Download citation
Download citation
link to html
In the crystal structure of the title compound, C11H10N2O2, there are two independent mol­ecules, A and B, with different conformations. In mol­ecule A, the pyran ring adopts a half-chair conformation, and in molecule B, it adopts an envelope conformation. The structure is stabilized by N—H...O hydrogen-bonding inter­actions, resulting in chains of mol­ecules. Further stability is provided by offset π–π stacking inter­actions between the benzene rings in adjacent chains, with centroid–centroid distances of 3.860 (5) Å for the benzene rings in molecules A [symmetry codes: −x, −1\over2 + y, zx; −x, 1\over2 + y, z] and 3.860 (5) Å for molecules B [symmetry codes: 1 − x, −1\over2 + y, z; 1 − x, 1\over2 + y, z].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807017837/hb2364sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807017837/hb2364Isup2.hkl
Contains datablock I

CCDC reference: 647601

Key indicators

  • Single-crystal X-ray study
  • T = 292 K
  • Mean [sigma](C-C) = 0.010 Å
  • R factor = 0.057
  • wR factor = 0.179
  • Data-to-parameter ratio = 7.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax .LT. 18) ..... 7.03 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C10 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C11 PLAT340_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 10
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 26.00 From the CIF: _reflns_number_total 1906 Count of symmetry unique reflns 1911 Completeness (_total/calc) 99.74% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT792_ALERT_1_G Check the Absolute Configuration of C8 = ... S PLAT792_ALERT_1_G Check the Absolute Configuration of C19 = ... S
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Flavonoids, occurring widely throughout the plant kingdom, are one of the most representative families of plant secondary metabolites and display a remarkable

spectrum of biological activities. They are used as a synthetic lead for drug discovery (Ren et al., 2003). The title compound, (I) (Fig. 1), is an important intermediate for the synthesis of flavonoid derivatives.

Compound (I) contains two independent molecules (A and B) in the asymmetric unit, with bond lengths and angles within normal ranges (Allen et al., 1987). The six-membered pyran ring adopts a half-chair conformation in molecule A (atoms C1/C6–C9/O3) and an envelope conformation in molecule B (atoms C12/C17–C20/O1). The fused heterocyclic ring (atoms C7/C8/C10/C11/N4/N3 in A; atoms C18/C19/C21/C22/N1/N2 in B) adopts a sofa conformation in both molecules.

The structure is stabilized by weak N—H···O hydrogen-bonding interactions (Table 1). The hydrogen bonds link pairs of independent molecules into dimers, while the N—H···O interactions link pairs of dimers into chains in the bc plane. A short C—H···O contact is also present. Further stability is provided

by offset ππ stacking interactions between adjacent C1–C6 and C12–C17 benzene rings. The centroid–centroid distance is 3.860 (5) Å.

Related literature top

For background literature, see Potts & Dery (1986), Ren et al. (2003) and Wang & Tunge (2006).

For related literature, see: Allen et al. (1987); Cignarella et al. (1992).

Experimental top

The title compound was synthesized according to the literature procedure of Cignarella et al. (1992). Crystals of (I) suitable for X-ray crystallographic analysis were recrystallized from dichloromethane at 277 K.

Refinement top

The H atoms were placed in idealized positions, with C—H = 0.93–0.97 Å and N—H = 0.86 Å, and refined as riding, with Uiso(H) = 1.2Ueq(C,N).

Structure description top

Flavonoids, occurring widely throughout the plant kingdom, are one of the most representative families of plant secondary metabolites and display a remarkable

spectrum of biological activities. They are used as a synthetic lead for drug discovery (Ren et al., 2003). The title compound, (I) (Fig. 1), is an important intermediate for the synthesis of flavonoid derivatives.

Compound (I) contains two independent molecules (A and B) in the asymmetric unit, with bond lengths and angles within normal ranges (Allen et al., 1987). The six-membered pyran ring adopts a half-chair conformation in molecule A (atoms C1/C6–C9/O3) and an envelope conformation in molecule B (atoms C12/C17–C20/O1). The fused heterocyclic ring (atoms C7/C8/C10/C11/N4/N3 in A; atoms C18/C19/C21/C22/N1/N2 in B) adopts a sofa conformation in both molecules.

The structure is stabilized by weak N—H···O hydrogen-bonding interactions (Table 1). The hydrogen bonds link pairs of independent molecules into dimers, while the N—H···O interactions link pairs of dimers into chains in the bc plane. A short C—H···O contact is also present. Further stability is provided

by offset ππ stacking interactions between adjacent C1–C6 and C12–C17 benzene rings. The centroid–centroid distance is 3.860 (5) Å.

For background literature, see Potts & Dery (1986), Ren et al. (2003) and Wang & Tunge (2006).

For related literature, see: Allen et al. (1987); Cignarella et al. (1992).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. A perspective view of the asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as thin dashed lines [None visible] and ππ stacking contacts as thick dashed lines.
4a,5-Dihydro-2H-chromeno[4,3-c]pyridazin-3(4H)-one top
Crystal data top
C11H10N2O2F(000) = 848
Mr = 202.21Dx = 1.405 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1006 reflections
a = 7.6838 (10) Åθ = 2.4–19.8°
b = 7.4659 (9) ŵ = 0.10 mm1
c = 33.322 (4) ÅT = 292 K
V = 1911.6 (4) Å3Block, colourless
Z = 80.40 × 0.30 × 0.10 mm
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
1906 independent reflections
Radiation source: fine-focus sealed tube1211 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω scansθmax = 26.0°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.961, Tmax = 0.990k = 89
9576 measured reflectionsl = 4136
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1059P)2]
where P = (Fo2 + 2Fc2)/3
1906 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C11H10N2O2V = 1911.6 (4) Å3
Mr = 202.21Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 7.6838 (10) ŵ = 0.10 mm1
b = 7.4659 (9) ÅT = 292 K
c = 33.322 (4) Å0.40 × 0.30 × 0.10 mm
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
1906 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1211 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.990Rint = 0.057
9576 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0571 restraint
wR(F2) = 0.179H-atom parameters constrained
S = 1.00Δρmax = 0.19 e Å3
1906 reflectionsΔρmin = 0.18 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0527 (7)0.8659 (5)0.46763 (15)0.0732 (14)
O20.3726 (8)0.6504 (6)0.30959 (14)0.0791 (15)
N10.2055 (7)0.4405 (7)0.39697 (15)0.0498 (13)
N20.2621 (11)0.4758 (7)0.3587 (2)0.0586 (18)
H2A0.26440.38670.34230.070*
C120.0380 (9)0.6931 (10)0.4825 (2)0.0565 (17)
C130.0268 (11)0.6771 (12)0.5207 (2)0.069 (2)
H130.05740.77750.53570.083*
C140.0450 (13)0.5037 (13)0.5364 (3)0.077 (3)
H140.09350.48790.56170.093*
C150.0090 (12)0.3538 (12)0.5143 (2)0.067 (2)
H150.00140.23940.52500.081*
C160.0767 (10)0.3773 (10)0.4771 (2)0.0600 (19)
H160.11560.27700.46320.072*
C170.0910 (8)0.5450 (10)0.45849 (18)0.0461 (16)
C180.1612 (8)0.5739 (9)0.41872 (17)0.0483 (15)
C190.1671 (11)0.7619 (8)0.4037 (2)0.070 (2)
H190.05550.77990.39010.083*
C200.1670 (11)0.8928 (8)0.4369 (2)0.074 (2)
H20A0.28340.89610.44820.089*
H20B0.14401.01010.42560.089*
C210.2986 (12)0.7876 (8)0.3726 (2)0.080 (2)
H21A0.41070.80520.38540.096*
H21B0.27130.89600.35790.096*
C220.3133 (10)0.6356 (8)0.34363 (18)0.0614 (18)
O30.6970 (7)0.3665 (6)0.15967 (16)0.0803 (15)
O40.3727 (8)0.1510 (6)0.31826 (13)0.0788 (15)
N30.5429 (7)0.0626 (7)0.23097 (16)0.0487 (13)
N40.4795 (11)0.0232 (7)0.26994 (17)0.0588 (19)
H4A0.46930.11250.28600.071*
C10.7049 (9)0.1930 (9)0.1460 (2)0.0535 (17)
C20.7724 (11)0.1683 (11)0.1079 (2)0.064 (2)
H20.80620.26720.09280.076*
C30.7898 (13)0.0023 (9)0.0922 (2)0.059 (2)
H30.83260.01140.06630.071*
C40.7455 (11)0.1456 (10)0.1141 (2)0.060 (2)
H40.76290.26000.10380.072*
C50.6731 (8)0.1215 (9)0.15232 (19)0.0497 (16)
H50.64020.22120.16720.060*
C60.6500 (8)0.0464 (10)0.16813 (18)0.0447 (14)
C70.5879 (8)0.0760 (7)0.20934 (18)0.0455 (14)
C80.5825 (11)0.2660 (9)0.2245 (2)0.0686 (19)
H80.69400.28510.23810.082*
C90.5791 (12)0.3946 (7)0.1915 (2)0.075 (2)
H9A0.46240.39580.18040.090*
H9B0.60110.51260.20260.090*
C100.4477 (12)0.2895 (8)0.2557 (2)0.078 (2)
H10A0.33620.30790.24270.094*
H10B0.47420.39680.27100.094*
C110.4322 (9)0.1362 (8)0.28399 (18)0.0553 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.097 (4)0.052 (3)0.070 (3)0.009 (2)0.022 (3)0.017 (2)
O20.130 (4)0.053 (2)0.054 (3)0.000 (3)0.020 (3)0.005 (2)
N10.072 (4)0.044 (3)0.034 (3)0.002 (3)0.003 (2)0.002 (2)
N20.088 (5)0.037 (3)0.051 (4)0.006 (3)0.015 (3)0.000 (2)
C120.058 (4)0.059 (4)0.052 (4)0.002 (3)0.003 (3)0.016 (3)
C130.065 (5)0.076 (5)0.066 (5)0.011 (4)0.013 (4)0.022 (4)
C140.052 (6)0.115 (9)0.066 (6)0.003 (4)0.011 (4)0.013 (4)
C150.063 (5)0.082 (6)0.057 (5)0.006 (4)0.002 (4)0.008 (4)
C160.065 (5)0.058 (4)0.056 (5)0.005 (4)0.011 (4)0.004 (4)
C170.047 (4)0.050 (3)0.041 (4)0.018 (3)0.000 (3)0.006 (3)
C180.051 (4)0.056 (4)0.037 (3)0.002 (3)0.002 (3)0.004 (3)
C190.105 (6)0.041 (4)0.062 (4)0.005 (3)0.010 (4)0.002 (3)
C200.107 (6)0.056 (4)0.060 (4)0.014 (4)0.015 (4)0.009 (3)
C210.133 (7)0.047 (4)0.059 (4)0.008 (4)0.035 (5)0.000 (3)
C220.093 (6)0.053 (4)0.038 (3)0.004 (4)0.003 (4)0.005 (3)
O30.109 (4)0.056 (3)0.075 (3)0.009 (3)0.031 (3)0.011 (2)
O40.143 (5)0.050 (2)0.043 (2)0.006 (3)0.025 (3)0.001 (2)
N30.065 (4)0.040 (3)0.041 (3)0.001 (3)0.002 (2)0.003 (2)
N40.094 (5)0.045 (3)0.037 (3)0.005 (3)0.032 (3)0.006 (2)
C10.053 (4)0.049 (4)0.059 (4)0.003 (3)0.004 (3)0.008 (3)
C20.065 (5)0.081 (5)0.045 (4)0.011 (4)0.007 (3)0.010 (4)
C30.067 (6)0.078 (6)0.032 (4)0.004 (3)0.018 (4)0.001 (3)
C40.072 (5)0.064 (4)0.044 (4)0.007 (4)0.006 (3)0.017 (4)
C50.052 (4)0.054 (4)0.043 (3)0.002 (3)0.002 (3)0.005 (3)
C60.032 (3)0.058 (4)0.044 (3)0.015 (3)0.013 (3)0.002 (3)
C70.054 (4)0.035 (3)0.048 (3)0.001 (2)0.012 (3)0.006 (3)
C80.096 (5)0.049 (4)0.061 (4)0.002 (3)0.011 (4)0.001 (3)
C90.116 (6)0.038 (3)0.073 (5)0.003 (3)0.023 (5)0.005 (3)
C100.125 (7)0.041 (4)0.068 (4)0.001 (4)0.009 (4)0.005 (3)
C110.078 (5)0.042 (3)0.046 (4)0.001 (3)0.002 (3)0.003 (3)
Geometric parameters (Å, º) top
O1—C201.363 (8)O3—C11.374 (8)
O1—C121.386 (8)O3—C91.411 (8)
O2—C221.228 (7)O4—C111.235 (7)
N1—C181.278 (8)N3—C71.308 (8)
N1—N21.373 (9)N3—N41.418 (8)
N2—C221.353 (8)N4—C111.330 (7)
N2—H2A0.8611N4—H4A0.8591
C12—C131.373 (10)C1—C21.385 (10)
C12—C171.425 (9)C1—C61.386 (10)
C13—C141.403 (13)C2—C31.350 (11)
C13—H130.9300C2—H20.9300
C14—C151.402 (12)C3—C41.365 (10)
C14—H140.9300C3—H30.9300
C15—C161.355 (11)C4—C51.403 (10)
C15—H150.9300C4—H40.9300
C16—C171.401 (9)C5—C61.371 (9)
C16—H160.9300C5—H50.9300
C17—C181.447 (9)C6—C71.470 (9)
C18—C191.490 (9)C7—C81.506 (9)
C19—C211.460 (9)C8—C91.458 (9)
C19—C201.475 (9)C8—C101.480 (10)
C19—H190.9800C8—H80.9800
C20—H20A0.9700C9—H9A0.9700
C20—H20B0.9700C9—H9B0.9700
C21—C221.495 (8)C10—C111.487 (8)
C21—H21A0.9700C10—H10A0.9700
C21—H21B0.9700C10—H10B0.9700
C20—O1—C12117.3 (5)C1—O3—C9114.7 (5)
C18—N1—N2117.5 (6)C7—N3—N4115.5 (5)
C22—N2—N1127.3 (6)C11—N4—N3127.1 (5)
C22—N2—H2A116.1C11—N4—H4A116.7
N1—N2—H2A116.6N3—N4—H4A116.2
C13—C12—O1116.2 (6)O3—C1—C2116.5 (6)
C13—C12—C17123.9 (8)O3—C1—C6123.7 (6)
O1—C12—C17119.9 (6)C2—C1—C6119.8 (7)
C12—C13—C14117.5 (8)C3—C2—C1120.9 (7)
C12—C13—H13121.3C3—C2—H2119.6
C14—C13—H13121.3C1—C2—H2119.6
C15—C14—C13120.8 (9)C2—C3—C4120.8 (7)
C15—C14—H14119.6C2—C3—H3119.6
C13—C14—H14119.6C4—C3—H3119.6
C16—C15—C14119.4 (9)C3—C4—C5118.6 (7)
C16—C15—H15120.3C3—C4—H4120.7
C14—C15—H15120.3C5—C4—H4120.7
C15—C16—C17123.4 (7)C6—C5—C4121.2 (6)
C15—C16—H16118.3C6—C5—H5119.4
C17—C16—H16118.3C4—C5—H5119.4
C16—C17—C12115.0 (6)C5—C6—C1118.6 (6)
C16—C17—C18124.6 (7)C5—C6—C7122.6 (7)
C12—C17—C18120.3 (7)C1—C6—C7118.5 (6)
N1—C18—C17120.1 (7)N3—C7—C6118.8 (6)
N1—C18—C19122.4 (6)N3—C7—C8123.6 (6)
C17—C18—C19117.3 (6)C6—C7—C8117.6 (5)
C21—C19—C20116.4 (6)C9—C8—C10116.1 (6)
C21—C19—C18112.5 (5)C9—C8—C7111.6 (5)
C20—C19—C18111.9 (6)C10—C8—C7111.5 (6)
C21—C19—H19104.9C9—C8—H8105.6
C20—C19—H19104.9C10—C8—H8105.6
C18—C19—H19104.9C7—C8—H8105.6
O1—C20—C19117.7 (6)O3—C9—C8117.2 (6)
O1—C20—H20A107.9O3—C9—H9A108.0
C19—C20—H20A107.9C8—C9—H9A108.0
O1—C20—H20B107.9O3—C9—H9B108.0
C19—C20—H20B107.9C8—C9—H9B108.0
H20A—C20—H20B107.2H9A—C9—H9B107.2
C19—C21—C22114.3 (6)C8—C10—C11114.3 (6)
C19—C21—H21A108.7C8—C10—H10A108.7
C22—C21—H21A108.7C11—C10—H10A108.7
C19—C21—H21B108.7C8—C10—H10B108.7
C22—C21—H21B108.7C11—C10—H10B108.7
H21A—C21—H21B107.6H10A—C10—H10B107.6
O2—C22—N2122.0 (6)O4—C11—N4120.4 (5)
O2—C22—C21123.9 (6)O4—C11—C10123.1 (6)
N2—C22—C21114.0 (6)N4—C11—C10116.4 (6)
C18—N1—N2—C2215.7 (12)C7—N3—N4—C1113.0 (12)
C20—O1—C12—C13158.2 (7)C9—O3—C1—C2160.0 (7)
C20—O1—C12—C1721.0 (10)C9—O3—C1—C620.1 (10)
O1—C12—C13—C14179.3 (7)O3—C1—C2—C3178.2 (8)
C17—C12—C13—C141.6 (12)C6—C1—C2—C31.7 (12)
C12—C13—C14—C153.0 (13)C1—C2—C3—C41.7 (15)
C13—C14—C15—C161.2 (14)C2—C3—C4—C53.2 (14)
C14—C15—C16—C172.2 (12)C3—C4—C5—C61.3 (11)
C15—C16—C17—C123.4 (11)C4—C5—C6—C12.0 (10)
C15—C16—C17—C18179.4 (7)C4—C5—C6—C7174.9 (6)
C13—C12—C17—C161.5 (11)O3—C1—C6—C5176.4 (6)
O1—C12—C17—C16177.6 (6)C2—C1—C6—C53.5 (10)
C13—C12—C17—C18178.8 (7)O3—C1—C6—C73.2 (10)
O1—C12—C17—C180.3 (10)C2—C1—C6—C7176.7 (6)
N2—N1—C18—C17176.5 (6)N4—N3—C7—C6178.2 (6)
N2—N1—C18—C190.8 (10)N4—N3—C7—C82.8 (10)
C16—C17—C18—N14.3 (10)C5—C6—C7—N34.2 (9)
C12—C17—C18—N1178.6 (6)C1—C6—C7—N3177.1 (6)
C16—C17—C18—C19179.8 (7)C5—C6—C7—C8174.8 (6)
C12—C17—C18—C192.8 (10)C1—C6—C7—C81.9 (9)
N1—C18—C19—C2127.9 (10)N3—C7—C8—C9159.9 (7)
C17—C18—C19—C21156.3 (7)C6—C7—C8—C921.1 (9)
N1—C18—C19—C20161.1 (7)N3—C7—C8—C1028.3 (10)
C17—C18—C19—C2023.1 (9)C6—C7—C8—C10152.8 (6)
C12—O1—C20—C1944.5 (9)C1—O3—C9—C845.9 (9)
C21—C19—C20—O1176.1 (6)C10—C8—C9—O3175.0 (7)
C18—C19—C20—O144.8 (10)C7—C8—C9—O345.7 (10)
C20—C19—C21—C22170.1 (6)C9—C8—C10—C11168.0 (7)
C18—C19—C21—C2239.1 (10)C7—C8—C10—C1138.7 (9)
N1—N2—C22—O2175.1 (7)N3—N4—C11—O4177.3 (7)
N1—N2—C22—C212.1 (12)N3—N4—C11—C100.1 (12)
C19—C21—C22—O2156.8 (7)C8—C10—C11—O4155.8 (7)
C19—C21—C22—N226.0 (10)C8—C10—C11—N426.9 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O40.862.112.902 (7)154
N4—H4A···O2i0.862.072.891 (7)159
C21—H21B···O4ii0.972.443.312 (8)149
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H10N2O2
Mr202.21
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)292
a, b, c (Å)7.6838 (10), 7.4659 (9), 33.322 (4)
V3)1911.6 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.30 × 0.10
Data collection
DiffractometerBruker SMART 4K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.961, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
9576, 1906, 1211
Rint0.057
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.179, 1.00
No. of reflections1906
No. of parameters271
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Bruker, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O40.862.112.902 (7)154
N4—H4A···O2i0.862.072.891 (7)159
C21—H21B···O4ii0.972.443.312 (8)149
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds