Download citation
Download citation
link to html
The title compound, [Bi(C3H5OS2)3(C12H8N2)] [systematic name: tris­(ethoxy­methane­dithio­ato-κ2S,S′)(1,10-phenan­thro­line)bis­muth(III)], is monomeric, with the Bi atom chelated by the S atoms of three ethylxanthate ligands and the N atoms of 1,10-phenanthroline. The central BiIII atom is eight-coordinate and adopts a distorted capped-penta­gonal–bipyramidal geometry. In the crystal structure, weak C—H...S inter­actions and a close S...S contact stabilize the structure [S...S = 3.509 (3) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807020338/sj2303sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807020338/sj2303Isup2.hkl
Contains datablock I

CCDC reference: 284314

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.028 Å
  • R factor = 0.068
  • wR factor = 0.191
  • Data-to-parameter ratio = 15.8

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT342_ALERT_3_B Low Bond Precision on C-C bonds (x 1000) Ang ... 28
Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.77 PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 200 Deg. PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Bi1 - S3 .. 6.09 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Bi1 - S6 .. 8.29 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for S1 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for S6 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Bi1 PLAT480_ALERT_4_C Long H...A H-Bond Reported H5B .. S3 .. 2.90 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H20 .. S2 .. 2.99 Ang.
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.774 Tmax scaled 0.282 Tmin scaled 0.269
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

There has recently been increasing interest in bismuth(III) coordination chemistry, particularly in the light of the role of bismuth compounds in 212Bi isotope therapy in cancer research (Sun et al., 1997) and the use of bismuth complexes in the treatment of peptic ulcers (Baxter et al., 1992). In particular, the interaction of bismuth(III) salts with chelating nitrogen-base ligands has been actively studied. In view of above and persuance of our interest in sulfur-containing ligands (Li et al., 2005), we report here the synthesis and structure of the title compound, (I).

In this complex the bismuth atom is eight-coordinated by sulfur atoms belonging to three bidenate ethylxanthate ligands and by the nitrogen atoms of the bidentate 1,10-phenanthroline. The central Bi atom is eight-coordinate with atoms S4 and N1 in axial positions, and atoms S1, S2, S3, S5 and S6 in the equatorial plane. The remaining N atom (N2) of the 1,10-phenanthroline ligand caps the S2/S5/N1 face, giving a highly distorted capped pentagonal bipyramidal coordination geometry. Three Bi—S bonds [to S2, S3 and S5; mean = 2.897 Å] are significantly longer than the others [to S1, S4 and S6; mean = 2.805 Å], suggesting some delocalization in the system. In addition, the chelating phenanthroline ligands are bonded to the Bi atom through two N atoms. The Bi1—N1 and Bi1—N2 distances fall in the same range as in other Bi/N complexes (Li et al., 2005).

The structure is stabilized by weak C—H···S interactions, Table 1, and a close S2···S2i contact 3.496 Å, i = 1 - x, 1 - y, 1 - z.

Related literature top

For uses of BiIII complexes, see: Sun et al. (1997) and Baxter (1992). For related BiIII compounds with xanthate ligands, see, for example, Snow & Tiekink (1987) and Hoskins et al. (1985), and with phenanthroline ligands, see, for example, Li et al. (2005).

Experimental top

To a stirred solution of BiI3 (0.2 mmol) in acetonitrile (20 ml), C2H5OCS2Na (0.6 mmol) was added. The reaction mixture was stirred for 2.5 h at 298 K. An orange solution was obtained and then filtered. The solvent was gradually removed by evaporation under vacuum to give a solid product which was recrystallized from ethanol yielding orange-red crystals of (I).

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms [C—H = 0.93Å with Uiso(H) = 1.2Ueq for aromatic, C—H = 0.97Å with Uiso(H) = 1.2Ueq for CH2, and C—H =0.96Å with Uiso(H) = 1.5Ueq for CH3 H atoms].

Structure description top

There has recently been increasing interest in bismuth(III) coordination chemistry, particularly in the light of the role of bismuth compounds in 212Bi isotope therapy in cancer research (Sun et al., 1997) and the use of bismuth complexes in the treatment of peptic ulcers (Baxter et al., 1992). In particular, the interaction of bismuth(III) salts with chelating nitrogen-base ligands has been actively studied. In view of above and persuance of our interest in sulfur-containing ligands (Li et al., 2005), we report here the synthesis and structure of the title compound, (I).

In this complex the bismuth atom is eight-coordinated by sulfur atoms belonging to three bidenate ethylxanthate ligands and by the nitrogen atoms of the bidentate 1,10-phenanthroline. The central Bi atom is eight-coordinate with atoms S4 and N1 in axial positions, and atoms S1, S2, S3, S5 and S6 in the equatorial plane. The remaining N atom (N2) of the 1,10-phenanthroline ligand caps the S2/S5/N1 face, giving a highly distorted capped pentagonal bipyramidal coordination geometry. Three Bi—S bonds [to S2, S3 and S5; mean = 2.897 Å] are significantly longer than the others [to S1, S4 and S6; mean = 2.805 Å], suggesting some delocalization in the system. In addition, the chelating phenanthroline ligands are bonded to the Bi atom through two N atoms. The Bi1—N1 and Bi1—N2 distances fall in the same range as in other Bi/N complexes (Li et al., 2005).

The structure is stabilized by weak C—H···S interactions, Table 1, and a close S2···S2i contact 3.496 Å, i = 1 - x, 1 - y, 1 - z.

For uses of BiIII complexes, see: Sun et al. (1997) and Baxter (1992). For related BiIII compounds with xanthate ligands, see, for example, Snow & Tiekink (1987) and Hoskins et al. (1985), and with phenanthroline ligands, see, for example, Li et al. (2005).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of the title complex. The S···S interaction is shown as a dashed line.
tris(ethoxymethanedithioato-κ2S,S')(1,10-phenanthroline)bismuth(III), top
Crystal data top
[Bi(C3H5OS2)3(C12H8N2)]Z = 2
Mr = 752.75F(000) = 732
Triclinic, P1Dx = 1.857 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.7569 (16) ÅCell parameters from 2951 reflections
b = 11.1985 (17) Åθ = 2.4–24.6°
c = 11.2494 (17) ŵ = 7.04 mm1
α = 96.306 (2)°T = 298 K
β = 91.127 (2)°Block, orange-red
γ = 91.737 (2)°0.19 × 0.18 × 0.18 mm
V = 1345.9 (4) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
4698 independent reflections
Radiation source: fine-focus sealed tube3872 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.348, Tmax = 0.364k = 1113
7132 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1041P)2 + 18.5625P]
where P = (Fo2 + 2Fc2)/3
4698 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 2.99 e Å3
551 restraintsΔρmin = 3.37 e Å3
Crystal data top
[Bi(C3H5OS2)3(C12H8N2)]γ = 91.737 (2)°
Mr = 752.75V = 1345.9 (4) Å3
Triclinic, P1Z = 2
a = 10.7569 (16) ÅMo Kα radiation
b = 11.1985 (17) ŵ = 7.04 mm1
c = 11.2494 (17) ÅT = 298 K
α = 96.306 (2)°0.19 × 0.18 × 0.18 mm
β = 91.127 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4698 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3872 reflections with I > 2σ(I)
Tmin = 0.348, Tmax = 0.364Rint = 0.020
7132 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.068551 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1041P)2 + 18.5625P]
where P = (Fo2 + 2Fc2)/3
4698 reflectionsΔρmax = 2.99 e Å3
298 parametersΔρmin = 3.37 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.68014 (5)0.26489 (5)0.68287 (5)0.0469 (2)
N10.9283 (13)0.2752 (14)0.6203 (14)0.065 (4)
N20.8064 (13)0.4878 (13)0.6736 (13)0.058 (3)
O10.5261 (14)0.2467 (13)0.2990 (10)0.0870 (17)
O20.3121 (9)0.3057 (9)0.8709 (10)0.059 (3)
O30.8331 (13)0.0829 (12)1.0024 (12)0.0844 (17)
S10.6586 (6)0.1155 (5)0.4631 (5)0.0859 (10)
S20.5384 (5)0.3490 (5)0.4953 (5)0.0749 (9)
S30.5113 (4)0.4325 (4)0.8153 (4)0.0614 (9)
S40.4617 (4)0.1707 (4)0.7510 (4)0.0576 (9)
S50.7886 (5)0.2739 (5)0.9215 (5)0.0744 (10)
S60.7602 (5)0.0435 (5)0.7627 (5)0.0768 (10)
C10.5798 (19)0.226 (2)0.4120 (14)0.0798 (13)
C20.556 (2)0.1502 (16)0.2132 (14)0.0860 (18)
H2A0.52390.07510.23760.103*
H2B0.64590.14560.20790.103*
C30.500 (2)0.170 (2)0.0914 (12)0.091 (4)
H3A0.52270.10530.03300.137*
H3B0.53100.24470.06830.137*
H3C0.41110.17080.09620.137*
C40.4271 (12)0.3071 (15)0.8151 (15)0.0565 (17)
C50.2697 (13)0.4150 (12)0.9345 (16)0.062 (2)
H5A0.26960.47850.88240.075*
H5B0.32460.44021.00270.075*
C60.1380 (13)0.3907 (17)0.9765 (17)0.073 (4)
H6A0.10780.46271.01900.110*
H6B0.13920.32821.02840.110*
H6C0.08440.36610.90840.110*
C70.7962 (18)0.1240 (18)0.8926 (15)0.0732 (16)
C80.834 (2)0.0378 (13)1.0278 (15)0.084 (2)
H8A0.89440.08160.97860.101*
H8B0.75280.07621.01050.101*
C90.869 (2)0.0387 (18)1.1604 (15)0.085 (3)
H9A0.86590.12001.18030.127*
H9B0.81080.00781.20840.127*
H9C0.95120.00461.17580.127*
C100.9895 (19)0.176 (2)0.5929 (19)0.077 (4)
H100.94570.10260.58320.093*
C111.1189 (19)0.178 (2)0.5778 (19)0.080 (4)
H111.15920.10660.55820.096*
C121.183 (2)0.279 (2)0.5911 (19)0.079 (4)
H121.26820.27880.58030.095*
C131.1268 (18)0.386 (2)0.6206 (17)0.071 (3)
C140.9958 (16)0.3812 (18)0.6365 (16)0.065 (3)
C150.9313 (17)0.4899 (18)0.6645 (16)0.066 (3)
C161.0006 (19)0.6024 (19)0.6805 (17)0.071 (4)
C170.927 (2)0.713 (2)0.7052 (19)0.082 (4)
H170.96660.78820.71680.098*
C180.810 (2)0.7007 (19)0.7100 (18)0.078 (4)
H180.76330.76930.72380.093*
C190.748 (2)0.5882 (17)0.6955 (17)0.070 (4)
H190.66170.58470.70160.084*
C201.1907 (19)0.500 (2)0.6358 (19)0.079 (4)
H201.27610.50340.62500.094*
C211.132 (2)0.602 (2)0.6652 (19)0.080 (4)
H211.17720.67440.67580.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.0363 (3)0.0425 (3)0.0620 (4)0.0043 (2)0.0022 (2)0.0048 (2)
N10.044 (8)0.066 (9)0.084 (10)0.011 (7)0.008 (7)0.009 (8)
N20.050 (8)0.054 (8)0.073 (9)0.000 (6)0.005 (7)0.011 (7)
O10.082 (3)0.093 (3)0.084 (3)0.004 (3)0.006 (3)0.001 (3)
O20.044 (6)0.062 (7)0.070 (7)0.000 (5)0.009 (5)0.003 (6)
O30.075 (3)0.079 (3)0.101 (3)0.006 (3)0.003 (3)0.022 (3)
S10.083 (2)0.083 (2)0.0848 (16)0.0011 (17)0.0008 (18)0.0202 (15)
S20.0680 (19)0.0842 (19)0.0747 (17)0.0015 (16)0.0100 (14)0.0212 (15)
S30.0544 (18)0.0551 (18)0.0737 (19)0.0008 (15)0.0079 (16)0.0006 (16)
S40.0477 (17)0.0510 (17)0.0740 (19)0.0001 (15)0.0071 (16)0.0064 (16)
S50.073 (2)0.077 (2)0.0748 (14)0.0058 (18)0.0127 (16)0.0148 (16)
S60.068 (2)0.0621 (19)0.102 (2)0.0078 (17)0.0019 (18)0.0134 (18)
C10.073 (3)0.095 (3)0.0685 (17)0.016 (2)0.010 (2)0.0006 (19)
C20.080 (3)0.093 (3)0.082 (3)0.004 (3)0.005 (3)0.001 (3)
C30.086 (6)0.101 (7)0.084 (6)0.004 (6)0.008 (6)0.001 (6)
C40.047 (3)0.053 (3)0.069 (3)0.003 (3)0.006 (3)0.003 (3)
C50.054 (4)0.060 (4)0.071 (4)0.003 (4)0.008 (4)0.001 (4)
C60.060 (7)0.079 (7)0.079 (7)0.006 (6)0.013 (6)0.001 (7)
C70.064 (3)0.068 (3)0.089 (3)0.006 (3)0.004 (3)0.017 (3)
C80.074 (4)0.076 (4)0.102 (4)0.005 (4)0.003 (4)0.016 (4)
C90.074 (6)0.084 (6)0.098 (6)0.003 (6)0.004 (6)0.022 (6)
C100.062 (8)0.091 (9)0.083 (8)0.015 (8)0.011 (7)0.025 (8)
C110.063 (8)0.103 (9)0.080 (8)0.025 (8)0.011 (7)0.028 (8)
C120.060 (7)0.106 (9)0.076 (7)0.005 (7)0.005 (7)0.028 (7)
C130.057 (7)0.096 (8)0.066 (7)0.000 (6)0.001 (6)0.031 (7)
C140.051 (6)0.085 (7)0.064 (7)0.003 (6)0.002 (6)0.029 (6)
C150.060 (7)0.079 (7)0.063 (6)0.018 (6)0.002 (6)0.023 (6)
C160.069 (7)0.082 (7)0.064 (7)0.017 (7)0.002 (6)0.022 (6)
C170.089 (8)0.076 (8)0.078 (8)0.024 (8)0.001 (8)0.011 (7)
C180.088 (9)0.069 (8)0.077 (8)0.007 (8)0.005 (8)0.011 (7)
C190.073 (8)0.065 (8)0.074 (8)0.005 (7)0.006 (7)0.021 (7)
C200.060 (7)0.102 (8)0.076 (7)0.016 (7)0.005 (6)0.026 (7)
C210.070 (7)0.093 (8)0.078 (7)0.027 (7)0.004 (7)0.023 (7)
Geometric parameters (Å, º) top
Bi1—S42.706 (4)C5—H5A0.9700
Bi1—N12.776 (14)C5—H5B0.9700
Bi1—N22.819 (14)C6—H6A0.9600
Bi1—S12.830 (5)C6—H6B0.9600
Bi1—S22.839 (5)C6—H6C0.9600
Bi1—S62.878 (5)C8—C91.532 (11)
Bi1—S52.896 (5)C8—H8A0.9700
Bi1—S32.956 (5)C8—H8B0.9700
N1—C101.32 (2)C9—H9A0.9600
N1—C141.37 (2)C9—H9B0.9600
N2—C191.31 (2)C9—H9C0.9600
N2—C151.35 (2)C10—C111.41 (3)
O1—C21.417 (11)C10—H100.9300
O1—C11.432 (10)C11—C121.30 (3)
O2—C41.399 (10)C11—H110.9300
O2—C51.440 (10)C12—C131.37 (3)
O3—C81.412 (10)C12—H120.9300
O3—C71.418 (10)C13—C201.42 (3)
S1—C11.67 (2)C13—C141.42 (3)
S2—C11.66 (2)C14—C151.43 (3)
S3—C41.648 (16)C15—C161.44 (3)
S4—C41.671 (17)C16—C211.42 (3)
S5—C71.68 (2)C16—C171.49 (3)
S6—C71.66 (2)C17—C181.27 (3)
C2—C31.527 (11)C17—H170.9300
C2—H2A0.9700C18—C191.40 (3)
C2—H2B0.9700C18—H180.9300
C3—H3A0.9600C19—H190.9300
C3—H3B0.9600C20—C211.34 (3)
C3—H3C0.9600C20—H200.9300
C5—C61.528 (10)C21—H210.9300
S4—Bi1—N1158.8 (3)O2—C5—H5A110.1
S4—Bi1—N2141.0 (3)C6—C5—H5A110.1
N1—Bi1—N259.3 (4)O2—C5—H5B110.1
S4—Bi1—S189.76 (16)C6—C5—H5B110.1
N1—Bi1—S182.0 (4)H5A—C5—H5B108.4
N2—Bi1—S1115.4 (3)C5—C6—H6A109.5
S4—Bi1—S285.59 (15)C5—C6—H6B109.5
N1—Bi1—S2107.4 (3)H6A—C6—H6B109.5
N2—Bi1—S281.2 (3)C5—C6—H6C109.5
S1—Bi1—S262.52 (18)H6A—C6—H6C109.5
S4—Bi1—S679.10 (15)H6B—C6—H6C109.5
N1—Bi1—S680.3 (3)O3—C7—S6128.5 (15)
N2—Bi1—S6131.5 (3)O3—C7—S5105.5 (13)
S1—Bi1—S680.86 (18)S6—C7—S5125.9 (9)
S2—Bi1—S6140.30 (17)O3—C8—C9108.3 (10)
S4—Bi1—S592.46 (15)O3—C8—H8A110.0
N1—Bi1—S582.3 (4)C9—C8—H8A110.0
N2—Bi1—S585.4 (3)O3—C8—H8B110.0
S1—Bi1—S5141.62 (18)C9—C8—H8B110.0
S2—Bi1—S5155.84 (17)H8A—C8—H8B108.4
S6—Bi1—S562.06 (16)C8—C9—H9A109.5
S4—Bi1—S363.13 (13)C8—C9—H9B109.5
N1—Bi1—S3135.0 (3)H9A—C9—H9B109.5
N2—Bi1—S378.2 (3)C8—C9—H9C109.5
S1—Bi1—S3133.69 (16)H9A—C9—H9C109.5
S2—Bi1—S377.74 (15)H9B—C9—H9C109.5
S6—Bi1—S3124.66 (15)N1—C10—C11122 (2)
S5—Bi1—S379.91 (15)N1—C10—H10119.0
C10—N1—C14117.5 (17)C11—C10—H10119.0
C10—N1—Bi1120.9 (13)C12—C11—C10121 (2)
C14—N1—Bi1120.8 (12)C12—C11—H11119.7
C19—N2—C15120.2 (16)C10—C11—H11119.7
C19—N2—Bi1120.4 (12)C11—C12—C13121 (2)
C15—N2—Bi1118.7 (12)C11—C12—H12119.3
C2—O1—C1108.3 (14)C13—C12—H12119.3
C4—O2—C5119.1 (11)C12—C13—C20124.3 (19)
C8—O3—C7126.5 (15)C12—C13—C14117 (2)
C1—S1—Bi186.4 (7)C20—C13—C14119 (2)
C1—S2—Bi186.2 (6)N1—C14—C13121.8 (19)
C4—S3—Bi181.0 (5)N1—C14—C15118.4 (16)
C4—S4—Bi188.8 (4)C13—C14—C15119.7 (18)
C7—S5—Bi185.4 (5)N2—C15—C14120.7 (16)
C7—S6—Bi186.3 (6)N2—C15—C16120.1 (19)
O1—C1—S2100.1 (13)C14—C15—C16119.2 (18)
O1—C1—S1135.4 (16)C21—C16—C15119 (2)
S2—C1—S1124.5 (9)C21—C16—C17124.7 (19)
O1—C2—C3109.7 (10)C15—C16—C17116.5 (18)
O1—C2—H2A109.7C18—C17—C16118 (2)
C3—C2—H2A109.7C18—C17—H17120.8
O1—C2—H2B109.7C16—C17—H17120.8
C3—C2—H2B109.7C17—C18—C19122 (2)
H2A—C2—H2B108.2C17—C18—H18118.8
C2—C3—H3A109.5C19—C18—H18118.8
C2—C3—H3B109.5N2—C19—C18122 (2)
H3A—C3—H3B109.5N2—C19—H19118.8
C2—C3—H3C109.5C18—C19—H19118.8
H3A—C3—H3C109.5C21—C20—C13122 (2)
H3B—C3—H3C109.5C21—C20—H20119.0
O2—C4—S3121.3 (12)C13—C20—H20119.0
O2—C4—S4111.7 (11)C20—C21—C16122 (2)
S3—C4—S4127.0 (7)C20—C21—H21119.2
O2—C5—C6108.0 (9)C16—C21—H21119.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···S4i0.972.783.660 (19)152
C5—H5B···S3ii0.972.903.851 (17)167
C20—H20···S2iii0.932.993.73 (2)138
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+2; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Bi(C3H5OS2)3(C12H8N2)]
Mr752.75
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.7569 (16), 11.1985 (17), 11.2494 (17)
α, β, γ (°)96.306 (2), 91.127 (2), 91.737 (2)
V3)1345.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)7.04
Crystal size (mm)0.19 × 0.18 × 0.18
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.348, 0.364
No. of measured, independent and
observed [I > 2σ(I)] reflections
7132, 4698, 3872
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.191, 1.04
No. of reflections4698
No. of parameters298
No. of restraints551
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.1041P)2 + 18.5625P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.99, 3.37

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···S4i0.972.783.660 (19)151.5
C5—H5B···S3ii0.972.903.851 (17)167.0
C20—H20···S2iii0.932.993.73 (2)138.1
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+2; (iii) x+2, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds