Download citation
Download citation
link to html
The Cd atom (site symmetry 2) in the title compound, [Cd(C2H3O2)2(H2O)3]·4C6H9N3·2H2O, adopts a trigonal–bipyramidal coordination geometry but it tends towards a distorted penta­gonal bipyramid owing to two long [2.674 (2) Å] Cd...OCOO inter­actions from the asymmetrically coordinated acetate anions. The neutral metal complex, uncoordinated water mol­ecules and N-heterocycles engage in O—H...O, O—H...N, N—H...O and N—H...N hydrogen-bonding inter­actions, forming a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807020545/hb2393sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807020545/hb2393Isup2.hkl
Contains datablock I

CCDC reference: 648074

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.004 Å
  • Disorder in main residue
  • R factor = 0.052
  • wR factor = 0.145
  • Data-to-parameter ratio = 18.4

checkCIF/PLATON results

No syntax errors found



Alert level B ABSTM02_ALERT_3_B The ratio of expected to reported Tmax/Tmin(RR') is < 0.75 Tmin and Tmax reported: 0.567 0.903 Tmin(prime) and Tmax expected: 0.767 0.901 RR(prime) = 0.737 Please check that your absorption correction is appropriate. PLAT061_ALERT_3_B Tmax/Tmin Range Test RR' too Large ............. 0.73
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.96 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O1W PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Cd1 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.27 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.15 PLAT301_ALERT_3_C Main Residue Disorder ......................... 3.00 Perc. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 9 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 3 C6 H9 N3
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 6
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Cadmium acetate forms adducts with nitrogen-donor ligands and among the known crystal structures of such materials are the bis(4-aminophenyl)methane (Wang et al., 2004), 2,2'-bipyridine (Ye et al., 2000) and diethylnicotinamide (Sergienko et al., 1980) adducts.

The title compound, (I), the product of the reaction of cadmium acetate with 2-amino-4,6-pyrimidine, has the N-heterocycle engaging instead in an outer-sphere type of coordination (i.e. interacting indirectly through hydrogen bonds). Compound (I) consists of a triaquadiacetatocadmium molecule (Cd site symmetry 2) along with an uncoordinated water molecule and two N-heterocycles (Fig. 1). The cadmium atom is five-coordinate, but the geometry is distorted towards a pentagonal bipyramid owing to two long Cd···O interactions (Table 1). Hydrogen bonds link the three entities into a three-dimensional network motif (Table 2).

Related literature top

For chemically related materials arising from cadmium acetate which contain cadmium coordinated by N-donor ligands, see: Wang et al. (2004); Ye et al. (2000); Sergienko et al. (1980). For details of the preparation, see: Xue et al. (1993).

Experimental top

2-Amino-4,6-dimethylpyrimidine was synthesized according to a literature procedure (Xue et al., 1993). This heterocycle (0.12 g, 1 mmol) was added to an aqueous solution (20 ml) of cadmium acetate dihydrate (0.27 g, 1 mmol). The solution was filtered and then set aside for the growth of crystals. Block-shaped crystals of (I) were harvested after a week.

Refinement top

The cadmium atom, which lies on a twofold rotation axis, is disordered over two positions, the disorder refining to a 0.856 (2):0.144 (2) ratio. The vibration of the minor component was restrained to be nearly isotropic. The minor component is then covalently bonded to O2, and the distortion of geometry arises from the proximity of the O1 atom. The carbon- and nitrogen-bound H atoms were treated as riding; the methyl groups were rotated to fit the electron density. The H atoms of the water molecules were placed in chemically sensible positions on the basis of hydrogen bonding interactions, but they were not refined.

Structure description top

Cadmium acetate forms adducts with nitrogen-donor ligands and among the known crystal structures of such materials are the bis(4-aminophenyl)methane (Wang et al., 2004), 2,2'-bipyridine (Ye et al., 2000) and diethylnicotinamide (Sergienko et al., 1980) adducts.

The title compound, (I), the product of the reaction of cadmium acetate with 2-amino-4,6-pyrimidine, has the N-heterocycle engaging instead in an outer-sphere type of coordination (i.e. interacting indirectly through hydrogen bonds). Compound (I) consists of a triaquadiacetatocadmium molecule (Cd site symmetry 2) along with an uncoordinated water molecule and two N-heterocycles (Fig. 1). The cadmium atom is five-coordinate, but the geometry is distorted towards a pentagonal bipyramid owing to two long Cd···O interactions (Table 1). Hydrogen bonds link the three entities into a three-dimensional network motif (Table 2).

For chemically related materials arising from cadmium acetate which contain cadmium coordinated by N-donor ligands, see: Wang et al. (2004); Ye et al. (2000); Sergienko et al. (1980). For details of the preparation, see: Xue et al. (1993).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. The formula unit of (I). Displacement ellipsoids are shown at the 50% probability level (arbitrary spheres for the H atoms. Symmetry code (i): 1 + x, 1 - y, 1/2 + z. The minor disorder component is not shown.
Bis(acetato-κO)triaquacadmium dihydrate 2-amino-4,6-dimethylpyrimidine tetrasolvate dihydrate top
Crystal data top
[Cd(C2H3O2)2(H2O)3]·4C6H9N3·2H2OF(000) = 848
Mr = 813.22Dx = 1.455 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 3660 reflections
a = 19.287 (1) Åθ = 2.9–27.5°
b = 6.7697 (4) ŵ = 0.65 mm1
c = 14.2238 (4) ÅT = 295 K
β = 91.444 (1)°Block, colorless
V = 1856.56 (16) Å30.40 × 0.20 × 0.16 mm
Z = 2
Data collection top
Bruker APEX CCD
diffractometer
4386 independent reflections
Radiation source: fine-focus sealed tube3794 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
φ and ω scansθmax = 28.2°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2425
Tmin = 0.567, Tmax = 0.903k = 88
13020 measured reflectionsl = 1518
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0786P)2]
where P = (Fo2 + 2Fc2)/3
4386 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.88 e Å3
6 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Cd(C2H3O2)2(H2O)3]·4C6H9N3·2H2OV = 1856.56 (16) Å3
Mr = 813.22Z = 2
Monoclinic, P2/cMo Kα radiation
a = 19.287 (1) ŵ = 0.65 mm1
b = 6.7697 (4) ÅT = 295 K
c = 14.2238 (4) Å0.40 × 0.20 × 0.16 mm
β = 91.444 (1)°
Data collection top
Bruker APEX CCD
diffractometer
4386 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3794 reflections with I > 2σ(I)
Tmin = 0.567, Tmax = 0.903Rint = 0.053
13020 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0526 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.11Δρmax = 0.88 e Å3
4386 reflectionsΔρmin = 0.62 e Å3
238 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.50000.83464 (7)0.25000.03522 (16)0.856 (2)
Cd1'0.50000.6668 (5)0.25000.0545 (12)0.144 (2)
O10.44455 (12)0.8964 (4)0.37992 (17)0.0488 (6)
O20.45034 (12)0.5760 (4)0.37344 (17)0.0508 (6)
O1w0.40361 (12)0.7807 (6)0.15998 (19)0.0725 (10)
H1w10.35970.77410.16600.087*
H1w20.41160.77530.10130.087*
O2w0.50001.2162 (7)0.25000.0726 (12)
H2w10.48311.29220.29200.087*
O3w0.41291 (12)0.7615 (4)0.02930 (18)0.0499 (6)
H3w10.42920.86430.05570.060*
H3w20.43060.65570.05090.060*
N10.25822 (12)0.7573 (4)0.15794 (19)0.0381 (6)
N20.15315 (13)0.7540 (5)0.06446 (19)0.0413 (6)
N30.25850 (14)0.7558 (6)0.0040 (2)0.0568 (9)
H3N10.23690.75470.05770.068*
H3N20.30310.75700.00130.068*
N40.18959 (12)0.7447 (4)0.19967 (18)0.0374 (6)
N50.09175 (13)0.7455 (5)0.3069 (2)0.0426 (6)
N60.07806 (14)0.7472 (6)0.1467 (2)0.0537 (8)
H6N10.03390.74780.15650.064*
H6N20.09490.74750.09010.064*
C10.43394 (16)0.7257 (6)0.4143 (2)0.0433 (8)
C20.4002 (2)0.7178 (7)0.5091 (3)0.0613 (10)
H2A0.35680.64870.50320.092*
H2B0.39210.84980.53100.092*
H2C0.43020.65000.55320.092*
C30.22286 (15)0.7559 (5)0.0748 (2)0.0376 (7)
C40.22067 (15)0.7571 (5)0.2354 (2)0.0383 (7)
C50.14889 (16)0.7550 (6)0.2313 (2)0.0452 (8)
H50.12300.75410.28560.054*
C60.11762 (15)0.7543 (6)0.1434 (3)0.0440 (8)
C70.25937 (18)0.7567 (6)0.3288 (2)0.0479 (8)
H7A0.24910.63740.36210.072*
H7B0.24530.86860.36510.072*
H7C0.30830.76390.31850.072*
C80.03971 (17)0.7526 (9)0.1313 (3)0.0714 (13)
H8A0.02730.75620.06550.107*
H8B0.02070.86600.16190.107*
H8C0.02150.63450.15880.107*
C90.12098 (15)0.7459 (5)0.2201 (2)0.0359 (6)
C100.13499 (17)0.7441 (6)0.3780 (2)0.0452 (8)
C110.20641 (17)0.7422 (6)0.3641 (2)0.0453 (8)
H110.23610.74090.41450.054*
C120.23172 (15)0.7423 (5)0.2725 (2)0.0389 (7)
C130.1036 (2)0.7431 (9)0.4754 (3)0.0721 (13)
H13A0.05910.67940.47480.108*
H13B0.13350.67280.51670.108*
H13C0.09800.87660.49720.108*
C140.30850 (16)0.7406 (6)0.2523 (3)0.0500 (9)
H14A0.32870.85970.27590.075*
H14B0.32890.62860.28240.075*
H14C0.31700.73250.18560.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02966 (19)0.0508 (3)0.0253 (2)0.0000.00195 (13)0.000
Cd1'0.0625 (18)0.069 (3)0.0324 (15)0.0000.0009 (11)0.000
O10.0517 (12)0.0571 (15)0.0379 (13)0.0050 (11)0.0090 (10)0.0006 (11)
O20.0545 (13)0.0566 (16)0.0419 (13)0.0019 (12)0.0081 (11)0.0023 (12)
O1w0.0333 (12)0.148 (3)0.0359 (15)0.0059 (14)0.0006 (11)0.0090 (16)
O2w0.087 (3)0.078 (3)0.055 (3)0.0000.027 (2)0.000
O3w0.0531 (13)0.0574 (15)0.0396 (14)0.0016 (11)0.0077 (11)0.0011 (11)
N10.0328 (12)0.0482 (16)0.0333 (14)0.0005 (10)0.0039 (11)0.0001 (11)
N20.0345 (12)0.0579 (17)0.0314 (14)0.0002 (11)0.0023 (11)0.0005 (12)
N30.0355 (14)0.104 (3)0.0309 (15)0.0007 (15)0.0006 (12)0.0001 (16)
N40.0347 (12)0.0457 (15)0.0318 (14)0.0000 (10)0.0014 (11)0.0003 (11)
N50.0349 (12)0.0547 (18)0.0380 (15)0.0006 (11)0.0030 (11)0.0006 (12)
N60.0380 (14)0.086 (2)0.0374 (17)0.0002 (14)0.0036 (13)0.0009 (15)
C10.0323 (14)0.067 (2)0.0305 (16)0.0023 (14)0.0029 (12)0.0035 (15)
C20.061 (2)0.086 (3)0.037 (2)0.002 (2)0.0163 (18)0.0017 (19)
C30.0350 (14)0.0467 (18)0.0310 (16)0.0012 (12)0.0025 (12)0.0001 (13)
C40.0378 (15)0.0460 (18)0.0309 (16)0.0001 (12)0.0018 (13)0.0004 (13)
C50.0357 (15)0.066 (2)0.0342 (17)0.0004 (14)0.0036 (14)0.0015 (15)
C60.0311 (14)0.059 (2)0.0412 (19)0.0010 (13)0.0031 (13)0.0003 (15)
C70.0461 (17)0.065 (2)0.0317 (17)0.0006 (15)0.0072 (14)0.0021 (15)
C80.0298 (16)0.135 (4)0.050 (2)0.002 (2)0.0001 (16)0.001 (2)
C90.0352 (14)0.0381 (16)0.0344 (16)0.0014 (11)0.0004 (12)0.0009 (12)
C100.0423 (16)0.057 (2)0.0358 (18)0.0003 (14)0.0073 (14)0.0005 (15)
C110.0412 (16)0.061 (2)0.0333 (17)0.0005 (14)0.0031 (14)0.0018 (15)
C120.0340 (14)0.0457 (18)0.0367 (17)0.0013 (12)0.0008 (13)0.0005 (13)
C130.059 (2)0.121 (4)0.035 (2)0.002 (2)0.0132 (18)0.001 (2)
C140.0323 (14)0.071 (3)0.046 (2)0.0003 (14)0.0012 (14)0.0011 (17)
Geometric parameters (Å, º) top
Cd1—O12.198 (2)N5—C91.345 (4)
Cd1—O1i2.198 (2)N6—C91.348 (4)
Cd1—O22.674 (2)N6—H6N10.8600
Cd1—O2i2.674 (2)N6—H6N20.8600
Cd1—O1w2.260 (3)C1—C21.513 (5)
Cd1—O1wi2.260 (3)C2—H2A0.9600
Cd1—O2w2.583 (5)C2—H2B0.9600
Cd1'—O2i2.113 (3)C2—H2C0.9600
Cd1'—O22.113 (3)C4—C51.384 (4)
Cd1'—O1wi2.360 (3)C4—C71.507 (4)
Cd1'—O1w2.360 (3)C5—C61.375 (5)
Cd1'—C12.719 (3)C5—H50.9300
Cd1'—C1i2.719 (3)C6—C81.508 (4)
C1—O11.274 (5)C7—H7A0.9600
C1—O21.214 (5)C7—H7B0.9600
O1w—H1w10.85C7—H7C0.9600
O1w—H1w20.85C8—H8A0.9600
O2w—H2w10.86C8—H8B0.9600
O3w—H3w10.85C8—H8C0.9600
O3w—H3w20.85C10—C111.387 (5)
N1—C41.334 (4)C10—C131.499 (5)
N1—C31.350 (4)C11—C121.379 (5)
N2—C61.330 (4)C11—H110.9300
N2—C31.349 (4)C12—C141.502 (4)
N3—C31.330 (4)C13—H13A0.9600
N3—H3N10.8600C13—H13B0.9600
N3—H3N20.8600C13—H13C0.9600
N4—C121.332 (4)C14—H14A0.9600
N4—C91.348 (4)C14—H14B0.9600
N5—C101.326 (4)C14—H14C0.9600
Cd1'—Cd1—O1100.96 (7)H2B—C2—H2C109.5
Cd1'—Cd1—O1i100.96 (7)N3—C3—N2116.3 (3)
O1—Cd1—O1i158.07 (15)N3—C3—N1118.6 (3)
Cd1'—Cd1—O1wi80.71 (11)N2—C3—N1125.2 (3)
O1—Cd1—O1wi88.00 (9)N1—C4—C5121.9 (3)
O1i—Cd1—O1wi95.53 (9)N1—C4—C7117.4 (3)
O1—Cd1—O1w95.53 (9)C5—C4—C7120.6 (3)
O1i—Cd1—O1w88.00 (9)C6—C5—C4117.0 (3)
O1wi—Cd1—O1w161.4 (2)C6—C5—H5121.5
O1—Cd1—O2w79.04 (7)C4—C5—H5121.5
O1i—Cd1—O2w79.04 (7)N2—C6—C5123.0 (3)
O1wi—Cd1—O2w99.29 (11)N2—C6—C8115.9 (3)
O1w—Cd1—O2w99.29 (11)C5—C6—C8121.1 (3)
O2i—Cd1'—O2146.2 (2)C4—C7—H7A109.5
O2i—Cd1'—O1wi100.29 (9)C4—C7—H7B109.5
O2—Cd1'—O1wi90.67 (9)H7A—C7—H7B109.5
O2i—Cd1'—O1w90.67 (9)C4—C7—H7C109.5
O2—Cd1'—O1w100.29 (9)H7A—C7—H7C109.5
O1wi—Cd1'—O1w141.9 (3)H7B—C7—H7C109.5
C1—O1—Cd1103.7 (2)C6—C8—H8A109.5
C1—O2—Cd1'106.5 (3)C6—C8—H8B109.5
Cd1—O1w—H1w1139.0H8A—C8—H8B109.5
Cd1'—O1w—H1w1134.2C6—C8—H8C109.5
Cd1—O1w—H1w2113.3H8A—C8—H8C109.5
Cd1'—O1w—H1w2111.0H8B—C8—H8C109.5
H1w1—O1w—H1w2107.5N5—C9—N4125.8 (3)
Cd1—O2w—H2w1126.8N5—C9—N6117.4 (3)
H3w1—O3w—H3w2111.8N4—C9—N6116.9 (3)
C4—N1—C3116.8 (3)N5—C10—C11122.2 (3)
C6—N2—C3116.2 (3)N5—C10—C13117.2 (3)
C3—N3—H3N1120.0C11—C10—C13120.6 (3)
C3—N3—H3N2120.0C12—C11—C10117.5 (3)
H3N1—N3—H3N2120.0C12—C11—H11121.3
C12—N4—C9116.6 (3)C10—C11—H11121.3
C10—N5—C9116.3 (3)N4—C12—C11121.7 (3)
C9—N6—H6N1120.0N4—C12—C14118.0 (3)
C9—N6—H6N2120.0C11—C12—C14120.3 (3)
H6N1—N6—H6N2120.0C10—C13—H13A109.5
O2—C1—O1121.8 (3)C10—C13—H13B109.5
O2—C1—C2121.4 (4)H13A—C13—H13B109.5
O1—C1—C2116.8 (3)C10—C13—H13C109.5
O2—C1—Cd1'48.15 (19)H13A—C13—H13C109.5
O1—C1—Cd1'73.72 (19)H13B—C13—H13C109.5
C2—C1—Cd1'169.2 (3)C12—C14—H14A109.5
C1—C2—H2A109.5C12—C14—H14B109.5
C1—C2—H2B109.5H14A—C14—H14B109.5
H2A—C2—H2B109.5C12—C14—H14C109.5
C1—C2—H2C109.5H14A—C14—H14C109.5
H2A—C2—H2C109.5H14B—C14—H14C109.5
O1i—Cd1—O1—C1176.9 (2)C7—C4—C5—C6179.6 (3)
O1wi—Cd1—O1—C177.0 (2)C3—N2—C6—C50.5 (6)
O1w—Cd1—O1—C184.7 (2)C3—N2—C6—C8179.9 (4)
O2w—Cd1—O1—C1176.9 (2)C4—C5—C6—N20.5 (6)
O2i—Cd1'—O2—C1180.0 (2)C4—C5—C6—C8179.8 (4)
O1wi—Cd1'—O2—C170.2 (2)C10—N5—C9—N40.1 (5)
O1w—Cd1'—O2—C173.1 (3)C10—N5—C9—N6180.0 (3)
Cd1'—O2—C1—O12.9 (4)C12—N4—C9—N50.2 (5)
Cd1'—O2—C1—C2176.8 (3)C12—N4—C9—N6179.7 (3)
Cd1—O1—C1—O23.6 (4)C9—N5—C10—C110.3 (5)
Cd1—O1—C1—C2176.1 (2)C9—N5—C10—C13179.9 (4)
C6—N2—C3—N3179.9 (4)N5—C10—C11—C120.2 (6)
C6—N2—C3—N10.2 (5)C13—C10—C11—C12179.7 (4)
C4—N1—C3—N3179.9 (3)C9—N4—C12—C110.4 (5)
C4—N1—C3—N20.1 (5)C9—N4—C12—C14179.9 (3)
C3—N1—C4—C50.1 (5)C10—C11—C12—N40.2 (6)
C3—N1—C4—C7179.4 (3)C10—C11—C12—C14179.9 (3)
N1—C4—C5—C60.3 (6)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···N10.851.962.808 (3)171
O1w—H1w2···O3w0.851.862.706 (4)170
O2w—H2w1···O2ii0.862.343.165 (5)162
O3w—H3w1···O1iii0.851.892.728 (4)167
O3w—H3w2···O2iv0.851.952.776 (4)164
N3—H3n1···N40.862.203.055 (4)176
N3—H3n2···O3w0.862.173.009 (4)167
N6—H6n1···N5v0.862.473.324 (4)177
N6—H6n2···N20.862.443.302 (4)175
Symmetry codes: (ii) x, y+1, z; (iii) x, y+2, z1/2; (iv) x, y+1, z1/2; (v) x, y, z1/2.

Experimental details

Crystal data
Chemical formula[Cd(C2H3O2)2(H2O)3]·4C6H9N3·2H2O
Mr813.22
Crystal system, space groupMonoclinic, P2/c
Temperature (K)295
a, b, c (Å)19.287 (1), 6.7697 (4), 14.2238 (4)
β (°) 91.444 (1)
V3)1856.56 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.40 × 0.20 × 0.16
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.567, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
13020, 4386, 3794
Rint0.053
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.145, 1.11
No. of reflections4386
No. of parameters238
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 0.62

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), X-SEED (Barbour, 2001), publCIF (Westrip, 2007).

Selected bond lengths (Å) top
Cd1—O12.198 (2)Cd1—O2w2.583 (5)
Cd1—O22.674 (2)C1—O11.274 (5)
Cd1—O1w2.260 (3)C1—O21.214 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···N10.851.962.808 (3)171
O1w—H1w2···O3w0.851.862.706 (4)170
O2w—H2w1···O2i0.862.343.165 (5)162
O3w—H3w1···O1ii0.851.892.728 (4)167
O3w—H3w2···O2iii0.851.952.776 (4)164
N3—H3n1···N40.862.203.055 (4)176
N3—H3n2···O3w0.862.173.009 (4)167
N6—H6n1···N5iv0.862.473.324 (4)177
N6—H6n2···N20.862.443.302 (4)175
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z1/2; (iii) x, y+1, z1/2; (iv) x, y, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds