Download citation
Download citation
link to html
The title compound, [Ni(C5H5)(C12H7)(C18H15P)], does not contain strong hydrogen-bond donors or acceptors and the primary inter­actions are limited to those of the weak C—H...π(arene) type and mainly involving the arene rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807016832/tk2154sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807016832/tk2154Isup2.hkl
Contains datablock I

CCDC reference: 646635

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.048
  • wR factor = 0.120
  • Data-to-parameter ratio = 17.1

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full Low ....... 0.95
Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.813 0.954 Tmin(prime) and Tmax expected: 0.875 0.915 RR(prime) = 0.890 Please check that your absorption correction is appropriate. PLAT022_ALERT_3_C Ratio Unique / Expected Reflections too Low .... 0.93 PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.89 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.96 PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ni1 - C1 .. 5.65 su PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C2 - C4 ... 1.43 Ang.
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The acetylide linkage in Ni(η5-C5H5)(PPh3)-CC–X complexes allows facile electronic communication between the electron-rich Ni(η5-C5H5)(PPh3) moiety and the X group (X is alkyl or arene), thus affecting the characteristic chemistry of both X and the acetylide linkage (Gallagher et al., 2002). However, if X is an electron-withdrawing group, the molecule is a donor–π-acceptor (D–π-A) system which may have nonlinear optical (NLO) properties (Whittal et al., 1998a,b), although the phenyl derivative (X = C6H5) does not appear to be particularly effective. We have

demonstrated that polycylic hydrocarbons containing one to five aromatic rings

can act as an electron-donor endgroup in D–π-A systems in the presence of suitable acceptors, and have examined their behaviour attached to the Ni(η5-C5H5)(PPh3) donor moiety (Butler et al., 2005). The spectroscopic and electrochemical evidence suggests limited communication between either end of these Ni(η5-C5H5)(PPh3)-CC–X systems, at least in the ground state, and is not sufficient to influence significant changes in the geometric data from diffraction measurements. Here, we present the title 2-naphthyl derivative, (I) (where X = C10H7).

The molecule of (I) has a half-sandwich structure and contains the σ-bonded ethynyl-2-naphthyl ligand, the η5-C5 ring and triphenyl phosphine bonded to the central NiII atom. A view of the molecule with the atomic numbering scheme is presented in Fig. 1 (with selected dimensions in Table 2). The principal Ni–ligand dimensions include Ni1—P1 [2.1484 (9) Å], Ni1—C1 [1.843 (4) Å] and P1—Ni1—C1 [89.04 (9)°], and these are similar to data in related derivatives (Gallagher et al., 1998, 2002; Butler et al., 1998, 2005). The acetylide CC and Csp—Car bond lengths are 1.211 (4) and 1.433 (5) Å, respectively. The former is slightly longer than the expected value of 1.18 (1) Å for CC (Orpen et al., 1994), while the latter is as expected. The bond angles of the Ni—CC—C chain deviate slightly from linearity, with Ni—CC = 176.8 (3)° and CC—C = 173.0 (3)°.

The η5-C5H5 ring is orthogonal to the P1/Ni1/C1 plane [88.70 (12)°] and to the naphthyl ring [73.83 (10)°]. The naphthyl ring is twisted by 24.23 (9)° from the P1/Ni1/C1 plane.

The closest intramolecular contact to Ni1 involves H42, with H42···Ni1 = 3.11 Å and C42—H42···Ni1 = 113° [C42 is the closest PPh3 ortho-C atom to Ni1, at 3.586 (3) Å]. Although the three Ni1—P—C angles vary, at 111.85 (10), 114.48 (10) and 118.63 (10)°, there is little asymmetry in the PPh3 ligand, with all six P—C—C angles in the range 119.1 (2)–122.6 (3)° and three P—Cipso···Cpara angles of 177.20 (18), 177.42 (16) and 178.25 (18)°.

In the absence of strong hydrogen-bond donors or acceptors, C—H···π(arene) interactions involving the phosphine arene rings arise, with C···Cg in the range 3.549 (4)–3.797 (4) Å and with C—H···Cg angles in the range 138–164° (details in Table 2), where Cg is an aromatic ring centroid (Fig. 2).

Related literature top

For related literature, see: Butler et al. (1998, 2005); Gallagher et al. (1998, 2002); Orpen et al. (1994); Whittal et al. (1998a,b).

Experimental top

Compound (I) was prepared according to literature methods (Butler et al., 2005) and is compound 1 d in the aforementioned paper.

Refinement top

H atoms were treated as riding, with C—H distances of 0.95 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

The acetylide linkage in Ni(η5-C5H5)(PPh3)-CC–X complexes allows facile electronic communication between the electron-rich Ni(η5-C5H5)(PPh3) moiety and the X group (X is alkyl or arene), thus affecting the characteristic chemistry of both X and the acetylide linkage (Gallagher et al., 2002). However, if X is an electron-withdrawing group, the molecule is a donor–π-acceptor (D–π-A) system which may have nonlinear optical (NLO) properties (Whittal et al., 1998a,b), although the phenyl derivative (X = C6H5) does not appear to be particularly effective. We have

demonstrated that polycylic hydrocarbons containing one to five aromatic rings

can act as an electron-donor endgroup in D–π-A systems in the presence of suitable acceptors, and have examined their behaviour attached to the Ni(η5-C5H5)(PPh3) donor moiety (Butler et al., 2005). The spectroscopic and electrochemical evidence suggests limited communication between either end of these Ni(η5-C5H5)(PPh3)-CC–X systems, at least in the ground state, and is not sufficient to influence significant changes in the geometric data from diffraction measurements. Here, we present the title 2-naphthyl derivative, (I) (where X = C10H7).

The molecule of (I) has a half-sandwich structure and contains the σ-bonded ethynyl-2-naphthyl ligand, the η5-C5 ring and triphenyl phosphine bonded to the central NiII atom. A view of the molecule with the atomic numbering scheme is presented in Fig. 1 (with selected dimensions in Table 2). The principal Ni–ligand dimensions include Ni1—P1 [2.1484 (9) Å], Ni1—C1 [1.843 (4) Å] and P1—Ni1—C1 [89.04 (9)°], and these are similar to data in related derivatives (Gallagher et al., 1998, 2002; Butler et al., 1998, 2005). The acetylide CC and Csp—Car bond lengths are 1.211 (4) and 1.433 (5) Å, respectively. The former is slightly longer than the expected value of 1.18 (1) Å for CC (Orpen et al., 1994), while the latter is as expected. The bond angles of the Ni—CC—C chain deviate slightly from linearity, with Ni—CC = 176.8 (3)° and CC—C = 173.0 (3)°.

The η5-C5H5 ring is orthogonal to the P1/Ni1/C1 plane [88.70 (12)°] and to the naphthyl ring [73.83 (10)°]. The naphthyl ring is twisted by 24.23 (9)° from the P1/Ni1/C1 plane.

The closest intramolecular contact to Ni1 involves H42, with H42···Ni1 = 3.11 Å and C42—H42···Ni1 = 113° [C42 is the closest PPh3 ortho-C atom to Ni1, at 3.586 (3) Å]. Although the three Ni1—P—C angles vary, at 111.85 (10), 114.48 (10) and 118.63 (10)°, there is little asymmetry in the PPh3 ligand, with all six P—C—C angles in the range 119.1 (2)–122.6 (3)° and three P—Cipso···Cpara angles of 177.20 (18), 177.42 (16) and 178.25 (18)°.

In the absence of strong hydrogen-bond donors or acceptors, C—H···π(arene) interactions involving the phosphine arene rings arise, with C···Cg in the range 3.549 (4)–3.797 (4) Å and with C—H···Cg angles in the range 138–164° (details in Table 2), where Cg is an aromatic ring centroid (Fig. 2).

For related literature, see: Butler et al. (1998, 2005); Gallagher et al. (1998, 2002); Orpen et al. (1994); Whittal et al. (1998a,b).

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PREP8 (Ferguson, 1998).

Figures top
[Figure 1] Fig. 1. A view of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates the intramolecular H42···Ni1 contact.
[Figure 2] Fig. 2. A view of the weak interactions in the crystal structure of (I), with atoms shown as their van der Waals spheres. Three of the C—H···π(arene) interactions have labels.
(η5-Cyclopentadienyl)(2-naphthylethynyl)(triphenylphosphine-κP)nickel(II) top
Crystal data top
[Ni(C5H5)(C12H7)(C18H15P)]F(000) = 1120
Mr = 537.25? #Insert any comments here.
Monoclinic, P21/nDx = 1.338 Mg m3
Hall symbol: -p 2ynMo Kα radiation, λ = 0.71073 Å
a = 14.4455 (4) ÅCell parameters from 17521 reflections
b = 12.7392 (5) Åθ = 2.6–27.5°
c = 15.2816 (4) ŵ = 0.81 mm1
β = 108.439 (2)°T = 150 K
V = 2667.80 (15) Å3Block, green
Z = 40.16 × 0.15 × 0.11 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
5695 independent reflections
Radiation source: fine-focus sealed X-ray tube3173 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
φ and ω scans with κ offsetsθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1815
Tmin = 0.813, Tmax = 0.954k = 1616
8684 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0504P)2]
where P = (Fo2 + 2Fc2)/3
5695 reflections(Δ/σ)max < 0.001
334 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Ni(C5H5)(C12H7)(C18H15P)]V = 2667.80 (15) Å3
Mr = 537.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.4455 (4) ŵ = 0.81 mm1
b = 12.7392 (5) ÅT = 150 K
c = 15.2816 (4) Å0.16 × 0.15 × 0.11 mm
β = 108.439 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
5695 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3173 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 0.954Rint = 0.083
8684 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 0.98Δρmax = 0.54 e Å3
5695 reflectionsΔρmin = 0.61 e Å3
334 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.07764 (3)0.09838 (3)0.27091 (3)0.02909 (14)
P10.18440 (6)0.08760 (7)0.40539 (5)0.0265 (2)
C10.1713 (2)0.0554 (3)0.2201 (2)0.0309 (8)
C20.2363 (2)0.0278 (2)0.1910 (2)0.0313 (8)
C30.4134 (2)0.0207 (3)0.2268 (2)0.0324 (8)
C40.3212 (2)0.0016 (2)0.1674 (2)0.0313 (8)
C50.3134 (2)0.0539 (3)0.0825 (2)0.0339 (8)
C60.3948 (2)0.0804 (3)0.0611 (2)0.0349 (8)
C70.4892 (2)0.0577 (3)0.1204 (2)0.0307 (8)
C80.4987 (2)0.0065 (2)0.2054 (2)0.0292 (8)
C11A0.5747 (2)0.0834 (3)0.0985 (2)0.0362 (8)
C12A0.6643 (3)0.0598 (3)0.1573 (2)0.0403 (9)
C13A0.6735 (3)0.0100 (3)0.2418 (2)0.0421 (9)
C14A0.5928 (2)0.0161 (3)0.2657 (2)0.0371 (9)
C110.0315 (2)0.1281 (3)0.1477 (2)0.0460 (10)
C120.0613 (2)0.0393 (3)0.1885 (2)0.0430 (9)
C130.0665 (2)0.0694 (3)0.2737 (2)0.0415 (9)
C140.0426 (2)0.1787 (3)0.2848 (2)0.0412 (9)
C150.0263 (2)0.2162 (3)0.2053 (3)0.0478 (10)
C210.1570 (2)0.1480 (2)0.5034 (2)0.0276 (7)
C220.2256 (2)0.2058 (3)0.5702 (2)0.0327 (8)
C230.2028 (2)0.2488 (3)0.6449 (2)0.0359 (8)
C240.1112 (2)0.2351 (3)0.6528 (2)0.0359 (8)
C250.0422 (2)0.1784 (3)0.5873 (2)0.0384 (9)
C260.0648 (2)0.1347 (3)0.5127 (2)0.0363 (8)
C310.2103 (2)0.0496 (2)0.4429 (2)0.0276 (7)
C320.2333 (2)0.1217 (3)0.3845 (2)0.0388 (9)
C330.2494 (3)0.2259 (3)0.4093 (2)0.0428 (9)
C340.2427 (2)0.2602 (3)0.4926 (2)0.0375 (9)
C350.2215 (2)0.1900 (3)0.5520 (2)0.0384 (9)
C360.2052 (2)0.0857 (3)0.5267 (2)0.0346 (8)
C410.3034 (2)0.1433 (2)0.4134 (2)0.0270 (7)
C420.3077 (2)0.2302 (3)0.3603 (2)0.0330 (8)
C430.3962 (2)0.2780 (3)0.3678 (2)0.0406 (9)
C440.4815 (2)0.2370 (3)0.4286 (2)0.0408 (9)
C450.4781 (2)0.1507 (3)0.4819 (2)0.0384 (9)
C460.3893 (2)0.1032 (3)0.4742 (2)0.0319 (8)
H30.41950.05520.28350.039*
H50.25090.07010.04070.041*
H60.38780.11520.00440.042*
H11A0.56920.11760.04190.043*
H12A0.72090.07700.14150.048*
H13A0.73660.00580.28270.051*
H14A0.60020.04950.32310.045*
H110.01750.12830.09100.055*
H120.07510.02870.16190.052*
H130.08300.02570.31690.050*
H140.03850.21920.33810.049*
H150.01420.28690.19240.057*
H220.28880.21620.56500.039*
H230.25070.28760.69040.043*
H240.09580.26480.70350.043*
H250.02100.16890.59270.046*
H260.01670.09550.46770.044*
H320.23790.09890.32690.047*
H330.26530.27410.36880.051*
H340.25270.33230.50900.045*
H350.21800.21310.61010.046*
H360.19020.03770.56780.042*
H420.24930.25740.31820.040*
H430.39850.33820.33180.049*
H440.54250.26860.43350.049*
H450.53660.12350.52390.046*
H460.38720.04330.51060.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0241 (3)0.0308 (3)0.0317 (2)0.00182 (19)0.00784 (18)0.00069 (19)
P10.0234 (5)0.0257 (5)0.0306 (4)0.0002 (4)0.0086 (4)0.0009 (4)
C10.032 (2)0.0265 (19)0.0322 (17)0.0016 (15)0.0065 (16)0.0011 (15)
C20.034 (2)0.0252 (19)0.0358 (18)0.0035 (16)0.0128 (16)0.0022 (15)
C30.036 (2)0.0290 (19)0.0361 (18)0.0009 (16)0.0173 (16)0.0010 (15)
C40.038 (2)0.0245 (19)0.0358 (18)0.0002 (16)0.0175 (17)0.0039 (15)
C50.033 (2)0.032 (2)0.0362 (18)0.0044 (16)0.0108 (16)0.0012 (15)
C60.046 (2)0.027 (2)0.0365 (18)0.0049 (16)0.0195 (17)0.0055 (15)
C70.035 (2)0.0245 (18)0.0360 (18)0.0004 (15)0.0159 (16)0.0037 (15)
C80.033 (2)0.0225 (18)0.0340 (18)0.0025 (15)0.0133 (16)0.0049 (14)
C11A0.037 (2)0.038 (2)0.0390 (18)0.0019 (17)0.0201 (17)0.0023 (17)
C12A0.040 (2)0.040 (2)0.047 (2)0.0039 (17)0.0234 (19)0.0039 (17)
C13A0.032 (2)0.050 (2)0.044 (2)0.0004 (18)0.0104 (17)0.0050 (18)
C14A0.037 (2)0.039 (2)0.0338 (18)0.0021 (17)0.0099 (17)0.0001 (16)
C110.023 (2)0.077 (3)0.0326 (19)0.0067 (19)0.0015 (16)0.006 (2)
C120.025 (2)0.052 (3)0.048 (2)0.0013 (18)0.0047 (17)0.010 (2)
C130.0239 (19)0.053 (3)0.048 (2)0.0009 (17)0.0112 (16)0.0022 (19)
C140.0228 (19)0.048 (2)0.049 (2)0.0098 (17)0.0070 (16)0.0032 (19)
C150.037 (2)0.044 (2)0.057 (2)0.0111 (19)0.0085 (19)0.012 (2)
C210.0261 (18)0.0245 (18)0.0317 (17)0.0017 (14)0.0084 (14)0.0014 (14)
C220.0244 (18)0.035 (2)0.0370 (18)0.0006 (15)0.0072 (15)0.0007 (16)
C230.037 (2)0.033 (2)0.0333 (18)0.0006 (16)0.0051 (16)0.0065 (16)
C240.042 (2)0.034 (2)0.0343 (18)0.0070 (17)0.0156 (17)0.0035 (16)
C250.034 (2)0.041 (2)0.042 (2)0.0020 (17)0.0154 (17)0.0062 (17)
C260.033 (2)0.036 (2)0.0381 (19)0.0050 (16)0.0088 (16)0.0063 (16)
C310.0206 (17)0.0260 (18)0.0346 (17)0.0001 (14)0.0065 (14)0.0025 (15)
C320.049 (2)0.033 (2)0.0388 (19)0.0055 (17)0.0202 (17)0.0009 (16)
C330.057 (2)0.032 (2)0.045 (2)0.0059 (18)0.0220 (19)0.0022 (17)
C340.035 (2)0.027 (2)0.047 (2)0.0010 (16)0.0076 (17)0.0030 (17)
C350.044 (2)0.036 (2)0.0373 (19)0.0028 (17)0.0148 (17)0.0013 (17)
C360.037 (2)0.034 (2)0.0335 (18)0.0012 (16)0.0124 (15)0.0006 (16)
C410.0235 (18)0.0245 (18)0.0334 (17)0.0002 (14)0.0095 (15)0.0055 (15)
C420.029 (2)0.0294 (19)0.0387 (19)0.0000 (15)0.0083 (15)0.0019 (16)
C430.040 (2)0.031 (2)0.055 (2)0.0044 (17)0.0203 (19)0.0004 (17)
C440.028 (2)0.036 (2)0.060 (2)0.0044 (17)0.0171 (18)0.0079 (19)
C450.026 (2)0.036 (2)0.050 (2)0.0030 (16)0.0084 (16)0.0024 (18)
C460.0298 (19)0.0293 (19)0.0360 (17)0.0000 (16)0.0093 (15)0.0015 (15)
Geometric parameters (Å, º) top
Ni1—P12.1484 (9)C33—C341.378 (5)
Ni1—C11.843 (4)C34—C351.376 (5)
Ni1—C112.073 (3)C35—C361.383 (5)
Ni1—C122.141 (3)C41—C421.386 (4)
Ni1—C132.129 (3)C41—C461.391 (4)
Ni1—C142.084 (3)C42—C431.388 (4)
Ni1—C152.136 (3)C43—C441.389 (5)
P1—C211.835 (3)C44—C451.378 (5)
P1—C311.841 (3)C45—C461.390 (4)
P1—C411.828 (3)C3—H30.9500
C1—C21.211 (4)C5—H50.9500
C2—C41.433 (5)C6—H60.9500
C3—C41.384 (4)C11A—H11A0.9500
C3—C81.414 (4)C12A—H12A0.9500
C4—C51.431 (4)C13A—H13A0.9500
C5—C61.359 (4)C14A—H14A0.9500
C6—C71.408 (4)C11—H110.9500
C7—C11A1.416 (4)C12—H120.9500
C7—C81.422 (4)C13—H130.9500
C8—C14A1.410 (4)C14—H140.9500
C11A—C12A1.355 (4)C15—H150.9500
C12A—C13A1.406 (5)C22—H220.9500
C13A—C14A1.369 (5)C23—H230.9500
C11—C151.414 (5)C24—H240.9500
C11—C121.422 (5)C25—H250.9500
C12—C131.382 (5)C26—H260.9500
C13—C141.431 (5)C32—H320.9500
C14—C151.393 (5)C33—H330.9500
C21—C221.387 (4)C34—H340.9500
C21—C261.393 (4)C35—H350.9500
C22—C231.397 (4)C36—H360.9500
C23—C241.378 (4)C42—H420.9500
C24—C251.373 (4)C43—H430.9500
C25—C261.397 (5)C44—H440.9500
C31—C361.385 (4)C45—H450.9500
C31—C321.392 (4)C46—H460.9500
C32—C331.379 (5)
C1—Ni1—C1196.95 (14)C14—C15—C11106.3 (3)
C1—Ni1—C14159.31 (14)C14—C15—Ni168.71 (19)
C11—Ni1—C1465.39 (14)C11—C15—Ni167.98 (19)
C1—Ni1—C13144.11 (14)C22—C21—C26118.3 (3)
C11—Ni1—C1365.26 (14)C22—C21—P1122.3 (2)
C14—Ni1—C1339.69 (13)C26—C21—P1119.5 (2)
C1—Ni1—C15120.81 (14)C21—C22—C23120.7 (3)
C11—Ni1—C1539.21 (14)C24—C23—C22120.2 (3)
C14—Ni1—C1538.54 (13)C25—C24—C23119.9 (3)
C13—Ni1—C1565.41 (14)C24—C25—C26120.1 (3)
C1—Ni1—C12108.92 (14)C21—C26—C25120.8 (3)
C11—Ni1—C1239.42 (14)C36—C31—C32117.8 (3)
C14—Ni1—C1264.91 (14)C36—C31—P1122.6 (2)
C13—Ni1—C1237.78 (13)C32—C31—P1119.6 (2)
C15—Ni1—C1265.28 (15)C33—C32—C31120.9 (3)
C11—Ni1—P1171.96 (12)C34—C33—C32120.2 (3)
C14—Ni1—P1107.64 (10)C35—C34—C33119.9 (3)
C13—Ni1—P1112.38 (10)C34—C35—C36119.6 (3)
C15—Ni1—P1132.79 (11)C35—C36—C31121.6 (3)
C12—Ni1—P1142.77 (11)C42—C41—C46119.3 (3)
C41—P1—C21102.95 (14)C42—C41—P1119.1 (2)
C41—P1—C31104.70 (14)C46—C41—P1121.6 (2)
C21—P1—C31102.64 (14)C41—C42—C43120.9 (3)
Ni1—P1—C21118.63 (10)C42—C43—C44119.3 (3)
Ni1—P1—C31111.85 (10)C45—C44—C43120.4 (3)
Ni1—P1—C41114.48 (10)C44—C45—C46120.1 (3)
P1—Ni1—C189.04 (9)C45—C46—C41120.1 (3)
Ni1—C1—C2176.8 (3)C4—C3—H3119.1
C1—C2—C4173.0 (3)C8—C3—H3119.1
C4—C3—C8121.7 (3)C6—C5—H5119.7
C3—C4—C5118.3 (3)C4—C5—H5119.7
C3—C4—C2120.2 (3)C5—C6—H6119.0
C5—C4—C2121.5 (3)C7—C6—H6119.0
C6—C5—C4120.6 (3)C12A—C11A—H11A119.6
C5—C6—C7122.0 (3)C7—C11A—H11A119.6
C6—C7—C11A122.7 (3)C11A—C12A—H12A119.9
C6—C7—C8118.4 (3)C13A—C12A—H12A119.9
C11A—C7—C8118.9 (3)C14A—C13A—H13A119.6
C14A—C8—C3122.0 (3)C12A—C13A—H13A119.6
C14A—C8—C7119.0 (3)C13A—C14A—H14A119.9
C3—C8—C7119.0 (3)C8—C14A—H14A119.9
C12A—C11A—C7120.9 (3)C15—C11—H11125.6
C11A—C12A—C13A120.2 (3)C12—C11—H11125.6
C14A—C13A—C12A120.8 (3)Ni1—C11—H11120.5
C13A—C14A—C8120.2 (3)C13—C12—H12126.1
C15—C11—C12108.8 (3)C11—C12—H12126.1
C15—C11—Ni172.80 (19)Ni1—C12—H12127.1
C12—C11—Ni172.86 (19)C12—C13—H13126.3
C13—C12—C11107.8 (3)C14—C13—H13126.3
C13—C12—Ni170.64 (19)Ni1—C13—H13125.2
C11—C12—Ni167.72 (19)C15—C14—H14125.3
C12—C13—C14107.4 (3)C13—C14—H14125.3
C12—C13—Ni171.6 (2)Ni1—C14—H14121.7
C14—C13—Ni168.47 (19)C14—C15—H15126.9
C15—C14—C13109.3 (3)C11—C15—H15126.9
C15—C14—Ni172.8 (2)Ni1—C15—H15127.9
C13—C14—Ni171.84 (19)
C1—Ni1—P1—C4144.41 (15)Ni1—C13—C14—C1563.5 (2)
C14—Ni1—P1—C41123.13 (16)C12—C13—C14—Ni161.3 (2)
C13—Ni1—P1—C41165.20 (15)C1—Ni1—C14—C154.2 (5)
C15—Ni1—P1—C4188.62 (18)C11—Ni1—C14—C1537.5 (2)
C12—Ni1—P1—C41165.3 (2)C13—Ni1—C14—C15117.8 (3)
C1—Ni1—P1—C21166.35 (16)C12—Ni1—C14—C1581.2 (2)
C14—Ni1—P1—C211.19 (17)P1—Ni1—C14—C15138.1 (2)
C13—Ni1—P1—C2143.26 (17)C1—Ni1—C14—C13113.6 (4)
C15—Ni1—P1—C2133.32 (19)C11—Ni1—C14—C1380.3 (2)
C12—Ni1—P1—C2172.7 (2)C15—Ni1—C14—C13117.8 (3)
C1—Ni1—P1—C3174.47 (15)C12—Ni1—C14—C1336.6 (2)
C14—Ni1—P1—C31117.99 (15)P1—Ni1—C14—C13104.03 (19)
C13—Ni1—P1—C3175.91 (16)C13—C14—C15—C115.1 (4)
C15—Ni1—P1—C31152.49 (18)Ni1—C14—C15—C1157.8 (2)
C12—Ni1—P1—C3146.5 (2)C13—C14—C15—Ni162.9 (2)
C8—C3—C4—C50.2 (5)C12—C11—C15—C146.2 (4)
C8—C3—C4—C2179.5 (3)Ni1—C11—C15—C1458.3 (2)
C3—C4—C5—C60.2 (5)C12—C11—C15—Ni164.4 (2)
C2—C4—C5—C6179.5 (3)C1—Ni1—C15—C14178.3 (2)
C4—C5—C6—C70.2 (5)C11—Ni1—C15—C14118.8 (3)
C5—C6—C7—C11A179.1 (3)C13—Ni1—C15—C1438.4 (2)
C5—C6—C7—C80.7 (5)C12—Ni1—C15—C1480.1 (2)
C4—C3—C8—C14A179.9 (3)P1—Ni1—C15—C1460.0 (3)
C4—C3—C8—C70.3 (5)C1—Ni1—C15—C1159.5 (3)
C6—C7—C8—C14A179.7 (3)C14—Ni1—C15—C11118.8 (3)
C11A—C7—C8—C14A0.6 (5)C13—Ni1—C15—C1180.4 (2)
C6—C7—C8—C30.7 (5)C12—Ni1—C15—C1138.6 (2)
C11A—C7—C8—C3179.0 (3)P1—Ni1—C15—C11178.84 (18)
C6—C7—C11A—C12A179.7 (3)C41—P1—C21—C229.5 (3)
C8—C7—C11A—C12A0.0 (5)C31—P1—C21—C2299.1 (3)
C7—C11A—C12A—C13A0.5 (5)Ni1—P1—C21—C22137.0 (2)
C11A—C12A—C13A—C14A0.4 (5)C41—P1—C21—C26171.5 (3)
C12A—C13A—C14A—C80.2 (5)C31—P1—C21—C2680.0 (3)
C3—C8—C14A—C13A178.9 (3)Ni1—P1—C21—C2643.9 (3)
C7—C8—C14A—C13A0.7 (5)C26—C21—C22—C230.4 (5)
C1—Ni1—C11—C15131.8 (2)P1—C21—C22—C23178.7 (2)
C14—Ni1—C11—C1536.9 (2)C21—C22—C23—C240.6 (5)
C13—Ni1—C11—C1580.8 (2)C22—C23—C24—C250.4 (5)
C12—Ni1—C11—C15116.7 (3)C23—C24—C25—C260.0 (5)
C1—Ni1—C11—C12111.5 (2)C22—C21—C26—C250.1 (5)
C14—Ni1—C11—C1279.8 (2)P1—C21—C26—C25179.0 (3)
C13—Ni1—C11—C1235.9 (2)C24—C25—C26—C210.1 (5)
C15—Ni1—C11—C12116.7 (3)C41—P1—C31—C36108.2 (3)
C15—C11—C12—C134.9 (4)C21—P1—C31—C360.9 (3)
Ni1—C11—C12—C1359.5 (2)Ni1—P1—C31—C36127.3 (2)
C15—C11—C12—Ni164.4 (2)C41—P1—C31—C3273.7 (3)
C1—Ni1—C12—C13162.9 (2)C21—P1—C31—C32179.1 (3)
C11—Ni1—C12—C13119.6 (3)Ni1—P1—C31—C3250.8 (3)
C14—Ni1—C12—C1338.5 (2)C36—C31—C32—C330.7 (5)
C15—Ni1—C12—C1381.1 (2)P1—C31—C32—C33177.6 (3)
P1—Ni1—C12—C1347.9 (3)C31—C32—C33—C340.2 (5)
C1—Ni1—C12—C1177.5 (2)C32—C33—C34—C351.2 (5)
C14—Ni1—C12—C1181.1 (2)C33—C34—C35—C361.3 (5)
C13—Ni1—C12—C11119.6 (3)C34—C35—C36—C310.4 (5)
C15—Ni1—C12—C1138.4 (2)C32—C31—C36—C350.6 (5)
P1—Ni1—C12—C11167.50 (18)P1—C31—C36—C35177.6 (2)
C11—C12—C13—C141.7 (4)C21—P1—C41—C4296.4 (3)
Ni1—C12—C13—C1459.3 (2)C31—P1—C41—C42156.6 (2)
C11—C12—C13—Ni157.7 (2)Ni1—P1—C41—C4233.7 (3)
C1—Ni1—C13—C1228.4 (4)C21—P1—C41—C4680.9 (3)
C11—Ni1—C13—C1237.4 (2)C31—P1—C41—C4626.1 (3)
C14—Ni1—C13—C12118.1 (3)Ni1—P1—C41—C46149.0 (2)
C15—Ni1—C13—C1280.8 (2)C46—C41—C42—C430.7 (5)
P1—Ni1—C13—C12150.9 (2)P1—C41—C42—C43176.7 (3)
C1—Ni1—C13—C14146.5 (2)C41—C42—C43—C440.9 (5)
C11—Ni1—C13—C1480.6 (2)C42—C43—C44—C451.0 (5)
C15—Ni1—C13—C1437.3 (2)C43—C44—C45—C460.8 (5)
C12—Ni1—C13—C14118.1 (3)C44—C45—C46—C410.6 (5)
P1—Ni1—C13—C1491.0 (2)C42—C41—C46—C450.5 (5)
C12—C13—C14—C152.2 (4)P1—C41—C46—C45176.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg10.952.843.760 (4)164
C6—H6···Cg2i0.952.743.549 (4)144
C25—H25···Cg3ii0.952.833.722 (3)157
C23—H23···Cg4iii0.953.043.797 (4)138
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y, z+1; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C5H5)(C12H7)(C18H15P)]
Mr537.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)14.4455 (4), 12.7392 (5), 15.2816 (4)
β (°) 108.439 (2)
V3)2667.80 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.16 × 0.15 × 0.11
Data collection
DiffractometerNonius KappaCCD area-detector
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.813, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
8684, 5695, 3173
Rint0.083
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.120, 0.98
No. of reflections5695
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.61

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2003), SHELXL97 and PREP8 (Ferguson, 1998).

Selected bond angles (º) top
Ni1—P1—C21118.63 (10)P1—Ni1—C189.04 (9)
Ni1—P1—C31111.85 (10)Ni1—C1—C2176.8 (3)
Ni1—P1—C41114.48 (10)C1—C2—C4173.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg10.952.843.760 (4)164
C6—H6···Cg2i0.952.743.549 (4)144
C25—H25···Cg3ii0.952.833.722 (3)157
C23—H23···Cg4iii0.953.043.797 (4)138
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y, z+1; (iii) x+1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds