Download citation
Download citation
link to html
In the title complex, [CuK2(C4N2S2)2(C12H24O6)2]·C2H4Cl2, the CuII atom lies on an inversion centre and the 1,2-dichloro­ethane solvate lies on another inversion centre. The asymmetric unit therefore comprises one [K(18-crown-6)]+ complex cation, one-half of the [Cu(i-mnt)2]2− anion (i-mnt is 1,1-dicyano­ethyl­ene-2,2-dithiol­ate) and one-half of the dichloro­ethane solvent molecule. Each KI ion binds to the six ether O atoms and N atoms from two i-mnt2− ligands. The Cu atoms adopt a distorted square-planar coordination geometry. K—N bonds from each of the four cyano groups link the cations and anions into planar sheets along the diagonal of the ac plane and these sheets pack in layers in the bc plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807020028/sj2302sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807020028/sj2302Isup2.hkl
Contains datablock I

CCDC reference: 209413

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.013 Å
  • R factor = 0.056
  • wR factor = 0.170
  • Data-to-parameter ratio = 16.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 40 Perc. PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for N1 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C3 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for K1 PLAT341_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 13 PLAT360_ALERT_2_C Short C(sp3)-C(sp3) Bond C9 - C10 ... 1.43 Ang. PLAT360_ALERT_2_C Short C(sp3)-C(sp3) Bond C17 - C17_a ... 1.43 Ang. PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C14 - C15 ... 1.45 Ang. PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C14 - C16 ... 1.42 Ang.
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 10 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 7 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In recent years, metal coordination complexes with polymeric structures have attracted interest owing to their important applications as materials with unusual properties (Chen et al., 1993). The complexes formed by crown ether cations and transition metal bis(dithiolate) salts, including 1,1-dicyanoethylene-2,2dithiolate (i-mnt2-) (Long et al., 1998) have attracted widespread interest due to their novel structures and unusual electrical, magnetic and optical properties (Nakamura et al., 1998). We report here one such novel complex [K(18Crown-6)]2[Cu(i-mnt)2], Fig. 1.

In the title complex, the CuII atom lies on an inversion centre while the 1,2-dichloroethane solvate lies about an inversion centre. The asymmetric unit therefore comprises one [K(18Crown-6)]+ cation, one half of the [Cu(i-mnt)2]2- anion (i-mnt = 1,1-dicyanoethylene-2,2dithiolate) and one half of the dichloroethane solvate. In the cation [K(18Crown-6)]+, the potassium ion lies within the crown ether cage with K—O bond lengths in the range 2.722 (5) to 2.826 (5) Å. The K+ ion lies 0.2210Å out of meanplane through the six ether O atoms. Each K+ ion also binds in a trans configuration to two N atoms from adjacent i-mnt ligands with K—N distances 2.828 (7) and 2.963 (7) Å. The Cu atoms adopt a distorted square planar coordination geometry with Cu—S distances 2.302 (2) and 2.3324 (19) Å. In the crystal structure, K—N bonds from each of the four cyano- groups link the cations and anions into planar sheets along the diagonal of the ac plane, Fig 2, and these sheets pack in layers in the bc plane, Fig. 3.

Related literature top

For applications of coordination polymers, see: Chen & Suslick (1993); for the structures and applications of crown ether transition metal bis(dithiolate) salts, see: Long et al. (1998) and Nakamura et al. (1998).

Experimental top

To a solution of 18-crown-6 (2.0 mmol) in 1,2-dichloroethane (10.0 ml) was added 5 ml 1,2-dichloroethane mixture of CuCl2 (0.5 mmol) and K2(i-mnt) (1 mmol). The reaction mixture was stirred for 2 h at room temperature and then filtered. The precipitate was dissolved in 4:1 (v/v) diethyl ether/ 1,2-dichloroethane and colorless single crystals were obtained by slowly evaporating this solution. Elemental analysis found: H 4.99, C 38.90, N 5.34%; calculated for C34H52Cl2K2N4O12S4Cu: H 4.87, C 38.95, N 5.22%.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.97 Å, Uiso = 1.2Ueq (C) for the CH2 atoms.

Structure description top

In recent years, metal coordination complexes with polymeric structures have attracted interest owing to their important applications as materials with unusual properties (Chen et al., 1993). The complexes formed by crown ether cations and transition metal bis(dithiolate) salts, including 1,1-dicyanoethylene-2,2dithiolate (i-mnt2-) (Long et al., 1998) have attracted widespread interest due to their novel structures and unusual electrical, magnetic and optical properties (Nakamura et al., 1998). We report here one such novel complex [K(18Crown-6)]2[Cu(i-mnt)2], Fig. 1.

In the title complex, the CuII atom lies on an inversion centre while the 1,2-dichloroethane solvate lies about an inversion centre. The asymmetric unit therefore comprises one [K(18Crown-6)]+ cation, one half of the [Cu(i-mnt)2]2- anion (i-mnt = 1,1-dicyanoethylene-2,2dithiolate) and one half of the dichloroethane solvate. In the cation [K(18Crown-6)]+, the potassium ion lies within the crown ether cage with K—O bond lengths in the range 2.722 (5) to 2.826 (5) Å. The K+ ion lies 0.2210Å out of meanplane through the six ether O atoms. Each K+ ion also binds in a trans configuration to two N atoms from adjacent i-mnt ligands with K—N distances 2.828 (7) and 2.963 (7) Å. The Cu atoms adopt a distorted square planar coordination geometry with Cu—S distances 2.302 (2) and 2.3324 (19) Å. In the crystal structure, K—N bonds from each of the four cyano- groups link the cations and anions into planar sheets along the diagonal of the ac plane, Fig 2, and these sheets pack in layers in the bc plane, Fig. 3.

For applications of coordination polymers, see: Chen & Suslick (1993); for the structures and applications of crown ether transition metal bis(dithiolate) salts, see: Long et al. (1998) and Nakamura et al. (1998).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Labelled atoms are related to unlabelled atoms by the symmetry operations (1 - x, -y, 1 - z) for the complex and (-x, 1 - y, 1 - z) for the solvate molecule. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The two-dimensional chain network of the title complex.
[Figure 3] Fig. 3. Crystal packing of the title complex.
Bis(18-crown-6)–1κ6O,3κ6O-bis(µ-1,1-dicyanoethylene-2,2-dithiolato)- 1:2κ3N:S,S';2:3κ3S,S':N-dipotassium(I)copper(II) 1,2-dichloroethane solvate top
Crystal data top
[CuK2(C4N2S2)2(C12H24O6)2]·C2H4Cl2F(000) = 1090
Mr = 1049.68Dx = 1.451 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1005 reflections
a = 8.259 (3) Åθ = 2.4–18°
b = 13.084 (4) ŵ = 0.97 mm1
c = 22.228 (7) ÅT = 293 K
β = 90.413 (6)°Block, colourless
V = 2401.8 (13) Å30.22 × 0.15 × 0.07 mm
Z = 2
Data collection top
Siemens SMART CCD area-detector
diffractometer
4281 independent reflections
Radiation source: fine-focus sealed tube1698 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
φ and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 99
Tmin = 0.815, Tmax = 0.935k = 1115
12535 measured reflectionsl = 2326
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.051P)2]
where P = (Fo2 + 2Fc2)/3
4281 reflections(Δ/σ)max < 0.001
268 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[CuK2(C4N2S2)2(C12H24O6)2]·C2H4Cl2V = 2401.8 (13) Å3
Mr = 1049.68Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.259 (3) ŵ = 0.97 mm1
b = 13.084 (4) ÅT = 293 K
c = 22.228 (7) Å0.22 × 0.15 × 0.07 mm
β = 90.413 (6)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4281 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1698 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.935Rint = 0.084
12535 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.00Δρmax = 0.51 e Å3
4281 reflectionsΔρmin = 0.44 e Å3
268 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.0482 (4)
K10.0443 (2)0.47985 (13)0.82898 (7)0.0514 (5)
Cl10.1390 (3)0.5783 (2)0.43296 (12)0.1075 (10)
N10.1485 (8)0.3983 (5)0.7278 (3)0.070 (2)
N20.2218 (9)0.1339 (6)0.6114 (3)0.077 (2)
O10.1706 (7)0.4726 (5)0.9259 (2)0.0674 (16)
O20.0850 (7)0.3246 (4)0.9160 (2)0.0665 (16)
O30.3476 (7)0.3877 (4)0.8427 (3)0.0720 (18)
O40.2879 (6)0.5039 (5)0.7438 (2)0.0705 (16)
O50.0337 (7)0.6458 (4)0.7553 (2)0.0641 (16)
O60.2236 (6)0.6121 (4)0.8357 (2)0.0595 (15)
S10.3801 (2)0.51358 (15)0.59435 (8)0.0539 (6)
S20.4227 (2)0.33487 (15)0.52112 (9)0.0527 (6)
C10.1820 (11)0.3747 (8)0.9473 (4)0.080 (3)
H1A0.25720.37260.98100.096*
H1B0.22300.33010.91600.096*
C20.0208 (12)0.3385 (7)0.9668 (4)0.083 (3)
H2A0.03240.27430.98810.100*
H2B0.02610.38800.99410.100*
C30.2536 (12)0.3101 (7)0.9293 (4)0.097 (4)
H3A0.29170.36730.95300.116*
H3B0.26600.24860.95310.116*
C40.3541 (11)0.3014 (9)0.8742 (4)0.088 (3)
H4A0.31530.24510.84990.106*
H4B0.46540.28720.88510.106*
C50.4536 (11)0.3868 (8)0.7928 (4)0.083 (3)
H5A0.56290.37190.80580.100*
H5B0.42090.33440.76450.100*
C60.4481 (10)0.4870 (8)0.7642 (4)0.077 (3)
H6A0.52340.48940.73050.092*
H6B0.47830.53960.79270.092*
C70.2805 (11)0.5978 (9)0.7127 (4)0.090 (3)
H7A0.33210.65080.73630.108*
H7B0.33820.59210.67460.108*
C80.1091 (12)0.6258 (7)0.7016 (4)0.086 (3)
H8A0.05450.57000.68140.103*
H8B0.10440.68560.67590.103*
C90.1212 (11)0.6881 (7)0.7491 (4)0.070 (3)
H9A0.11410.75170.72680.084*
H9B0.18950.64140.72680.084*
C100.1904 (11)0.7066 (7)0.8072 (4)0.076 (3)
H10A0.28960.74560.80320.092*
H10B0.11560.74600.83130.092*
C110.2911 (10)0.6221 (7)0.8912 (4)0.070 (3)
H11A0.21890.66090.91670.085*
H11B0.39210.65960.88810.085*
C120.3222 (10)0.5218 (8)0.9184 (3)0.072 (3)
H12A0.39130.48130.89250.087*
H12B0.37610.52990.95700.087*
C130.3473 (8)0.3831 (5)0.5889 (3)0.0432 (19)
C140.2677 (8)0.3243 (6)0.6315 (3)0.0429 (19)
C150.2029 (9)0.3687 (6)0.6860 (4)0.048 (2)
C160.2446 (9)0.2183 (7)0.6194 (3)0.049 (2)
C170.0317 (12)0.4761 (9)0.4737 (4)0.125 (4)
H17A0.05520.44810.44910.150*
H17B0.10550.42130.48450.150*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0521 (9)0.0443 (9)0.0482 (8)0.0080 (7)0.0057 (6)0.0008 (7)
K10.0541 (11)0.0500 (12)0.0502 (10)0.0015 (9)0.0052 (8)0.0039 (9)
Cl10.092 (2)0.118 (3)0.113 (2)0.0143 (18)0.0027 (17)0.0193 (19)
N10.080 (6)0.078 (6)0.052 (5)0.011 (4)0.022 (4)0.010 (4)
N20.111 (6)0.049 (5)0.072 (5)0.016 (5)0.034 (4)0.000 (4)
O10.072 (4)0.064 (4)0.067 (4)0.015 (3)0.001 (3)0.021 (3)
O20.077 (4)0.063 (4)0.059 (4)0.007 (3)0.012 (3)0.009 (3)
O30.080 (5)0.048 (4)0.088 (5)0.008 (4)0.013 (4)0.012 (4)
O40.055 (4)0.096 (5)0.060 (4)0.003 (4)0.004 (3)0.010 (4)
O50.065 (4)0.075 (4)0.052 (4)0.005 (3)0.002 (3)0.010 (3)
O60.063 (4)0.071 (4)0.044 (3)0.004 (3)0.001 (3)0.000 (3)
S10.0668 (14)0.0437 (13)0.0513 (12)0.0061 (11)0.0078 (10)0.0024 (11)
S20.0616 (14)0.0426 (13)0.0542 (12)0.0051 (11)0.0134 (10)0.0045 (10)
C10.076 (7)0.092 (8)0.072 (6)0.026 (6)0.003 (5)0.004 (6)
C20.122 (9)0.054 (6)0.074 (7)0.016 (6)0.015 (7)0.028 (5)
C30.098 (8)0.057 (7)0.136 (10)0.015 (6)0.081 (8)0.035 (7)
C40.054 (6)0.125 (11)0.087 (8)0.008 (7)0.011 (6)0.045 (8)
C50.061 (7)0.125 (10)0.063 (6)0.012 (6)0.000 (5)0.021 (6)
C60.054 (6)0.116 (9)0.061 (6)0.010 (6)0.003 (4)0.012 (6)
C70.069 (8)0.147 (11)0.053 (6)0.004 (7)0.015 (5)0.013 (6)
C80.105 (9)0.095 (8)0.058 (6)0.001 (7)0.006 (6)0.028 (6)
C90.072 (7)0.076 (7)0.063 (6)0.001 (6)0.002 (5)0.019 (5)
C100.074 (7)0.058 (7)0.097 (8)0.019 (5)0.016 (6)0.016 (6)
C110.058 (6)0.053 (6)0.101 (8)0.001 (5)0.025 (6)0.004 (6)
C120.043 (6)0.116 (9)0.058 (5)0.005 (6)0.002 (4)0.019 (6)
C130.036 (4)0.044 (5)0.050 (5)0.005 (4)0.001 (4)0.007 (4)
C140.040 (5)0.038 (5)0.051 (5)0.006 (4)0.005 (4)0.010 (4)
C150.049 (5)0.047 (5)0.046 (5)0.007 (4)0.002 (4)0.009 (4)
C160.055 (5)0.055 (6)0.037 (5)0.008 (5)0.013 (4)0.009 (5)
C170.074 (8)0.150 (13)0.151 (12)0.040 (7)0.040 (8)0.038 (9)
Geometric parameters (Å, º) top
Cu1—S22.302 (2)C1—H1B0.9700
Cu1—S2i2.302 (2)C2—H2A0.9700
Cu1—S1i2.3324 (19)C2—H2B0.9700
Cu1—S12.3324 (19)C3—C41.478 (11)
K1—O52.722 (5)C3—H3A0.9700
K1—O42.771 (6)C3—H3B0.9700
K1—O12.783 (5)C4—H4A0.9700
K1—O32.798 (6)C4—H4B0.9700
K1—O62.812 (6)C5—C61.459 (11)
K1—O22.826 (5)C5—H5A0.9700
K1—N2ii2.828 (7)C5—H5B0.9700
K1—N12.963 (7)C6—H6A0.9700
K1—C83.454 (8)C6—H6B0.9700
K1—C13.497 (9)C7—C81.485 (11)
K1—C93.533 (9)C7—H7A0.9700
Cl1—C171.846 (13)C7—H7B0.9700
N1—C151.107 (8)C8—H8A0.9700
N2—C161.134 (9)C8—H8B0.9700
N2—K1iii2.828 (7)C9—C101.429 (10)
O1—C11.370 (9)C9—H9A0.9700
O1—C121.419 (9)C9—H9B0.9700
O2—C21.433 (9)C10—H10A0.9700
O2—C31.438 (9)C10—H10B0.9700
O3—C41.330 (11)C11—C121.468 (10)
O3—C51.407 (9)C11—H11A0.9700
O4—C71.411 (10)C11—H11B0.9700
O4—C61.419 (9)C12—H12A0.9700
O5—C81.368 (9)C12—H12B0.9700
O5—C91.401 (9)C13—C141.390 (9)
O6—C111.357 (9)C14—C161.425 (10)
O6—C101.415 (9)C14—C151.448 (10)
S1—C131.733 (7)C17—C17iv1.430 (17)
S2—C131.751 (7)C17—H17A0.9700
C1—C21.481 (11)C17—H17B0.9700
C1—H1A0.9700
S2—Cu1—S2i180.000 (1)C2—C1—H1B109.7
S2—Cu1—S1i103.42 (7)K1—C1—H1B83.4
S2i—Cu1—S1i76.58 (7)H1A—C1—H1B108.2
S2—Cu1—S176.58 (7)O2—C2—C1110.8 (7)
S2i—Cu1—S1103.42 (7)O2—C2—H2A109.5
S1i—Cu1—S1180.000 (1)C1—C2—H2A109.5
O5—K1—O461.60 (18)O2—C2—H2B109.5
O5—K1—O1118.01 (19)C1—C2—H2B109.5
O4—K1—O1171.42 (17)H2A—C2—H2B108.1
O5—K1—O3116.23 (19)O2—C3—C4112.3 (7)
O4—K1—O358.50 (18)O2—C3—H3A109.2
O1—K1—O3117.87 (19)C4—C3—H3A109.2
O5—K1—O660.79 (17)O2—C3—H3B109.2
O4—K1—O6122.23 (18)C4—C3—H3B109.2
O1—K1—O658.85 (17)H3A—C3—H3B107.9
O3—K1—O6164.57 (17)O3—C4—C3110.3 (9)
O5—K1—O2171.73 (16)O3—C4—H4A109.6
O4—K1—O2117.40 (19)C3—C4—H4A109.6
O1—K1—O261.59 (18)O3—C4—H4B109.6
O3—K1—O260.33 (18)C3—C4—H4B109.6
O6—K1—O2120.23 (18)H4A—C4—H4B108.1
O5—K1—N2ii74.48 (18)O3—C5—C6108.4 (8)
O4—K1—N2ii82.2 (2)O3—C5—H5A110.0
O1—K1—N2ii89.5 (2)C6—C5—H5A110.0
O3—K1—N2ii77.8 (2)O3—C5—H5B110.0
O6—K1—N2ii87.0 (2)C6—C5—H5B110.0
O2—K1—N2ii97.27 (18)H5A—C5—H5B108.4
O5—K1—N179.11 (18)O4—C6—C5108.1 (7)
O4—K1—N185.06 (18)O4—C6—H6A110.1
O1—K1—N1103.39 (18)C5—C6—H6A110.1
O3—K1—N1114.45 (19)O4—C6—H6B110.1
O6—K1—N180.48 (17)C5—C6—H6B110.1
O2—K1—N1109.13 (18)H6A—C6—H6B108.4
N2ii—K1—N1153.6 (2)O4—C7—C8109.9 (8)
O5—K1—C821.73 (18)O4—C7—H7A109.7
O4—K1—C843.1 (2)C8—C7—H7A109.7
O1—K1—C8138.4 (2)O4—C7—H7B109.7
O3—K1—C8101.2 (2)C8—C7—H7B109.7
O6—K1—C879.6 (2)H7A—C7—H7B108.2
O2—K1—C8160.0 (2)O5—C8—C7109.3 (7)
N2ii—K1—C885.0 (2)O5—C8—K147.4 (4)
N1—K1—C870.0 (2)C7—C8—K182.5 (5)
O5—K1—C1138.3 (2)O5—C8—H8A109.8
O4—K1—C1160.1 (2)C7—C8—H8A109.8
O1—K1—C121.59 (18)K1—C8—H8A84.0
O3—K1—C1102.9 (2)O5—C8—H8B109.8
O6—K1—C177.7 (2)C7—C8—H8B109.8
O2—K1—C143.0 (2)K1—C8—H8B157.3
N2ii—K1—C1101.8 (2)H8A—C8—H8B108.3
N1—K1—C198.1 (2)O5—C9—C10109.7 (7)
C8—K1—C1155.9 (2)C10—C9—K180.2 (5)
O5—K1—C921.24 (16)O5—C9—H9A109.7
O4—K1—C981.4 (2)C10—C9—H9A109.7
O1—K1—C999.7 (2)K1—C9—H9A153.7
O3—K1—C9137.5 (2)O5—C9—H9B109.7
O6—K1—C940.96 (18)C10—C9—H9B109.7
O2—K1—C9161.2 (2)K1—C9—H9B90.0
N2ii—K1—C983.7 (2)H9A—C9—H9B108.2
N1—K1—C971.6 (2)O6—C10—C9109.4 (8)
C8—K1—C938.7 (2)O6—C10—H10A109.8
C1—K1—C9118.3 (2)C9—C10—H10A109.8
C15—N1—K1171.1 (7)O6—C10—H10B109.8
C16—N2—K1iii134.9 (6)C9—C10—H10B109.8
C1—O1—C12114.0 (7)H10A—C10—H10B108.3
C1—O1—K1110.0 (5)O6—C11—C12111.0 (7)
C12—O1—K1116.9 (4)O6—C11—H11A109.4
C2—O2—C3116.1 (7)C12—C11—H11A109.4
C2—O2—K1111.9 (5)O6—C11—H11B109.4
C3—O2—K1110.8 (5)C12—C11—H11B109.4
C4—O3—C5112.4 (8)H11A—C11—H11B108.0
C4—O3—K1117.6 (6)O1—C12—C11107.6 (7)
C5—O3—K1118.1 (5)O1—C12—H12A110.2
C7—O4—C6109.6 (7)C11—C12—H12A110.2
C7—O4—K1113.6 (5)O1—C12—H12B110.2
C6—O4—K1116.0 (4)C11—C12—H12B110.2
C8—O5—C9113.5 (7)H12A—C12—H12B108.5
C8—O5—K1110.8 (5)C14—C13—S1124.9 (5)
C9—O5—K1114.1 (5)C14—C13—S2124.0 (6)
C11—O6—C10113.6 (7)S1—C13—S2111.1 (4)
C11—O6—K1115.2 (5)C13—C14—C16118.2 (7)
C10—O6—K1111.3 (5)C13—C14—C15121.8 (7)
C13—S1—Cu185.9 (2)C16—C14—C15119.9 (6)
C13—S2—Cu186.4 (3)N1—C15—C14176.4 (9)
O1—C1—C2109.9 (7)N2—C16—C14177.4 (8)
O1—C1—K148.4 (4)C17iv—C17—Cl1105.3 (12)
C2—C1—K182.5 (5)C17iv—C17—H17A110.7
O1—C1—H1A109.7Cl1—C17—H17A110.7
C2—C1—H1A109.7C17iv—C17—H17B110.7
K1—C1—H1A158.1Cl1—C17—H17B110.7
O1—C1—H1B109.7H17A—C17—H17B108.8
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+3/2; (iii) x, y1/2, z+3/2; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[CuK2(C4N2S2)2(C12H24O6)2]·C2H4Cl2
Mr1049.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.259 (3), 13.084 (4), 22.228 (7)
β (°) 90.413 (6)
V3)2401.8 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.22 × 0.15 × 0.07
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.815, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
12535, 4281, 1698
Rint0.084
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.171, 1.00
No. of reflections4281
No. of parameters268
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.44

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000), SHELXTL.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds