Download citation
Download citation
link to html
The title manganese(II) coordination polymer, [Mn(C7H6NO2)2(H2O)2]n, which was obtained from a solvothermal reaction of 3-pyridylacetic acid hydro­chloride with Mn(ClO4)2·6H2O, is centrosymmetric, so pairs of equivalent ligands lie trans to each other in a slightly distorted octa­hedral geometry such that the MnII center is coordinated by two pyridyl N atoms [Mn—N = 2.287 (4) Å], two carboxyl­ate O atoms [Mn—O = 2.129 (3) Å] and two water mol­ecules [Mn—O = 2.179 (3) Å]. Each unit is further extended into two-dimensional sheets with a rhombic grid through sharing MnII ions, 3-pyridylacetate anionic ligands and intra­molecular O—H...O hydrogen bonds with angles at hydrogen of 147°. Adjacent two-dimensional layers are connected via inter­molecular O—H...O and weak C—H...O hydrogen-bonding contacts, resulting in a three-dimensional framework with oxygen as a trifurcated acceptor atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807020466/si2014sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807020466/si2014Isup2.hkl
Contains datablock I

CCDC reference: 646687

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.072
  • wR factor = 0.138
  • Data-to-parameter ratio = 12.0

checkCIF/PLATON results

No syntax errors found



Alert level B RINTA01_ALERT_3_B The value of Rint is greater than 0.15 Rint given 0.170 PLAT020_ALERT_3_B The value of Rint is greater than 0.10 ......... 0.17
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 8 PLAT415_ALERT_2_C Short Inter D-H..H-X H7 .. H9 .. 2.13 Ang.
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Mn1 (2) 2.11
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The molecule of the title complex (I), which is similar to the described for [M(Hpya)2(H2O)2]n (M = Cu, Co, Mn, Ni, Zn, Cd; Hpya = 4-pyridylacetic acid) (Li et al., 2004; Du et al.,

2006) and [M(3-pyridylacetato)2(H2O)2]n (M = Ni, Co) (Martin et al., 2007), is centrosymmetric, so pairs of equivalent ligands lie trans to each other in a slightly distorted octahedral geometry. The MnII center is six-coordinated by two pyridyl nitrogen atoms from two 3-pyridylacetate ligands in the axial positions, two carboxylate oxygen atoms from another two 3-pyridylacetate ligands and two oxygen atoms from two water molecules in the equatorial plane. Each 3-pyridylacetate anion uses its pyridine nitrogen atom and one carboxylate oxygen atom to connect two MnII ions. Four 3-pyridylacetate anionic ligands and four MnII ions form a tetragon with a side length of 8.763 Å and a diagonal measurement of 15.199 * 8.728 Å based on the Mn—Mn distances. The tetragon is further extended into a two-dimensional framework with a rhombic grid through sharing MnII ions, 3-pyridylacetate anionic ligands and intramolecular O—H···O hydrogen bonds with angles at hydrogen of 147 ° (Fig. 1).

Adjacent two-dimensional layers are connected via intermolecular O—H···O and weak C—H···O hydrogen-bonding contacts, resulting in a three-dimensional framework structure with oxygen as a trifurcated acceptor atom (Fig. 2).

Related literature top

Related complexes of 4-pyridylacetate and 3-pyridylacetate have been reported (Li et al., 2004; Du et al., 2006; Martin et al., 2007).

Experimental top

A mixture of 3-pyridylacetic acid hydrochloride (0.0174 g, 0.1 mmol), Mn(ClO4)2.6H2O(0.0181 g, 0.05 mmol), NaClO4.6H2O (0.0150 g, 0.07 mmol), NaOH (0.0080 g, 0.2 mmol), THF (5 ml) and water (2.5 ml) was sealed in a 25 ml Teflon-lined stainless-steel reactor and heated to 333 K for 96 h, yielding colourless crystals of (I) suitable for X-ray analysis. Elemental analysis for C14H16MnN2O6, calculated: C 46.29, H 4.44, N 7.71%; found: C 45.09, H 4.97, N 7.15%.

Refinement top

H atoms of the water molecules were located in a difference map. H atoms bonded to C atoms were placed at calulated positions and treated using a riding-model approximation [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)].

Structure description top

The molecule of the title complex (I), which is similar to the described for [M(Hpya)2(H2O)2]n (M = Cu, Co, Mn, Ni, Zn, Cd; Hpya = 4-pyridylacetic acid) (Li et al., 2004; Du et al.,

2006) and [M(3-pyridylacetato)2(H2O)2]n (M = Ni, Co) (Martin et al., 2007), is centrosymmetric, so pairs of equivalent ligands lie trans to each other in a slightly distorted octahedral geometry. The MnII center is six-coordinated by two pyridyl nitrogen atoms from two 3-pyridylacetate ligands in the axial positions, two carboxylate oxygen atoms from another two 3-pyridylacetate ligands and two oxygen atoms from two water molecules in the equatorial plane. Each 3-pyridylacetate anion uses its pyridine nitrogen atom and one carboxylate oxygen atom to connect two MnII ions. Four 3-pyridylacetate anionic ligands and four MnII ions form a tetragon with a side length of 8.763 Å and a diagonal measurement of 15.199 * 8.728 Å based on the Mn—Mn distances. The tetragon is further extended into a two-dimensional framework with a rhombic grid through sharing MnII ions, 3-pyridylacetate anionic ligands and intramolecular O—H···O hydrogen bonds with angles at hydrogen of 147 ° (Fig. 1).

Adjacent two-dimensional layers are connected via intermolecular O—H···O and weak C—H···O hydrogen-bonding contacts, resulting in a three-dimensional framework structure with oxygen as a trifurcated acceptor atom (Fig. 2).

Related complexes of 4-pyridylacetate and 3-pyridylacetate have been reported (Li et al., 2004; Du et al., 2006; Martin et al., 2007).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Principal connectivity of the coordination polymer two-dimensional structure (I), showing 50% probability displacement ellipsoids. All H atoms except H9 have been omitted for clarity. Symmetry codes: (i) 1 - x,-y,-z; (ii) 1/2 - x,y - 1/2,1/2 - z; (iii) 1/2 + x,1/2 - y,z - 1/2.
[Figure 2] Fig. 2. Intermolecular hydrogen bonding contacts between the two-dimensional polymer layers in ac plane. For clarity, only H5, H8 and H9 were used. Symmetry codes: (i) x - 1,2 + y,z; (ii) -x,2 - y,1 - z; (iii) -1/2 - x,1/2 + y,1/2 - z.
catena-Poly[[trans-diaquamanganese(II)]-di-µ-(3-pyridyl)acetato] top
Crystal data top
[Mn(C7H6NO2)2(H2O)2]F(000) = 374
Mr = 363.23Dx = 1.612 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1227 reflections
a = 9.260 (2) Åθ = 2.6–28.0°
b = 8.7283 (18) ŵ = 0.92 mm1
c = 9.671 (2) ÅT = 298 K
β = 106.788 (3)°Block, colourless
V = 748.3 (3) Å30.10 × 0.08 × 0.06 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1274 independent reflections
Radiation source: fine-focus sealed tube770 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.170
φ and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 107
Tmin = 0.914, Tmax = 0.947k = 1010
3717 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0532P)2]
where P = (Fo2 + 2Fc2)/3
1274 reflections(Δ/σ)max < 0.001
106 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Mn(C7H6NO2)2(H2O)2]V = 748.3 (3) Å3
Mr = 363.23Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.260 (2) ŵ = 0.92 mm1
b = 8.7283 (18) ÅT = 298 K
c = 9.671 (2) Å0.10 × 0.08 × 0.06 mm
β = 106.788 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1274 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
770 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.947Rint = 0.170
3717 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 0.99Δρmax = 0.48 e Å3
1274 reflectionsΔρmin = 0.56 e Å3
106 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.00000.00000.0273 (4)
N10.2917 (5)0.0792 (5)0.0622 (4)0.0297 (11)
O10.0346 (5)0.2775 (4)0.4250 (4)0.0376 (10)
O20.1985 (5)0.1665 (4)0.6121 (4)0.0433 (11)
O30.6360 (4)0.0553 (4)0.2185 (4)0.0375 (10)
H80.70670.00170.27250.056*
H90.67030.14600.22190.056*
C10.1243 (7)0.1730 (6)0.4810 (6)0.0284 (13)
C20.1421 (8)0.0417 (6)0.3840 (6)0.0387 (16)
H2A0.23280.01460.43280.046*
H2B0.05740.02750.37210.046*
C30.2762 (7)0.0467 (6)0.1934 (5)0.0283 (14)
H3A0.35390.00580.25880.034*
C40.1512 (6)0.0869 (6)0.2364 (5)0.0269 (13)
C50.0392 (7)0.1676 (6)0.1404 (6)0.0341 (14)
H50.04620.19820.16530.041*
C60.0546 (7)0.2029 (6)0.0071 (6)0.0376 (15)
H60.02050.25730.05940.045*
C70.1825 (7)0.1567 (6)0.0273 (6)0.0347 (15)
H70.19180.18160.11780.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0316 (8)0.0291 (6)0.0210 (6)0.0029 (7)0.0074 (5)0.0003 (6)
N10.030 (3)0.035 (2)0.022 (2)0.003 (3)0.004 (2)0.002 (2)
O10.053 (3)0.028 (2)0.027 (2)0.009 (2)0.005 (2)0.0021 (17)
O20.052 (3)0.039 (2)0.032 (2)0.008 (2)0.001 (2)0.0002 (19)
O30.041 (3)0.038 (2)0.027 (2)0.001 (2)0.0010 (18)0.0040 (16)
C10.029 (4)0.027 (3)0.031 (3)0.005 (3)0.012 (3)0.001 (3)
C20.054 (4)0.032 (3)0.035 (3)0.007 (3)0.021 (3)0.005 (2)
C30.034 (4)0.029 (3)0.021 (3)0.004 (3)0.007 (3)0.002 (2)
C40.033 (4)0.025 (3)0.021 (3)0.001 (3)0.005 (3)0.002 (2)
C50.027 (4)0.038 (3)0.034 (3)0.003 (3)0.004 (3)0.006 (3)
C60.039 (4)0.033 (3)0.033 (3)0.014 (3)0.002 (3)0.001 (3)
C70.042 (4)0.037 (3)0.024 (3)0.002 (3)0.008 (3)0.006 (3)
Geometric parameters (Å, º) top
Mn1—O1i2.129 (3)C1—C21.520 (7)
Mn1—O1ii2.129 (3)C2—C41.507 (6)
Mn1—O32.179 (3)C2—H2A0.9700
Mn1—O3iii2.179 (3)C2—H2B0.9700
Mn1—N1iii2.287 (4)C3—C41.383 (7)
Mn1—N12.287 (4)C3—H3A0.9300
N1—C71.313 (7)C4—C51.370 (7)
N1—C31.348 (6)C5—C61.372 (7)
O1—C11.247 (6)C5—H50.9300
O1—Mn1iv2.129 (3)C6—C71.380 (8)
O2—C11.257 (7)C6—H60.9300
O3—H80.8500C7—H70.9300
O3—H90.8500
O1i—Mn1—O1ii180O1—C1—C2117.4 (5)
O1i—Mn1—O388.47 (14)O2—C1—C2117.6 (5)
O1ii—Mn1—O391.53 (14)C4—C2—C1115.7 (4)
O1i—Mn1—O3iii91.53 (14)C4—C2—H2A108.4
O1ii—Mn1—O3iii88.47 (14)C1—C2—H2A108.4
O3—Mn1—O3iii180C4—C2—H2B108.4
O1i—Mn1—N1iii92.02 (15)C1—C2—H2B108.4
O1ii—Mn1—N1iii87.98 (15)H2A—C2—H2B107.4
O3—Mn1—N1iii91.54 (15)N1—C3—C4123.8 (5)
O3iii—Mn1—N1iii88.46 (15)N1—C3—H3A118.1
O1i—Mn1—N187.98 (15)C4—C3—H3A118.1
O1ii—Mn1—N192.02 (15)C5—C4—C3117.5 (5)
O3—Mn1—N188.46 (15)C5—C4—C2122.5 (5)
O3iii—Mn1—N191.54 (15)C3—C4—C2120.0 (5)
N1iii—Mn1—N1180C4—C5—C6119.2 (5)
C7—N1—C3117.2 (5)C4—C5—H5120.4
C7—N1—Mn1122.0 (3)C6—C5—H5120.4
C3—N1—Mn1120.8 (4)C5—C6—C7119.4 (6)
C1—O1—Mn1iv131.8 (3)C5—C6—H6120.3
Mn1—O3—H8126.9C7—C6—H6120.3
Mn1—O3—H9110.4N1—C7—C6122.9 (5)
H8—O3—H9106.1N1—C7—H7118.6
O1—C1—O2124.9 (5)C6—C7—H7118.6
O1i—Mn1—N1—C7130.5 (4)C7—N1—C3—C41.7 (8)
O1ii—Mn1—N1—C749.5 (4)Mn1—N1—C3—C4177.9 (4)
O3—Mn1—N1—C7141.0 (4)N1—C3—C4—C51.6 (8)
O3iii—Mn1—N1—C739.0 (4)N1—C3—C4—C2178.3 (5)
O1i—Mn1—N1—C349.1 (4)C1—C2—C4—C558.4 (7)
O1ii—Mn1—N1—C3130.9 (4)C1—C2—C4—C3121.7 (6)
O3—Mn1—N1—C339.4 (4)C3—C4—C5—C60.8 (8)
O3iii—Mn1—N1—C3140.6 (4)C2—C4—C5—C6179.1 (5)
Mn1iv—O1—C1—O214.6 (8)C4—C5—C6—C70.2 (8)
Mn1iv—O1—C1—C2166.9 (4)C3—N1—C7—C61.0 (8)
O1—C1—C2—C442.5 (7)Mn1—N1—C7—C6178.7 (4)
O2—C1—C2—C4139.0 (5)C5—C6—C7—N10.3 (9)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x+1, y, z; (iv) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H9···O2ii0.852.012.763 (5)147
O3—H8···O2v0.851.902.707 (5)158
C5—H5···O2vi0.932.563.409 (7)152
Symmetry codes: (ii) x+1/2, y+1/2, z1/2; (v) x+1, y, z+1; (vi) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Mn(C7H6NO2)2(H2O)2]
Mr363.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.260 (2), 8.7283 (18), 9.671 (2)
β (°) 106.788 (3)
V3)748.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.10 × 0.08 × 0.06
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.914, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
3717, 1274, 770
Rint0.170
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.138, 0.99
No. of reflections1274
No. of parameters106
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.56

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H9···O2i0.852.012.763 (5)147.4
O3—H8···O2ii0.851.902.707 (5)158.4
C5—H5···O2iii0.932.563.409 (7)152.4
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x1/2, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds