Download citation
Download citation
link to html
In the title compound, [Mn(C11H12NO2)2(NCS)], the coordin­ation polyhedron of the MnIII atom has a distorted square-pyramidal geometry, with the two phenolate ligands coordin­ated in the basal plane in trans positions and the thio­cyanate ion coordinated at the apical position.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807018156/pk2015sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807018156/pk2015Isup2.hkl
Contains datablock I

CCDC reference: 646631

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.037
  • wR factor = 0.111
  • Data-to-parameter ratio = 18.8

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full Low ....... 0.94
Alert level C REFLT03_ALERT_3_C Reflection count < 95% complete From the CIF: _diffrn_reflns_theta_max 28.40 From the CIF: _diffrn_reflns_theta_full 28.44 From the CIF: _reflns_number_total 5463 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 5776 Completeness (_total/calc) 94.58% PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.98 PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 100 Deg. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.70 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.02 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for S1 - C23 .. 6.73 su PLAT230_ALERT_2_C Hirshfeld Test Diff for N3 - C23 .. 5.38 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C23
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The chemistry of oxazoline-based ligands continues to be an area of interest due to their use as chirality-transfer auxiliaries in combination with several transition metals in a wide range of asymmetric catalytic reactions (Moreno, et al., 2002). Several metal complexes bearing 2-(2'-hydroxyphenyl)oxazolines have been reported in the literature (Cozzi, et al., 1995; Braunstein, et al., 2001; Kandasamy, et al., 2004).

In the title compound, (I), the manganese(III) ion is coordinated to three nitrogen and two O atoms and has square-pyramidal geometry. The value of the τ parameter (0.131) indicates a square-pyramidal shape of the coordination polyhedron (ideal τ value for square-pyramidal is 0 and for trigonal bipyramid it is 1 (Addison, et al., 1984)). The two ligands are coordinated in the basal plane in the trans configuration and involve no intercalation or stacking interactions. The Mn—O bond lengths are 1.8572 (14) and 1.8601 (14) Å, while the Mn—N bond lengths are 2.0156 (15) and 2.0296 (15) Å, respectively, typical for MnIII distances (Hoogenraad, et al., 1998; Shyu, et al., 1999; Godbole, et al., 2005). The manganese(III) ion is slightly above the plane formed by the phenoxo O atoms and oxazoline ring N atoms, as expected for a square-pyramidal geometry; the displacements of the manganese ion from the least-squares plane formed by O1—N1—O3—N2 is 0.2923 (2) Å. The thiocyano ion is coordinated at the apical position at 2.117 (2) Å on the Jahn-Teller axis. No classic hydrogen bonds are present.

Related literature top

For related literature, see: Addison et al. (1984); Braunstein & Naud (2001); Cozzi et al. (1995); Godbole et al. (2005); Hoogenraad et al. (1998); Kandasamy et al. (2004); Moreno et al. (2002); Serrano et al. (1995); Shyu et al. (1999).

Experimental top

The racaemic ligand, 2-(4-ethyl-4,5-dihydrooxazol-2-yl)phenol was prepared from 2-hydroxybenzonitrile and 2-aminobutan-1-ol as reported in the literature. (Serrano, et al., 1995).

A solution of 2-(4-ethyl-4,5-dihydrooxazol-2-yl)phenol (30.56 mg, 0.16 mmol) in methanol (1.60 ml) was added to a stirred solution of Mn(CH3COO)2H2O (39.93 mg, 0.2 mmol) in methanol(2.00 ml). A solution of KSCN (20 mg, 0.2 mmol) in methanol (2.0 ml) was added to the mixture after 30 min. The solution color changed slowly from yellow to dark-green. Crystals suitable for diffraction analysis were obtained after a few days.

Refinement top

All non-hydrogen atoms were refined with anisotropic thermal parameters. All hydrogen atoms were included at calculated positions with isotropic thermal parameters derived from the attached atom.

Structure description top

The chemistry of oxazoline-based ligands continues to be an area of interest due to their use as chirality-transfer auxiliaries in combination with several transition metals in a wide range of asymmetric catalytic reactions (Moreno, et al., 2002). Several metal complexes bearing 2-(2'-hydroxyphenyl)oxazolines have been reported in the literature (Cozzi, et al., 1995; Braunstein, et al., 2001; Kandasamy, et al., 2004).

In the title compound, (I), the manganese(III) ion is coordinated to three nitrogen and two O atoms and has square-pyramidal geometry. The value of the τ parameter (0.131) indicates a square-pyramidal shape of the coordination polyhedron (ideal τ value for square-pyramidal is 0 and for trigonal bipyramid it is 1 (Addison, et al., 1984)). The two ligands are coordinated in the basal plane in the trans configuration and involve no intercalation or stacking interactions. The Mn—O bond lengths are 1.8572 (14) and 1.8601 (14) Å, while the Mn—N bond lengths are 2.0156 (15) and 2.0296 (15) Å, respectively, typical for MnIII distances (Hoogenraad, et al., 1998; Shyu, et al., 1999; Godbole, et al., 2005). The manganese(III) ion is slightly above the plane formed by the phenoxo O atoms and oxazoline ring N atoms, as expected for a square-pyramidal geometry; the displacements of the manganese ion from the least-squares plane formed by O1—N1—O3—N2 is 0.2923 (2) Å. The thiocyano ion is coordinated at the apical position at 2.117 (2) Å on the Jahn-Teller axis. No classic hydrogen bonds are present.

For related literature, see: Addison et al. (1984); Braunstein & Naud (2001); Cozzi et al. (1995); Godbole et al. (2005); Hoogenraad et al. (1998); Kandasamy et al. (2004); Moreno et al. (2002); Serrano et al. (1995); Shyu et al. (1999).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SMART; data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. ORTEP plot of (I) displacement ellipsoids are drawn at the 30% probability.
trans-Bis[2-(4-ethyl-4,5-dihydro-1,3-oxazol-2-yl)phenolato- κ2N,O](thiocyanato-κN)manganese(III) top
Crystal data top
[Mn(C11H12NO2)2(NCS)]Z = 2
Mr = 493.45F(000) = 512
Triclinic, P1Dx = 1.424 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6816 (13) ÅCell parameters from 5529 reflections
b = 9.9493 (13) Åθ = 2.6–28.3°
c = 12.5894 (17) ŵ = 0.70 mm1
α = 91.116 (1)°T = 273 K
β = 97.550 (1)°Block, dark-green
γ = 106.415 (1)°0.49 × 0.42 × 0.42 mm
V = 1151.1 (3) Å3
Data collection top
Bruker CCD area-detector
diffractometer
5463 independent reflections
Radiation source: fine-focus sealed tube4418 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
φ and ω scansθmax = 28.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.726, Tmax = 0.758k = 1312
10103 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0667P)2 + 0.4703P]
where P = (Fo2 + 2Fc2)/3
5463 reflections(Δ/σ)max = 0.001
291 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Mn(C11H12NO2)2(NCS)]γ = 106.415 (1)°
Mr = 493.45V = 1151.1 (3) Å3
Triclinic, P1Z = 2
a = 9.6816 (13) ÅMo Kα radiation
b = 9.9493 (13) ŵ = 0.70 mm1
c = 12.5894 (17) ÅT = 273 K
α = 91.116 (1)°0.49 × 0.42 × 0.42 mm
β = 97.550 (1)°
Data collection top
Bruker CCD area-detector
diffractometer
5463 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4418 reflections with I > 2σ(I)
Tmin = 0.726, Tmax = 0.758Rint = 0.016
10103 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.03Δρmax = 0.62 e Å3
5463 reflectionsΔρmin = 0.43 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.07783 (3)0.80807 (3)0.70819 (2)0.03517 (10)
N30.2142 (2)0.6748 (2)0.72755 (17)0.0555 (5)
C230.3268 (3)0.6585 (2)0.75531 (17)0.0465 (5)
S10.48356 (8)0.63184 (9)0.79264 (6)0.0734 (2)
C10.2035 (2)0.9564 (2)0.52856 (15)0.0371 (4)
C60.0873 (2)0.8892 (2)0.44806 (15)0.0365 (4)
C20.3288 (2)1.0493 (2)0.49754 (18)0.0467 (5)
H20.40831.09130.54910.056*
C50.0955 (3)0.9230 (2)0.34030 (16)0.0482 (5)
H50.01770.88060.28750.058*
C30.3348 (3)1.0788 (2)0.39084 (19)0.0540 (6)
H30.41851.14000.37160.065*
C40.2172 (3)1.0181 (3)0.31225 (18)0.0569 (6)
H40.22061.04140.24130.068*
C70.0380 (2)0.7834 (2)0.47557 (15)0.0359 (4)
C90.1961 (2)0.6198 (2)0.55887 (16)0.0399 (4)
H90.25810.64080.60850.048*
C80.2623 (3)0.6300 (3)0.44295 (19)0.0548 (6)
H8A0.29340.53870.40450.066*
H8B0.34550.66650.44140.066*
O20.14633 (17)0.72584 (17)0.39561 (11)0.0497 (4)
N10.05539 (17)0.73434 (16)0.56981 (12)0.0357 (3)
O10.19958 (16)0.93859 (16)0.63258 (11)0.0495 (4)
O30.06990 (15)0.70613 (16)0.78009 (11)0.0477 (4)
N20.16638 (17)0.93136 (16)0.84442 (12)0.0353 (3)
O40.20307 (19)0.99270 (17)1.02044 (12)0.0564 (4)
C180.1332 (2)0.8983 (2)0.93893 (15)0.0383 (4)
C120.0695 (2)0.6824 (2)0.88398 (15)0.0373 (4)
C150.0804 (3)0.6240 (3)1.10134 (19)0.0592 (6)
H150.08350.60341.17290.071*
C130.1750 (2)0.5662 (2)0.91394 (19)0.0482 (5)
H130.24280.50770.86120.058*
C170.0289 (2)0.7714 (2)0.96596 (15)0.0390 (4)
C200.2867 (2)1.0670 (2)0.85636 (16)0.0428 (5)
H200.26081.13340.80660.051*
C190.2857 (3)1.1175 (2)0.97281 (19)0.0540 (6)
H19A0.38391.15201.01080.065*
H19B0.23881.19160.97420.065*
C140.1796 (3)0.5374 (2)1.0208 (2)0.0550 (6)
H140.24970.45931.03880.066*
C160.0218 (3)0.7398 (3)1.07457 (17)0.0515 (5)
H160.08740.79841.12850.062*
C100.1721 (2)0.4775 (2)0.5803 (2)0.0511 (5)
H10A0.11220.48350.64930.061*
H10B0.12060.45220.52560.061*
C210.4293 (2)1.0464 (3)0.8374 (2)0.0574 (6)
H21A0.41790.99800.76770.069*
H21B0.45980.98880.89170.069*
C110.3165 (3)0.3638 (3)0.5801 (3)0.0693 (8)
H11A0.37410.35480.51080.104*
H11B0.36820.38930.63360.104*
H11C0.29790.27600.59580.104*
C220.5469 (3)1.1901 (4)0.8417 (3)0.0969 (12)
H22A0.50581.25620.80440.145*
H22B0.62691.17920.80810.145*
H22C0.58081.22390.91510.145*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.03469 (16)0.03693 (17)0.02599 (15)0.00256 (11)0.00502 (10)0.00057 (10)
N30.0557 (12)0.0539 (11)0.0572 (12)0.0174 (9)0.0061 (9)0.0002 (9)
C230.0549 (13)0.0412 (11)0.0376 (11)0.0043 (9)0.0079 (9)0.0037 (8)
S10.0523 (4)0.0912 (5)0.0715 (5)0.0190 (4)0.0049 (3)0.0046 (4)
C10.0416 (10)0.0361 (9)0.0317 (9)0.0060 (8)0.0095 (7)0.0027 (7)
C60.0430 (10)0.0375 (10)0.0299 (9)0.0116 (8)0.0088 (7)0.0009 (7)
C20.0451 (11)0.0454 (11)0.0429 (11)0.0001 (9)0.0121 (9)0.0038 (9)
C50.0589 (13)0.0553 (13)0.0305 (10)0.0160 (10)0.0079 (9)0.0008 (9)
C30.0604 (14)0.0502 (13)0.0501 (13)0.0043 (10)0.0285 (11)0.0091 (10)
C40.0781 (17)0.0612 (14)0.0348 (11)0.0179 (12)0.0239 (11)0.0094 (10)
C70.0383 (9)0.0372 (9)0.0305 (9)0.0102 (8)0.0018 (7)0.0074 (7)
C90.0319 (9)0.0388 (10)0.0420 (10)0.0006 (7)0.0058 (8)0.0104 (8)
C80.0444 (12)0.0546 (13)0.0503 (13)0.0038 (10)0.0057 (10)0.0108 (10)
O20.0470 (8)0.0587 (9)0.0334 (7)0.0039 (7)0.0038 (6)0.0069 (6)
N10.0340 (8)0.0344 (8)0.0320 (8)0.0004 (6)0.0046 (6)0.0046 (6)
O10.0470 (8)0.0547 (9)0.0289 (7)0.0132 (7)0.0035 (6)0.0031 (6)
O30.0438 (8)0.0533 (9)0.0316 (7)0.0100 (7)0.0077 (6)0.0015 (6)
N20.0337 (8)0.0353 (8)0.0307 (8)0.0001 (6)0.0048 (6)0.0009 (6)
O40.0680 (10)0.0535 (9)0.0324 (7)0.0067 (8)0.0077 (7)0.0097 (6)
C180.0402 (10)0.0403 (10)0.0303 (9)0.0061 (8)0.0032 (7)0.0035 (7)
C120.0398 (10)0.0366 (10)0.0345 (9)0.0062 (8)0.0126 (7)0.0015 (7)
C150.0733 (16)0.0631 (15)0.0413 (12)0.0130 (12)0.0209 (11)0.0170 (11)
C130.0478 (12)0.0410 (11)0.0499 (12)0.0005 (9)0.0155 (9)0.0004 (9)
C170.0441 (10)0.0382 (10)0.0332 (9)0.0073 (8)0.0107 (8)0.0024 (7)
C200.0407 (10)0.0390 (10)0.0387 (10)0.0031 (8)0.0028 (8)0.0030 (8)
C190.0559 (13)0.0448 (12)0.0503 (13)0.0030 (10)0.0094 (10)0.0107 (10)
C140.0633 (14)0.0454 (12)0.0548 (13)0.0046 (10)0.0262 (11)0.0143 (10)
C160.0583 (13)0.0580 (13)0.0340 (10)0.0083 (11)0.0098 (9)0.0049 (9)
C100.0401 (11)0.0397 (11)0.0682 (15)0.0003 (9)0.0149 (10)0.0041 (10)
C210.0431 (12)0.0649 (15)0.0561 (14)0.0045 (11)0.0041 (10)0.0079 (11)
C110.0548 (15)0.0461 (13)0.097 (2)0.0071 (11)0.0247 (14)0.0018 (13)
C220.0528 (16)0.109 (3)0.104 (3)0.0217 (17)0.0217 (17)0.004 (2)
Geometric parameters (Å, º) top
Mn1—O31.8573 (14)O4—C181.347 (2)
Mn1—O11.8600 (14)O4—C191.461 (3)
Mn1—N12.0153 (15)C18—C171.455 (3)
Mn1—N22.0294 (15)C12—C131.404 (3)
Mn1—N32.116 (2)C12—C171.409 (3)
N3—C231.157 (3)C15—C161.371 (3)
C23—S11.625 (3)C15—C141.391 (4)
C1—O11.329 (2)C15—H150.9300
C1—C21.408 (3)C13—C141.384 (3)
C1—C61.411 (3)C13—H130.9300
C6—C51.411 (3)C17—C161.415 (3)
C6—C71.449 (3)C20—C211.500 (3)
C2—C31.386 (3)C20—C191.543 (3)
C2—H20.9300C20—H200.9800
C5—C41.378 (3)C19—H19A0.9700
C5—H50.9300C19—H19B0.9700
C3—C41.390 (4)C14—H140.9300
C3—H30.9300C16—H160.9300
C4—H40.9300C10—C111.530 (3)
C7—N11.305 (2)C10—H10A0.9700
C7—O21.343 (2)C10—H10B0.9700
C9—N11.497 (2)C21—C221.551 (4)
C9—C101.521 (3)C21—H21A0.9700
C9—C81.533 (3)C21—H21B0.9700
C9—H90.9800C11—H11A0.9600
C8—O21.455 (3)C11—H11B0.9600
C8—H8A0.9700C11—H11C0.9600
C8—H8B0.9700C22—H22A0.9600
O3—C121.333 (2)C22—H22B0.9600
N2—C181.297 (2)C22—H22C0.9600
N2—C201.503 (2)
O3—Mn1—O1166.75 (8)N2—C18—C17127.15 (17)
O3—Mn1—N187.70 (6)O4—C18—C17116.86 (17)
O1—Mn1—N189.36 (6)O3—C12—C13118.80 (18)
O3—Mn1—N289.14 (6)O3—C12—C17123.05 (17)
O1—Mn1—N288.96 (6)C13—C12—C17118.11 (18)
N1—Mn1—N2158.90 (7)C16—C15—C14119.6 (2)
O3—Mn1—N398.25 (8)C16—C15—H15120.2
O1—Mn1—N395.00 (8)C14—C15—H15120.2
N1—Mn1—N3104.43 (7)C14—C13—C12121.0 (2)
N2—Mn1—N396.67 (7)C14—C13—H13119.5
C23—N3—Mn1150.12 (19)C12—C13—H13119.5
N3—C23—S1178.6 (2)C12—C17—C16119.79 (19)
O1—C1—C2118.27 (18)C12—C17—C18119.92 (17)
O1—C1—C6123.22 (17)C16—C17—C18120.24 (19)
C2—C1—C6118.49 (18)C21—C20—N2112.22 (18)
C1—C6—C5119.53 (19)C21—C20—C19113.46 (19)
C1—C6—C7120.16 (17)N2—C20—C19101.47 (16)
C5—C6—C7120.29 (18)C21—C20—H20109.8
C3—C2—C1120.6 (2)N2—C20—H20109.8
C3—C2—H2119.7C19—C20—H20109.8
C1—C2—H2119.7O4—C19—C20104.33 (16)
C4—C5—C6120.9 (2)O4—C19—H19A110.9
C4—C5—H5119.5C20—C19—H19A110.9
C6—C5—H5119.5O4—C19—H19B110.9
C2—C3—C4120.8 (2)C20—C19—H19B110.9
C2—C3—H3119.6H19A—C19—H19B108.9
C4—C3—H3119.6C13—C14—C15120.7 (2)
C5—C4—C3119.5 (2)C13—C14—H14119.7
C5—C4—H4120.2C15—C14—H14119.7
C3—C4—H4120.2C15—C16—C17120.8 (2)
N1—C7—O2115.89 (17)C15—C16—H16119.6
N1—C7—C6126.91 (17)C17—C16—H16119.6
O2—C7—C6117.17 (17)C9—C10—C11111.3 (2)
N1—C9—C10111.78 (16)C9—C10—H10A109.4
N1—C9—C8102.23 (16)C11—C10—H10A109.4
C10—C9—C8113.35 (18)C9—C10—H10B109.4
N1—C9—H9109.7C11—C10—H10B109.4
C10—C9—H9109.7H10A—C10—H10B108.0
C8—C9—H9109.7C20—C21—C22110.3 (2)
O2—C8—C9105.08 (16)C20—C21—H21A109.6
O2—C8—H8A110.7C22—C21—H21A109.6
C9—C8—H8A110.7C20—C21—H21B109.6
O2—C8—H8B110.7C22—C21—H21B109.6
C9—C8—H8B110.7H21A—C21—H21B108.1
H8A—C8—H8B108.8C10—C11—H11A109.5
C7—O2—C8107.31 (16)C10—C11—H11B109.5
C7—N1—C9108.35 (16)H11A—C11—H11B109.5
C7—N1—Mn1125.88 (13)C10—C11—H11C109.5
C9—N1—Mn1125.67 (12)H11A—C11—H11C109.5
C1—O1—Mn1133.21 (13)H11B—C11—H11C109.5
C12—O3—Mn1130.21 (12)C21—C22—H22A109.5
C18—N2—C20108.37 (15)C21—C22—H22B109.5
C18—N2—Mn1124.05 (13)H22A—C22—H22B109.5
C20—N2—Mn1127.42 (12)C21—C22—H22C109.5
C18—O4—C19106.96 (16)H22A—C22—H22C109.5
N2—C18—O4115.99 (17)H22B—C22—H22C109.5
O3—Mn1—N3—C23125.7 (4)O1—Mn1—O3—C12110.3 (3)
O1—Mn1—N3—C2354.0 (4)N1—Mn1—O3—C12172.31 (18)
N1—Mn1—N3—C23144.6 (4)N2—Mn1—O3—C1228.56 (18)
N2—Mn1—N3—C2335.6 (4)N3—Mn1—O3—C1268.06 (19)
O1—C1—C6—C5174.62 (19)O3—Mn1—N2—C1816.34 (17)
C2—C1—C6—C53.9 (3)O1—Mn1—N2—C18176.78 (17)
O1—C1—C6—C77.0 (3)N1—Mn1—N2—C1897.7 (2)
C2—C1—C6—C7174.44 (18)N3—Mn1—N2—C1881.87 (17)
O1—C1—C2—C3175.7 (2)O3—Mn1—N2—C20168.98 (17)
C6—C1—C2—C32.9 (3)O1—Mn1—N2—C202.10 (17)
C1—C6—C5—C41.7 (3)N1—Mn1—N2—C2087.6 (2)
C7—C6—C5—C4176.6 (2)N3—Mn1—N2—C2092.81 (17)
C1—C2—C3—C40.4 (4)C20—N2—C18—O44.3 (3)
C6—C5—C4—C31.6 (4)Mn1—N2—C18—O4179.85 (14)
C2—C3—C4—C52.6 (4)C20—N2—C18—C17176.08 (19)
C1—C6—C7—N13.8 (3)Mn1—N2—C18—C170.5 (3)
C5—C6—C7—N1174.57 (19)C19—O4—C18—N27.2 (3)
C1—C6—C7—O2178.51 (18)C19—O4—C18—C17172.43 (19)
C5—C6—C7—O23.1 (3)Mn1—O3—C12—C13158.44 (16)
N1—C9—C8—O210.3 (2)Mn1—O3—C12—C1723.9 (3)
C10—C9—C8—O2110.2 (2)O3—C12—C13—C14179.7 (2)
N1—C7—O2—C85.4 (2)C17—C12—C13—C141.9 (3)
C6—C7—O2—C8176.68 (18)O3—C12—C17—C16179.5 (2)
C9—C8—O2—C79.8 (2)C13—C12—C17—C161.8 (3)
O2—C7—N1—C91.8 (2)O3—C12—C17—C182.0 (3)
C6—C7—N1—C9175.94 (18)C13—C12—C17—C18175.69 (19)
O2—C7—N1—Mn1174.68 (13)N2—C18—C17—C1212.8 (3)
C6—C7—N1—Mn17.6 (3)O4—C18—C17—C12166.78 (19)
C10—C9—N1—C7113.93 (19)N2—C18—C17—C16169.7 (2)
C8—C9—N1—C77.6 (2)O4—C18—C17—C1610.7 (3)
C10—C9—N1—Mn169.6 (2)C18—N2—C20—C21108.4 (2)
C8—C9—N1—Mn1168.87 (14)Mn1—N2—C20—C2166.9 (2)
O3—Mn1—N1—C7165.12 (17)C18—N2—C20—C1913.0 (2)
O1—Mn1—N1—C71.95 (17)Mn1—N2—C20—C19171.63 (15)
N2—Mn1—N1—C783.5 (2)C18—O4—C19—C2014.9 (2)
N3—Mn1—N1—C796.95 (17)C21—C20—C19—O4104.1 (2)
O3—Mn1—N1—C910.78 (15)N2—C20—C19—O416.4 (2)
O1—Mn1—N1—C9177.85 (16)C12—C13—C14—C150.7 (4)
N2—Mn1—N1—C992.4 (2)C16—C15—C14—C130.7 (4)
N3—Mn1—N1—C987.15 (16)C14—C15—C16—C170.8 (4)
C2—C1—O1—Mn1167.07 (16)C12—C17—C16—C150.5 (4)
C6—C1—O1—Mn114.4 (3)C18—C17—C16—C15177.0 (2)
O3—Mn1—O1—C186.1 (3)N1—C9—C10—C11174.2 (2)
N1—Mn1—O1—C18.9 (2)C8—C9—C10—C1170.9 (3)
N2—Mn1—O1—C1167.9 (2)N2—C20—C21—C22175.5 (2)
N3—Mn1—O1—C195.5 (2)C19—C20—C21—C2270.2 (3)

Experimental details

Crystal data
Chemical formula[Mn(C11H12NO2)2(NCS)]
Mr493.45
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)9.6816 (13), 9.9493 (13), 12.5894 (17)
α, β, γ (°)91.116 (1), 97.550 (1), 106.415 (1)
V3)1151.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.49 × 0.42 × 0.42
Data collection
DiffractometerBruker CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.726, 0.758
No. of measured, independent and
observed [I > 2σ(I)] reflections
10103, 5463, 4418
Rint0.016
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.111, 1.03
No. of reflections5463
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.43

Computer programs: SMART (Bruker, 2003), SMART, SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds