564 (12)0.27555 (10)0.0226 (4)
H3A0.91150.64930.31360.034*
O51.2489 (3)0.48847 (19)0.2173 (2)0.1021 (16)
O61.0668 (2)0.45880 (17)0.13553 (15)0.0496 (7)
O71.2369 (4)0.5094 (3)0.1002 (2)0.125 (2)
O81.1369 (2)0.59838 (14)0.16146 (16)0.0527 (7)
O91.0527 (3)0.7139 (2)0.52231 (13)0.0615 (8)
O100.8692 (2)0.77013 (15)0.45334 (13)0.0391 (5)
O111.0113 (2)0.6996 (2)0.40201 (13)0.0566 (8)
O121.0597 (2)0.83263 (15)0.4540 (2)0.0697 (10)
C10.6436 (2)0.57286 (16)0.49830 (13)0.0203 (5)
H11A0.57370.60480.49790.024*
C20.6760 (3)0.50846 (17)0.54751 (13)0.0226 (5)
H10A0.62890.49750.57950.027*
C30.7797 (3)0.46070 (17)0.54814 (14)0.0256 (6)
H28A0.80350.41690.58050.031*
C40.8474 (3)0.47919 (18)0.49981 (15)0.0264 (6)
H29A0.91720.44770.49890.032*
C50.8100 (2)0.54520 (17)0.45283 (14)0.0220 (5)
H12A0.85700.55820.42120.026*
C60.5483 (3)0.42389 (16)0.34787 (14)0.0220 (5)
H14A0.57740.46900.37800.026*
C70.5400 (3)0.34432 (17)0.37629 (16)0.0272 (6)
H13A0.56390.33600.42460.033*
C80.4958 (3)0.27754 (17)0.33183 (17)0.0293 (6)
H16A0.48680.22380.34970.035*
C90.4653 (3)0.29174 (17)0.26040 (16)0.0276 (6)
H17A0.43770.24720.22940.033*
C100.4761 (3)0.37286 (17)0.23539 (15)0.0240 (6)
H15A0.45500.38210.18710.029*
C110.5641 (3)0.50168 (16)0.11228 (13)0.0219 (5)
H9A0.48380.48160.10050.026*
C120.6394 (3)0.48436 (16)0.06794 (14)0.0231 (6)
H31A0.61040.45260.02730.028*
C130.7584 (3)0.51476 (16)0.08466 (14)0.0240 (6)
H8A0.81080.50350.05560.029*
C140.7984 (3)0.56241 (16)0.14549 (14)0.0221 (5)
H7A0.87780.58430.15740.026*
C150.7190 (2)0.57706 (15)0.18827 (13)0.0179 (5)
C160.7557 (2)0.62835 (16)0.25636 (13)0.0185 (5)
C170.7140 (2)0.72213 (15)0.24421 (13)0.0167 (5)
C180.7191 (2)0.76819 (16)0.18493 (13)0.0209 (5)
H2A0.74700.74310.14880.025*
C190.6816 (3)0.85284 (17)0.18036 (14)0.0237 (6)
H32A0.68430.88510.14100.028*
C200.6404 (3)0.88850 (17)0.23488 (15)0.0249 (6)
H4A0.61590.94520.23300.030*
C210.6363 (3)0.83846 (16)0.29222 (14)0.0229 (5)
H3B0.60910.86240.32910.027*
C220.4119 (3)0.70408 (17)0.14300 (13)0.0213 (5)
H26A0.44230.67380.11010.026*
C230.3584 (3)0.78284 (18)0.12438 (14)0.0237 (6)
H30A0.35110.80450.07940.028*
C240.3160 (3)0.82844 (17)0.17371 (14)0.0245 (6)
H27A0.28220.88230.16300.029*
C250.3242 (2)0.79327 (16)0.23946 (13)0.0196 (5)
H25A0.29550.82290.27330.024*
C260.3760 (2)0.71316 (15)0.25385 (12)0.0159 (5)
C270.3808 (2)0.66539 (15)0.32260 (13)0.0159 (5)
C280.4148 (2)0.72546 (15)0.38598 (12)0.0175 (5)
C290.3283 (3)0.76266 (16)0.41599 (13)0.0211 (5)
H20A0.24520.75160.39830.025*
C300.3675 (3)0.81696 (17)0.47304 (14)0.0244 (6)
H22A0.31090.84240.49420.029*
C310.4911 (3)0.83256 (16)0.49771 (14)0.0240 (6)
H21A0.51880.86940.53530.029*
C320.5734 (3)0.79289 (16)0.46606 (13)0.0220 (5)
H18A0.65690.80330.48310.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02118 (17)0.01560 (15)0.01365 (15)0.00121 (11)0.00500 (12)0.00078 (11)
Cu20.02116 (17)0.01498 (15)0.01423 (15)0.00170 (11)0.00645 (12)0.00007 (11)
Cl10.0244 (3)0.0229 (3)0.0364 (4)0.0040 (3)0.0022 (3)0.0075 (3)
Cl20.0254 (3)0.0222 (3)0.0198 (3)0.0008 (2)0.0069 (2)0.0008 (2)
N10.0193 (11)0.0180 (10)0.0153 (10)0.0013 (8)0.0035 (8)0.0002 (8)
N20.0185 (11)0.0162 (10)0.0210 (11)0.0015 (8)0.0075 (9)0.0014 (8)
N30.0220 (11)0.0172 (10)0.0157 (10)0.0010 (8)0.0052 (8)0.0016 (8)
N40.0207 (11)0.0170 (10)0.0163 (10)0.0020 (8)0.0035 (8)0.0003 (8)
N50.0182 (10)0.0181 (10)0.0144 (10)0.0006 (8)0.0047 (8)0.0001 (8)
N60.0234 (11)0.0146 (9)0.0143 (9)0.0022 (8)0.0045 (8)0.0009 (8)
O10.0206 (9)0.0190 (8)0.0198 (9)0.0028 (7)0.0084 (7)0.0012 (7)
O20.0223 (9)0.0136 (8)0.0136 (8)0.0031 (7)0.0050 (7)0.0008 (6)
O30.0237 (9)0.0165 (8)0.0135 (8)0.0008 (7)0.0059 (7)0.0016 (6)
O40.0174 (9)0.0272 (9)0.0225 (9)0.0001 (7)0.0038 (7)0.0011 (8)
O50.078 (2)0.0474 (17)0.133 (3)0.0171 (16)0.067 (2)0.0420 (19)
O60.0327 (13)0.0512 (14)0.0619 (17)0.0109 (11)0.0056 (12)0.0258 (13)
O70.138 (4)0.130 (4)0.151 (4)0.078 (3)0.119 (3)0.098 (3)
O80.0483 (15)0.0254 (11)0.0778 (19)0.0152 (11)0.0027 (14)0.0088 (12)
O90.072 (2)0.081 (2)0.0336 (13)0.0340 (16)0.0159 (13)0.0261 (14)
O100.0263 (11)0.0409 (12)0.0534 (14)0.0024 (10)0.0162 (10)0.0030 (11)
O110.0406 (14)0.093 (2)0.0338 (13)0.0099 (14)0.0051 (11)0.0287 (14)
O120.0335 (14)0.0254 (12)0.149 (3)0.0024 (10)0.0194 (17)0.0098 (15)
C10.0226 (13)0.0207 (12)0.0185 (12)0.0016 (10)0.0065 (10)0.0002 (10)
C20.0274 (14)0.0229 (12)0.0194 (12)0.0041 (11)0.0093 (11)0.0012 (10)
C30.0320 (16)0.0234 (13)0.0209 (13)0.0018 (11)0.0058 (11)0.0078 (10)
C40.0230 (14)0.0280 (14)0.0292 (14)0.0067 (11)0.0081 (11)0.0067 (11)
C50.0188 (13)0.0276 (13)0.0202 (13)0.0005 (10)0.0057 (10)0.0044 (10)
C60.0261 (14)0.0184 (12)0.0237 (13)0.0013 (10)0.0101 (11)0.0005 (10)
C70.0342 (16)0.0221 (13)0.0288 (14)0.0045 (12)0.0146 (12)0.0049 (11)
C80.0304 (15)0.0159 (12)0.0472 (18)0.0000 (11)0.0199 (14)0.0022 (12)
C90.0245 (14)0.0189 (12)0.0413 (17)0.0015 (11)0.0115 (12)0.0085 (12)
C100.0244 (14)0.0220 (13)0.0257 (13)0.0004 (11)0.0064 (11)0.0062 (11)
C110.0289 (14)0.0205 (12)0.0160 (11)0.0015 (11)0.0050 (10)0.0009 (10)
C120.0331 (15)0.0200 (12)0.0168 (12)0.0013 (11)0.0075 (11)0.0009 (10)
C130.0341 (15)0.0210 (12)0.0211 (13)0.0035 (11)0.0146 (11)0.0023 (10)
C140.0274 (14)0.0188 (12)0.0237 (13)0.0010 (10)0.0134 (11)0.0027 (10)
C150.0245 (13)0.0143 (11)0.0161 (11)0.0022 (10)0.0072 (10)0.0037 (9)
C160.0186 (12)0.0195 (11)0.0180 (12)0.0006 (10)0.0056 (10)0.0004 (9)
C170.0150 (12)0.0170 (11)0.0173 (11)0.0035 (9)0.0027 (9)0.0013 (9)
C180.0218 (13)0.0222 (12)0.0193 (12)0.0040 (10)0.0063 (10)0.0028 (10)
C190.0249 (14)0.0219 (12)0.0234 (13)0.0042 (11)0.0043 (11)0.0074 (10)
C200.0270 (14)0.0165 (11)0.0299 (14)0.0008 (10)0.0044 (12)0.0030 (10)
C210.0260 (14)0.0182 (12)0.0233 (13)0.0028 (10)0.0038 (11)0.0016 (10)
C220.0249 (14)0.0243 (13)0.0160 (12)0.0015 (11)0.0074 (10)0.0027 (10)
C230.0262 (14)0.0285 (13)0.0173 (12)0.0036 (11)0.0067 (11)0.0086 (10)
C240.0277 (14)0.0213 (12)0.0239 (13)0.0044 (11)0.0053 (11)0.0061 (10)
C250.0201 (13)0.0207 (12)0.0185 (12)0.0007 (10)0.0057 (10)0.0002 (10)
C260.0148 (12)0.0180 (11)0.0151 (11)0.0016 (9)0.0039 (9)0.0004 (9)
C270.0190 (12)0.0144 (11)0.0149 (11)0.0011 (9)0.0055 (9)0.0007 (9)
C280.0243 (13)0.0150 (11)0.0135 (11)0.0008 (10)0.0052 (10)0.0029 (9)
C290.0257 (14)0.0210 (12)0.0176 (12)0.0031 (10)0.0073 (10)0.0011 (10)
C300.0347 (16)0.0224 (12)0.0189 (12)0.0048 (11)0.0118 (11)0.0015 (10)
C310.0350 (15)0.0197 (12)0.0169 (12)0.0010 (11)0.0056 (11)0.0053 (10)
C320.0260 (14)0.0201 (12)0.0177 (12)0.0004 (10)0.0009 (10)0.0013 (10)
Geometric parameters (Å, º) top
Cu1—O31.9208 (17)C6—C71.381 (4)
Cu1—N62.002 (2)C6—H14A0.9300
Cu1—N42.007 (2)C7—C81.378 (4)
Cu1—N12.034 (2)C7—H13A0.9300
Cu1—O22.2824 (18)C8—C91.377 (4)
Cu1—Cu23.0375 (4)C8—H16A0.9300
Cu2—O21.9348 (17)C9—C101.382 (4)
Cu2—N32.014 (2)C9—H17A0.9300
Cu2—N52.018 (2)C10—H15A0.9300
Cu2—N22.028 (2)C11—C121.379 (4)
Cu2—O32.2837 (18)C11—H9A0.9300
Cl1—O71.386 (3)C12—C131.381 (4)
Cl1—O81.416 (2)C12—H31A0.9300
Cl1—O51.421 (3)C13—C141.388 (4)
Cl1—O61.428 (2)C13—H8A0.9300
Cl2—O121.415 (2)C14—C151.384 (4)
Cl2—O91.419 (2)C14—H7A0.9300
Cl2—O111.439 (2)C15—C161.528 (3)
Cl2—O101.442 (2)C16—C171.547 (3)
N1—C11.341 (3)C17—C181.383 (3)
N1—C51.341 (3)C18—C191.391 (4)
N2—C101.341 (3)C18—H2A0.9300
N2—C61.343 (3)C19—C201.383 (4)
N3—C111.350 (3)C19—H32A0.9300
N3—C151.351 (3)C20—C211.382 (4)
N4—C211.345 (3)C20—H4A0.9300
N4—C171.346 (3)C21—H3B0.9300
N5—C221.342 (3)C22—C231.386 (4)
N5—C261.344 (3)C22—H26A0.9300
N6—C321.349 (3)C23—C241.378 (4)
N6—C281.353 (3)C23—H30A0.9300
O1—C271.420 (3)C24—C251.385 (4)
O1—H1A0.8200C24—H27A0.9300
O2—C271.377 (3)C25—C261.387 (3)
O3—C161.372 (3)C25—H25A0.9300
O4—C161.423 (3)C26—C271.533 (3)
O4—H3A0.8200C27—C281.534 (3)
C1—C21.385 (4)C28—C291.382 (4)
C1—H11A0.9300C29—C301.391 (4)
C2—C31.383 (4)C29—H20A0.9300
C2—H10A0.9300C30—C311.376 (4)
C3—C41.382 (4)C30—H22A0.9300
C3—H28A0.9300C31—C321.381 (4)
C4—C51.383 (4)C31—H21A0.9300
C4—H29A0.9300C32—H18A0.9300
C5—H12A0.9300
O3—Cu1—N6160.98 (8)C7—C6—H14A118.7
O3—Cu1—N482.71 (8)C8—C7—C6118.9 (3)
N6—Cu1—N497.27 (9)C8—C7—H13A120.5
O3—Cu1—N191.24 (8)C6—C7—H13A120.5
N6—Cu1—N196.45 (8)C9—C8—C7118.9 (3)
N4—Cu1—N1154.14 (9)C9—C8—H16A120.6
O3—Cu1—O284.57 (7)C7—C8—H16A120.6
N6—Cu1—O277.64 (8)C8—C9—C10119.3 (3)
N4—Cu1—O2110.87 (7)C8—C9—H17A120.4
N1—Cu1—O293.44 (7)C10—C9—H17A120.4
O3—Cu1—Cu248.71 (5)N2—C10—C9122.2 (3)
N6—Cu1—Cu2112.28 (6)N2—C10—H15A118.9
N4—Cu1—Cu287.62 (6)C9—C10—H15A118.9
N1—Cu1—Cu2107.19 (6)N3—C11—C12122.3 (3)
O2—Cu1—Cu239.54 (4)N3—C11—H9A118.9
O2—Cu2—N3160.32 (8)C12—C11—H9A118.9
O2—Cu2—N582.41 (8)C11—C12—C13119.2 (2)
N3—Cu2—N596.30 (8)C11—C12—H31A120.4
O2—Cu2—N292.09 (8)C13—C12—H31A120.4
N3—Cu2—N296.99 (8)C12—C13—C14118.9 (3)
N5—Cu2—N2154.38 (9)C12—C13—H8A120.5
O2—Cu2—O384.22 (7)C14—C13—H8A120.5
N3—Cu2—O377.68 (8)C15—C14—C13119.3 (3)
N5—Cu2—O3109.50 (7)C15—C14—H7A120.4
N2—Cu2—O394.70 (7)C13—C14—H7A120.4
O2—Cu2—Cu148.68 (5)N3—C15—C14121.7 (2)
N3—Cu2—Cu1111.69 (6)N3—C15—C16115.5 (2)
N5—Cu2—Cu186.55 (6)C14—C15—C16122.7 (2)
N2—Cu2—Cu1108.53 (6)O3—C16—O4112.5 (2)
O3—Cu2—Cu139.19 (4)O3—C16—C15109.9 (2)
O7—Cl1—O8110.6 (2)O4—C16—C15104.9 (2)
O7—Cl1—O5109.3 (3)O3—C16—C17109.5 (2)
O8—Cl1—O5105.4 (2)O4—C16—C17108.9 (2)
O7—Cl1—O6111.3 (2)C15—C16—C17111.1 (2)
O8—Cl1—O6111.02 (16)N4—C17—C18121.8 (2)
O5—Cl1—O6108.96 (18)N4—C17—C16114.5 (2)
O12—Cl2—O9109.1 (2)C18—C17—C16123.7 (2)
O12—Cl2—O11109.6 (2)C17—C18—C19118.8 (2)
O9—Cl2—O11107.33 (18)C17—C18—H2A120.6
O12—Cl2—O10110.69 (15)C19—C18—H2A120.6
O9—Cl2—O10110.15 (16)C20—C19—C18119.4 (2)
O11—Cl2—O10109.94 (15)C20—C19—H32A120.3
C1—N1—C5118.0 (2)C18—C19—H32A120.3
C1—N1—Cu1123.64 (18)C21—C20—C19118.8 (2)
C5—N1—Cu1117.58 (17)C21—C20—H4A120.6
C10—N2—C6118.1 (2)C19—C20—H4A120.6
C10—N2—Cu2123.97 (19)N4—C21—C20122.0 (3)
C6—N2—Cu2117.32 (17)N4—C21—H3B119.0
C11—N3—C15118.6 (2)C20—C21—H3B119.0
C11—N3—Cu2125.09 (19)N5—C22—C23122.4 (2)
C15—N3—Cu2115.90 (16)N5—C22—H26A118.8
C21—N4—C17119.2 (2)C23—C22—H26A118.8
C21—N4—Cu1127.41 (19)C24—C23—C22118.7 (2)
C17—N4—Cu1113.06 (16)C24—C23—H30A120.6
C22—N5—C26118.6 (2)C22—C23—H30A120.6
C22—N5—Cu2128.24 (18)C23—C24—C25119.3 (2)
C26—N5—Cu2112.97 (16)C23—C24—H27A120.3
C32—N6—C28118.7 (2)C25—C24—H27A120.3
C32—N6—Cu1125.03 (18)C24—C25—C26118.8 (2)
C28—N6—Cu1116.01 (16)C24—C25—H25A120.6
C27—O1—H1A109.5C26—C25—H25A120.6
C27—O2—Cu2116.00 (14)N5—C26—C25122.0 (2)
C27—O2—Cu1103.08 (13)N5—C26—C27114.7 (2)
Cu2—O2—Cu191.77 (7)C25—C26—C27123.2 (2)
C16—O3—Cu1116.75 (15)O2—C27—O1113.01 (19)
C16—O3—Cu2103.70 (14)O2—C27—C26110.1 (2)
Cu1—O3—Cu292.10 (7)O1—C27—C26107.54 (19)
C16—O4—H3A109.5O2—C27—C28109.19 (19)
N1—C1—C2122.8 (2)O1—C27—C28105.80 (19)
N1—C1—H11A118.6C26—C27—C28111.12 (19)
C2—C1—H11A118.6N6—C28—C29121.8 (2)
C3—C2—C1118.8 (3)N6—C28—C27115.3 (2)
C3—C2—H10A120.6C29—C28—C27122.9 (2)
C1—C2—H10A120.6C28—C29—C30119.0 (3)
C4—C3—C2118.8 (2)C28—C29—H20A120.5
C4—C3—H28A120.6C30—C29—H20A120.5
C2—C3—H28A120.6C31—C30—C29119.2 (3)
C3—C4—C5119.1 (3)C31—C30—H22A120.4
C3—C4—H29A120.5C29—C30—H22A120.4
C5—C4—H29A120.5C30—C31—C32119.3 (2)
N1—C5—C4122.6 (3)C30—C31—H21A120.4
N1—C5—H12A118.7C32—C31—H21A120.4
C4—C5—H12A118.7N6—C32—C31122.0 (3)
N2—C6—C7122.5 (3)N6—C32—H18A119.0
N2—C6—H14A118.7C31—C32—H18A119.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O5i0.822.263.060 (5)165
O4—H3A···O110.821.992.790 (3)166
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(C11H9N2O2)2(C5H5N)2](ClO4)2
Mr886.58
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.2269 (6), 15.7136 (8), 19.6142 (12)
β (°) 104.034 (3)
V3)3357.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.50
Crystal size (mm)0.40 × 0.20 × 0.15
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2000)
Tmin, Tmax0.657, 0.798
No. of measured, independent and
observed [I > 2σ(I)] reflections
25710, 7663, 6773
Rint0.042
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.106, 1.08
No. of reflections7663
No. of parameters487
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.21, 0.72

Computer programs: CrystalClear (Rigaku, 2000), CrystalClear, SHELXTL (Sheldrick, 1997), SHELXTL.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds