Download citation
Download citation
link to html
In the title compound, [Cu(C17H16N4)2](NO3)2·2C2H5OH, the CuII ion lies on a crystallographic twofold rotation axis and is in a distorted square-planar coordination geometry formed by four N atoms from two 1,3-bis­(benzimidazol-2-yl)propane ligands. The N—Cu—N angles range from 90.25 (7) to 144.89 (11)°. In the crystal structure, a two-dimensional framework is formed by a combination of N—H...O and O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807018570/lh2363sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807018570/lh2363Isup2.hkl
Contains datablock I

CCDC reference: 646636

Key indicators

  • Single-crystal X-ray study
  • T = 297 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.052
  • wR factor = 0.130
  • Data-to-parameter ratio = 17.1

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of Tmax/Tmin expected RT(exp) is > 1.10 Absorption corrections should be applied. Tmin and Tmax expected: 0.782 0.877 RT(exp) = 1.121 PLAT057_ALERT_3_C Correction for Absorption Required RT(exp) ... 1.13 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for N5
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Interest in bis(2-benzimidazolyl)alkanes is widespread, due to their wide-ranging antiviral activity (Roderick et al., 1972). Herein, we report the crystal structure of the title compound (I). In the cation (Fig. 1), the CuII ion lies on a crystallogrphic twofold axis. Hence, the CuII ion is coordinated by four N atoms (N1, N3, N1a, N3a [symmety code: (a) 1/2 - x, 3/2 - y, z]) from two dbz ligangs. The bond anlges listed in Table 1 indicate a distorted square-planar coordination geomtry.

In the crystal structure, molecules are linked by N—Hbenzimidazole···Onitrate and O—Hmethanol···O nitrate hydrogen bonds, forming a two-dimensional framework structure perpendicular to the ab plane (Table 2, Fig. 2).

Related literature top

For related literature, see: Albada et al. (1995); Roderick et al. (1972); Wang & Joullie (1957), Allen et al. (1987); Sun et al. (2004).

Experimental top

The ligand 1,3-bis(2-benzimidazolyl)propane (dbz) was synthesized from reported literature earlier (van Albada et al., 1995; Wang

& Joullie, 1957). The title compound was prepared according to the following procedure: The ligand (0.28 g, 1 mmol) in 10 ml me thanol was added slowly to a Cu(NO3)2.2H2O (0.12 g, 0.5 mmol) solution of 10 ml me thanol. The mixture was stirred for 1 h. After filtration, the brownish solution was allowed to stand at room temperature. Green block-shaped crystals of (I) were obtained after three weeks.

Refinement top

H atoms bonded to O and N atoms were located in difference maps and then included in the refinement with bond-length restraints of O–H = 0.82 Å and N–H = 0.78 Å, with Uiso(H)= 1.2Ueq (O) and the Uiso(H) of the N—H atoms refined. H atoms bonded to C atoms were placed in calculated positions and included in the riding-model approximation, with C–H = 0.97—0.98 Å and U iso(H) = 1.2Ueq(C of methylene and aromatic) or 1.5U eq(C of methyl).

Structure description top

Interest in bis(2-benzimidazolyl)alkanes is widespread, due to their wide-ranging antiviral activity (Roderick et al., 1972). Herein, we report the crystal structure of the title compound (I). In the cation (Fig. 1), the CuII ion lies on a crystallogrphic twofold axis. Hence, the CuII ion is coordinated by four N atoms (N1, N3, N1a, N3a [symmety code: (a) 1/2 - x, 3/2 - y, z]) from two dbz ligangs. The bond anlges listed in Table 1 indicate a distorted square-planar coordination geomtry.

In the crystal structure, molecules are linked by N—Hbenzimidazole···Onitrate and O—Hmethanol···O nitrate hydrogen bonds, forming a two-dimensional framework structure perpendicular to the ab plane (Table 2, Fig. 2).

For related literature, see: Albada et al. (1995); Roderick et al. (1972); Wang & Joullie (1957), Allen et al. (1987); Sun et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. The H atoms, anion and solvent molecules are not shown. [symmetry code: (a) 1/2 - x, 3/2 - y, z]
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of hydrogen-bonded (dashed lines) two-dimensional layers.
Bis[1,3-bis(benzimidazol-2-yl)propane-κ2N,N']copper(II) dinitrate methanol solvate top
Crystal data top
[Cu(C17H16N4)2](NO3)2·2C2H6OF(000) = 1676
Mr = 804.32Dx = 1.441 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 5026 reflections
a = 14.4793 (10) Åθ = 2.3–25.4°
b = 17.8978 (13) ŵ = 0.66 mm1
c = 14.3078 (10) ÅT = 297 K
V = 3707.8 (5) Å3Block, green
Z = 40.45 × 0.32 × 0.20 mm
Data collection top
Bruker APEX CCD
diffractometer
3394 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 28.0°, θmin = 1.8°
φ and ω scansh = 1918
23966 measured reflectionsk = 2123
4453 independent reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0635P)2 + 1.4161P]
where P = (Fo2 + 2Fc2)/3
4453 reflections(Δ/σ)max = 0.001
261 parametersΔρmax = 0.48 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
[Cu(C17H16N4)2](NO3)2·2C2H6OV = 3707.8 (5) Å3
Mr = 804.32Z = 4
Orthorhombic, PccnMo Kα radiation
a = 14.4793 (10) ŵ = 0.66 mm1
b = 17.8978 (13) ÅT = 297 K
c = 14.3078 (10) Å0.45 × 0.32 × 0.20 mm
Data collection top
Bruker APEX CCD
diffractometer
3394 reflections with I > 2σ(I)
23966 measured reflectionsRint = 0.042
4453 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.48 e Å3
4453 reflectionsΔρmin = 0.25 e Å3
261 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H4N0.293 (2)0.4833 (17)0.041 (2)0.048 (8)*
H2N0.077 (2)0.6948 (16)0.111 (2)0.048 (8)*
Cu10.25000.75000.06676 (3)0.03171 (13)
N10.11849 (13)0.74057 (10)0.10902 (14)0.0352 (4)
N30.27403 (13)0.64615 (10)0.02440 (14)0.0342 (4)
C10.07694 (16)0.79298 (12)0.16863 (16)0.0368 (5)
C20.1142 (2)0.85029 (14)0.22291 (17)0.0449 (6)
H20.17730.86010.22280.054*
C30.0542 (2)0.89193 (15)0.2768 (2)0.0554 (7)
H30.07740.93100.31270.067*
C40.0399 (2)0.87695 (17)0.2789 (2)0.0619 (8)
H40.07820.90620.31620.074*
C50.0778 (2)0.82015 (17)0.2275 (2)0.0562 (7)
H50.14070.80980.22940.067*
C60.01757 (17)0.77856 (15)0.17211 (18)0.0430 (6)
C70.04996 (16)0.69688 (13)0.07935 (16)0.0371 (5)
C80.05757 (17)0.62941 (14)0.01904 (18)0.0434 (6)
H8A0.10470.63770.02800.052*
H8B0.00070.62130.01290.052*
C90.08211 (18)0.55980 (13)0.07567 (19)0.0465 (6)
H9A0.08570.51730.03380.056*
H9B0.03310.55010.12030.056*
C100.17360 (16)0.56732 (13)0.12819 (17)0.0405 (5)
H10A0.16980.60850.17210.049*
H10B0.18560.52200.16330.049*
C110.25044 (16)0.58083 (13)0.06119 (16)0.0371 (5)
C120.36087 (17)0.55352 (13)0.03919 (17)0.0396 (5)
C130.4271 (2)0.52029 (15)0.09541 (19)0.0516 (7)
H130.43760.46900.09400.062*
C140.4766 (2)0.56670 (17)0.1534 (2)0.0568 (7)
H140.52190.54650.19180.068*
C150.4603 (2)0.64322 (17)0.1558 (2)0.0543 (7)
H150.49510.67290.19590.065*
C160.39374 (18)0.67644 (14)0.10034 (18)0.0465 (6)
H160.38250.72750.10300.056*
C170.34427 (16)0.63005 (13)0.04022 (16)0.0363 (5)
C180.1719 (4)0.1726 (3)0.0359 (4)0.1238 (19)
H18A0.16750.21850.07050.186*
H18B0.11100.15400.02320.186*
H18C0.20350.18160.02210.186*
N20.03139 (15)0.71824 (13)0.11500 (16)0.0444 (5)
N40.30001 (15)0.52477 (12)0.02574 (16)0.0423 (5)
N50.81550 (16)0.58786 (18)0.1762 (2)0.0654 (7)
O10.7826 (3)0.53217 (18)0.2119 (3)0.1170 (11)
O20.81605 (17)0.64741 (15)0.2217 (2)0.0854 (7)
O30.84823 (19)0.58743 (19)0.0982 (2)0.1039 (10)
O40.2211 (2)0.11977 (14)0.08836 (19)0.0816 (7)
H4A0.216 (4)0.122 (3)0.1451 (8)0.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0331 (2)0.0260 (2)0.0361 (2)0.00241 (15)0.0000.000
N10.0356 (10)0.0323 (10)0.0376 (10)0.0013 (8)0.0028 (8)0.0005 (8)
N30.0372 (10)0.0273 (9)0.0380 (10)0.0017 (7)0.0034 (8)0.0023 (8)
C10.0435 (13)0.0311 (12)0.0357 (12)0.0029 (9)0.0047 (9)0.0073 (9)
C20.0571 (16)0.0381 (13)0.0395 (13)0.0006 (11)0.0073 (11)0.0030 (11)
C30.084 (2)0.0397 (14)0.0424 (15)0.0062 (14)0.0068 (14)0.0015 (11)
C40.075 (2)0.0527 (17)0.0581 (18)0.0256 (15)0.0183 (15)0.0057 (14)
C50.0488 (15)0.0561 (17)0.0636 (18)0.0159 (13)0.0125 (13)0.0094 (14)
C60.0441 (14)0.0407 (13)0.0441 (14)0.0063 (11)0.0030 (10)0.0098 (11)
C70.0365 (12)0.0381 (12)0.0367 (12)0.0029 (10)0.0020 (9)0.0079 (10)
C80.0415 (13)0.0463 (14)0.0425 (14)0.0091 (11)0.0029 (10)0.0071 (11)
C90.0459 (14)0.0346 (13)0.0589 (16)0.0109 (11)0.0082 (11)0.0028 (11)
C100.0464 (14)0.0302 (12)0.0448 (14)0.0018 (10)0.0081 (10)0.0029 (10)
C110.0404 (12)0.0317 (11)0.0391 (12)0.0022 (10)0.0016 (10)0.0015 (9)
C120.0442 (13)0.0341 (12)0.0407 (13)0.0009 (10)0.0020 (10)0.0012 (10)
C130.0596 (17)0.0414 (14)0.0540 (16)0.0069 (12)0.0091 (13)0.0075 (12)
C140.0592 (17)0.0622 (18)0.0491 (16)0.0052 (14)0.0167 (13)0.0060 (14)
C150.0610 (17)0.0585 (17)0.0434 (14)0.0055 (14)0.0155 (13)0.0019 (13)
C160.0572 (16)0.0381 (13)0.0441 (14)0.0047 (11)0.0067 (12)0.0026 (11)
C170.0391 (12)0.0349 (12)0.0348 (12)0.0031 (10)0.0006 (9)0.0024 (9)
C180.140 (5)0.074 (3)0.158 (5)0.013 (3)0.034 (4)0.030 (3)
N20.0335 (12)0.0476 (12)0.0521 (13)0.0011 (10)0.0017 (9)0.0090 (11)
N40.0517 (13)0.0253 (10)0.0498 (12)0.0002 (9)0.0078 (10)0.0003 (9)
N50.0395 (13)0.0756 (19)0.081 (2)0.0106 (13)0.0033 (13)0.0111 (16)
O10.133 (3)0.084 (2)0.134 (3)0.032 (2)0.020 (2)0.025 (2)
O20.0706 (16)0.0768 (17)0.109 (2)0.0088 (13)0.0124 (14)0.0026 (16)
O30.0819 (18)0.147 (3)0.0829 (19)0.0447 (18)0.0125 (15)0.0126 (18)
O40.114 (2)0.0473 (13)0.0834 (17)0.0018 (13)0.0006 (16)0.0110 (13)
Geometric parameters (Å, º) top
Cu1—N31.9857 (18)C9—H9B0.9700
Cu1—N3i1.9857 (18)C10—C111.488 (3)
Cu1—N12.0049 (19)C10—H10A0.9700
Cu1—N1i2.0049 (19)C10—H10B0.9700
N1—C71.333 (3)C11—N41.334 (3)
N1—C11.403 (3)C12—N41.380 (3)
N3—C111.327 (3)C12—C131.386 (4)
N3—C171.404 (3)C12—C171.391 (3)
C1—C61.393 (3)C13—C141.375 (4)
C1—C21.395 (3)C13—H130.9300
C2—C31.380 (4)C14—C151.390 (4)
C2—H20.9300C14—H140.9300
C3—C41.390 (5)C15—C161.382 (4)
C3—H30.9300C15—H150.9300
C4—C51.369 (5)C16—C171.394 (3)
C4—H40.9300C16—H160.9300
C5—C61.393 (4)C18—O41.403 (5)
C5—H50.9300C18—H18A0.9600
C6—N21.369 (4)C18—H18B0.9600
C7—N21.339 (3)C18—H18C0.9600
C7—C81.488 (3)N2—H2N0.78 (3)
C8—C91.528 (4)N4—H4N0.78 (3)
C8—H8A0.9700N5—O31.213 (4)
C8—H8B0.9700N5—O11.217 (4)
C9—C101.529 (4)N5—O21.249 (4)
C9—H9A0.9700O4—H4A0.816 (10)
N3—Cu1—N3i144.46 (12)H9A—C9—H9B107.8
N3—Cu1—N1100.35 (7)C11—C10—C9110.2 (2)
N3i—Cu1—N190.25 (7)C11—C10—H10A109.6
N3—Cu1—N1i90.25 (7)C9—C10—H10A109.6
N3i—Cu1—N1i100.35 (7)C11—C10—H10B109.6
N1—Cu1—N1i144.89 (11)C9—C10—H10B109.6
C7—N1—C1105.46 (19)H10A—C10—H10B108.1
C7—N1—Cu1131.33 (16)N3—C11—N4111.9 (2)
C1—N1—Cu1122.29 (15)N3—C11—C10126.2 (2)
C11—N3—C17105.48 (19)N4—C11—C10121.7 (2)
C11—N3—Cu1131.19 (16)N4—C12—C13132.3 (2)
C17—N3—Cu1121.32 (15)N4—C12—C17105.3 (2)
C6—C1—C2119.8 (2)C13—C12—C17122.4 (2)
C6—C1—N1108.6 (2)C14—C13—C12116.8 (2)
C2—C1—N1131.6 (2)C14—C13—H13121.6
C3—C2—C1117.7 (3)C12—C13—H13121.6
C3—C2—H2121.2C13—C14—C15121.4 (3)
C1—C2—H2121.2C13—C14—H14119.3
C2—C3—C4121.7 (3)C15—C14—H14119.3
C2—C3—H3119.2C16—C15—C14121.9 (3)
C4—C3—H3119.2C16—C15—H15119.1
C5—C4—C3121.6 (3)C14—C15—H15119.1
C5—C4—H4119.2C15—C16—C17117.1 (2)
C3—C4—H4119.2C15—C16—H16121.4
C4—C5—C6116.9 (3)C17—C16—H16121.4
C4—C5—H5121.6C12—C17—C16120.3 (2)
C6—C5—H5121.6C12—C17—N3108.7 (2)
N2—C6—C5132.0 (3)C16—C17—N3131.0 (2)
N2—C6—C1105.6 (2)O4—C18—H18A109.5
C5—C6—C1122.4 (3)O4—C18—H18B109.5
N1—C7—N2111.5 (2)H18A—C18—H18B109.5
N1—C7—C8127.3 (2)O4—C18—H18C109.5
N2—C7—C8121.2 (2)H18A—C18—H18C109.5
C7—C8—C9111.8 (2)H18B—C18—H18C109.5
C7—C8—H8A109.3C7—N2—C6108.9 (2)
C9—C8—H8A109.3C7—N2—H2N124 (2)
C7—C8—H8B109.3C6—N2—H2N126 (2)
C9—C8—H8B109.3C11—N4—C12108.6 (2)
H8A—C8—H8B107.9C11—N4—H4N123 (2)
C8—C9—C10112.97 (19)C12—N4—H4N128 (2)
C8—C9—H9A109.0O3—N5—O1122.3 (4)
C10—C9—H9A109.0O3—N5—O2118.9 (3)
C8—C9—H9B109.0O1—N5—O2118.9 (3)
C10—C9—H9B109.0C18—O4—H4A117 (4)
N3—Cu1—N1—C730.8 (2)N2—C7—C8—C993.1 (3)
N3i—Cu1—N1—C7115.1 (2)C7—C8—C9—C1059.3 (3)
N1i—Cu1—N1—C7136.3 (2)C8—C9—C10—C1159.8 (3)
N3—Cu1—N1—C1161.87 (17)C17—N3—C11—N40.3 (3)
N3i—Cu1—N1—C152.24 (18)Cu1—N3—C11—N4163.27 (17)
N1i—Cu1—N1—C156.35 (16)C17—N3—C11—C10174.9 (2)
N3i—Cu1—N3—C11146.5 (2)Cu1—N3—C11—C1021.5 (4)
N1—Cu1—N3—C1141.2 (2)C9—C10—C11—N382.5 (3)
N1i—Cu1—N3—C11105.1 (2)C9—C10—C11—N492.3 (3)
N3i—Cu1—N3—C1752.10 (16)N4—C12—C13—C14180.0 (3)
N1—Cu1—N3—C17157.37 (17)C17—C12—C13—C140.1 (4)
N1i—Cu1—N3—C1756.28 (18)C12—C13—C14—C150.5 (5)
C7—N1—C1—C60.3 (2)C13—C14—C15—C160.0 (5)
Cu1—N1—C1—C6169.84 (15)C14—C15—C16—C171.1 (4)
C7—N1—C1—C2176.9 (2)N4—C12—C17—C16178.9 (2)
Cu1—N1—C1—C213.0 (3)C13—C12—C17—C161.2 (4)
C6—C1—C2—C31.5 (3)N4—C12—C17—N30.3 (3)
N1—C1—C2—C3178.5 (2)C13—C12—C17—N3179.7 (2)
C1—C2—C3—C41.2 (4)C15—C16—C17—C121.6 (4)
C2—C3—C4—C50.1 (4)C15—C16—C17—N3179.4 (3)
C3—C4—C5—C60.7 (4)C11—N3—C17—C120.4 (3)
C4—C5—C6—N2178.3 (3)Cu1—N3—C17—C12165.21 (16)
C4—C5—C6—C10.3 (4)C11—N3—C17—C16178.7 (3)
C2—C1—C6—N2177.6 (2)Cu1—N3—C17—C1615.7 (4)
N1—C1—C6—N20.0 (3)N1—C7—N2—C60.6 (3)
C2—C1—C6—C50.8 (4)C8—C7—N2—C6176.1 (2)
N1—C1—C6—C5178.4 (2)C5—C6—N2—C7177.8 (3)
C1—N1—C7—N20.6 (3)C1—C6—N2—C70.4 (3)
Cu1—N1—C7—N2168.34 (16)N3—C11—N4—C120.1 (3)
C1—N1—C7—C8175.9 (2)C10—C11—N4—C12175.4 (2)
Cu1—N1—C7—C815.1 (4)C13—C12—N4—C11179.8 (3)
N1—C7—C8—C983.1 (3)C17—C12—N4—C110.1 (3)
Symmetry code: (i) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O2ii0.82 (1)2.01 (2)2.814 (4)167 (5)
O4—H4A···O1ii0.82 (1)2.60 (4)3.261 (5)139 (5)
N2—H2N···O3iii0.78 (3)2.21 (3)2.929 (4)152 (3)
N2—H2N···O2iii0.78 (3)2.37 (3)2.969 (3)134 (3)
Symmetry codes: (ii) x+1, y1/2, z+1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C17H16N4)2](NO3)2·2C2H6O
Mr804.32
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)297
a, b, c (Å)14.4793 (10), 17.8978 (13), 14.3078 (10)
V3)3707.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.45 × 0.32 × 0.20
Data collection
DiffractometerBruker APEX CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
23966, 4453, 3394
Rint0.042
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.130, 1.07
No. of reflections4453
No. of parameters261
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.25

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXTL (Bruker, 2000), SHELXTL.

Selected bond angles (º) top
N3—Cu1—N3i144.46 (12)N3—Cu1—N1i90.25 (7)
N3—Cu1—N1100.35 (7)N1—Cu1—N1i144.89 (11)
Symmetry code: (i) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O2ii0.816 (10)2.014 (17)2.814 (4)167 (5)
O4—H4A···O1ii0.816 (10)2.60 (4)3.261 (5)139 (5)
N2—H2N···O3iii0.78 (3)2.21 (3)2.929 (4)152 (3)
N2—H2N···O2iii0.78 (3)2.37 (3)2.969 (3)134 (3)
Symmetry codes: (ii) x+1, y1/2, z+1/2; (iii) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds