Download citation
Download citation
link to html
The title compound, C11H22O·0.5H2O, is a hemihydrate of trans-4-tert-butyl-1-methyl­cyclo­hexa­nol, containing one water and two organic mol­ecules in the asymmetric unit. Crystals were obtained from an NMR sample by very slow evaporation of the solvent. In the solid state, the title compound forms a double-layered structure with the organic and water mol­ecules connected by O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807016650/zl2014sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807016650/zl2014Isup2.hkl
Contains datablock I

CCDC reference: 647577

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.074
  • wR factor = 0.146
  • Data-to-parameter ratio = 16.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.50 Ratio
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The asymmetric unit of the title compound (I) is presented in Fig. 1. The hydroxyl groups of the trans-1-methyl-4-tert-butylcyclohexanol and the water molecules are connected with each other via an extensive hydrogen bonding network. The water molecule plays the role of a hydrogen bonded bridge between three of the organic molecules and an additional O—H···H bridge is formed between the alcohol units of two of the organic molecules (Table 1). From a supramolecular point of view the crystalline assembly of (I) can be best described as being double-layered (Fig 2.) with the hydroxyl ends of the cyclohexanol moieties and

the water molecules forming a hydrogen bonded hydrophilic layer and the t-butyl ends the other hydrophobic layer.

Related literature top

For related literature, see: Grignard (1900).

For related literature, see: Houlihan (1962).

Experimental top

trans-1-Methyl-4-tert-butylcyclohexanol was obtained by the well known Grignard method (Grignard, 1900) from 4-tert-butylcyclohexanone with methylmagnesium iodide. The synthetic procedure and the separation of the isomers was performed according to conditions previously described (Houlihan, 1962). Crystals of (I) grew in an NMR sample tube from which all solvent (CDCl3) has evaporated. The water present in the crystal structure has most probably originated from moisture in the NMR solvent.

Refinement top

All H atoms were visible in electron density maps but were ultimately placed in idealized positions, except O—H and methyl H's, and allowed to ride on their parent atoms at C—H distances of 0.99 (methylene), and 1.00 Å (methine) with Uiso(H) = 1.2 times Ueq(C). Methyl H's were allowed to rotate to best fit the experimental electron density at a C—H distance of 0.98 Å with Uiso(H) = 1.5 times Ueq(C). H's attached to O were found in the electron density map and were fixed to an O—H distance of 0.84 Å with Uiso(H) = 1.5 times Ueq(O). The crystals of (I) were rather thin plates and showed a weak scattering power resulting in a large number of reflections with low intensities.

Structure description top

The asymmetric unit of the title compound (I) is presented in Fig. 1. The hydroxyl groups of the trans-1-methyl-4-tert-butylcyclohexanol and the water molecules are connected with each other via an extensive hydrogen bonding network. The water molecule plays the role of a hydrogen bonded bridge between three of the organic molecules and an additional O—H···H bridge is formed between the alcohol units of two of the organic molecules (Table 1). From a supramolecular point of view the crystalline assembly of (I) can be best described as being double-layered (Fig 2.) with the hydroxyl ends of the cyclohexanol moieties and

the water molecules forming a hydrogen bonded hydrophilic layer and the t-butyl ends the other hydrophobic layer.

For related literature, see: Grignard (1900).

For related literature, see: Houlihan (1962).

Computing details top

Data collection: COLLECT (Bruker, 2004); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of (I) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.
[Figure 2] Fig. 2. Packing diagram of (I) showing the layered structure, viewed along the c axis. Dotted lines indicate O—H···H hydrogen bonds.
trans-4-tert-Butyl-1-methylcyclohexanol hemihydrate top
Crystal data top
C11H22O·0.5H2OF(000) = 808
Mr = 179.30Dx = 1.039 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 129292 reflections
a = 18.3462 (14) Åθ = 0.4–27.9°
b = 10.2347 (5) ŵ = 0.07 mm1
c = 12.3661 (9) ÅT = 173 K
β = 99.049 (3)°Plate, colourless
V = 2293.1 (3) Å30.40 × 0.35 × 0.05 mm
Z = 8
Data collection top
Bruker Kappa-APEXII
diffractometer
2783 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.076
Graphite monochromatorθmax = 25.0°, θmin = 2.3°
Detector resolution: 9 pixels mm-1h = 2121
φ and ω scansk = 1212
14932 measured reflectionsl = 1414
4033 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0342P)2 + 1.3597P]
where P = (Fo2 + 2Fc2)/3
4033 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.18 e Å3
4 restraintsΔρmin = 0.18 e Å3
Crystal data top
C11H22O·0.5H2OV = 2293.1 (3) Å3
Mr = 179.30Z = 8
Monoclinic, P21/cMo Kα radiation
a = 18.3462 (14) ŵ = 0.07 mm1
b = 10.2347 (5) ÅT = 173 K
c = 12.3661 (9) Å0.40 × 0.35 × 0.05 mm
β = 99.049 (3)°
Data collection top
Bruker Kappa-APEXII
diffractometer
2783 reflections with I > 2σ(I)
14932 measured reflectionsRint = 0.076
4033 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0744 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.18 e Å3
4033 reflectionsΔρmin = 0.18 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.03005 (9)0.68552 (16)0.06583 (14)0.0316 (4)
H10.0023 (13)0.731 (2)0.091 (2)0.047*
O210.06949 (10)0.33358 (17)0.34636 (14)0.0339 (5)
H210.0570 (16)0.357 (3)0.2816 (15)0.051*
O320.01989 (12)0.42567 (18)0.14125 (16)0.0432 (5)
H32A0.0244 (17)0.5047 (18)0.128 (3)0.065*
H32B0.0080 (17)0.384 (3)0.0812 (18)0.065*
C10.10166 (13)0.7489 (2)0.0834 (2)0.0283 (6)
C20.15369 (13)0.6563 (2)0.0371 (2)0.0321 (6)
H2A0.13930.65130.04340.038*
H2B0.14850.56770.06730.038*
C30.23430 (14)0.6985 (2)0.0635 (2)0.0315 (6)
H3A0.24060.78290.02710.038*
H3B0.26560.63290.03400.038*
C40.25983 (13)0.7131 (2)0.1867 (2)0.0288 (6)
H40.25270.62580.21980.035*
C50.20753 (14)0.8072 (3)0.2325 (2)0.0363 (7)
H5A0.22170.81280.31300.044*
H5B0.21280.89540.20180.044*
C60.12703 (14)0.7644 (3)0.2057 (2)0.0336 (6)
H6A0.12080.68010.24250.040*
H6B0.09550.82990.23480.040*
C70.09359 (16)0.8792 (3)0.0237 (2)0.0463 (8)
H7A0.07570.86440.05430.069*
H7B0.14160.92310.03210.069*
H7C0.05830.93410.05470.069*
C80.34265 (14)0.7475 (2)0.2197 (2)0.0314 (6)
C90.36226 (15)0.7486 (3)0.3444 (2)0.0473 (8)
H9A0.34710.66580.37380.071*
H9B0.33660.82100.37410.071*
H9C0.41570.75970.36520.071*
C100.36147 (16)0.8816 (3)0.1754 (2)0.0462 (8)
H10A0.35090.88080.09520.069*
H10B0.41390.90040.19920.069*
H10C0.33150.94910.20360.069*
C110.39106 (15)0.6440 (3)0.1758 (2)0.0450 (8)
H11A0.38500.65010.09580.068*
H11B0.37610.55680.19670.068*
H11C0.44290.65900.20680.068*
C210.14062 (13)0.2723 (2)0.3483 (2)0.0285 (6)
C220.19398 (13)0.3706 (2)0.3113 (2)0.0308 (6)
H22A0.18980.45440.35000.037*
H22B0.17960.38690.23190.037*
C230.27437 (14)0.3250 (2)0.3330 (2)0.0327 (6)
H23A0.30640.39460.31070.039*
H23B0.27990.24680.28780.039*
C240.29976 (14)0.2918 (2)0.4539 (2)0.0293 (6)
H240.29310.37310.49600.035*
C250.24681 (14)0.1906 (3)0.4889 (2)0.0361 (7)
H25A0.25110.10820.44850.043*
H25B0.26110.17210.56800.043*
C260.16676 (14)0.2369 (3)0.4675 (2)0.0338 (6)
H26A0.13470.16710.48930.041*
H26B0.16160.31430.51370.041*
C270.13090 (16)0.1525 (3)0.2747 (2)0.0436 (7)
H27A0.11090.17910.19970.065*
H27B0.09670.09140.30150.065*
H27C0.17880.10980.27540.065*
C280.38271 (14)0.2548 (2)0.4823 (2)0.0319 (6)
C290.40368 (16)0.2437 (3)0.6070 (2)0.0448 (7)
H29A0.39330.32660.64110.067*
H29B0.45640.22350.62560.067*
H29C0.37480.17380.63400.067*
C300.40024 (15)0.1249 (3)0.4304 (2)0.0428 (7)
H30A0.38710.13080.35060.064*
H30B0.37170.05460.45780.064*
H30C0.45310.10610.44970.064*
C310.43134 (15)0.3613 (3)0.4435 (2)0.0469 (8)
H31A0.41770.44650.47060.070*
H31B0.42410.36260.36330.070*
H31C0.48330.34310.47190.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0240 (10)0.0353 (10)0.0356 (11)0.0002 (8)0.0053 (8)0.0053 (8)
O210.0308 (11)0.0400 (11)0.0311 (11)0.0045 (8)0.0054 (9)0.0041 (9)
O320.0560 (13)0.0383 (11)0.0325 (11)0.0040 (10)0.0015 (10)0.0024 (9)
C10.0253 (14)0.0288 (13)0.0309 (15)0.0004 (11)0.0045 (12)0.0014 (11)
C20.0304 (15)0.0382 (15)0.0276 (15)0.0015 (12)0.0046 (11)0.0053 (12)
C30.0295 (15)0.0372 (15)0.0299 (15)0.0014 (12)0.0109 (12)0.0046 (12)
C40.0311 (15)0.0281 (13)0.0282 (15)0.0003 (11)0.0081 (12)0.0004 (11)
C50.0312 (16)0.0475 (16)0.0297 (15)0.0029 (12)0.0032 (12)0.0127 (13)
C60.0288 (15)0.0417 (15)0.0313 (16)0.0034 (12)0.0073 (12)0.0066 (12)
C70.0408 (18)0.0415 (17)0.055 (2)0.0016 (13)0.0027 (15)0.0139 (14)
C80.0286 (15)0.0374 (15)0.0283 (15)0.0004 (11)0.0050 (12)0.0011 (12)
C90.0326 (17)0.071 (2)0.0365 (18)0.0012 (15)0.0007 (14)0.0018 (15)
C100.0414 (18)0.0430 (17)0.0542 (19)0.0121 (14)0.0079 (15)0.0030 (14)
C110.0314 (16)0.0510 (18)0.054 (2)0.0048 (13)0.0106 (14)0.0039 (15)
C210.0268 (14)0.0286 (13)0.0309 (15)0.0023 (11)0.0069 (12)0.0017 (11)
C220.0316 (15)0.0316 (14)0.0296 (15)0.0002 (11)0.0059 (12)0.0054 (11)
C230.0303 (15)0.0345 (15)0.0343 (16)0.0040 (11)0.0078 (12)0.0066 (12)
C240.0319 (15)0.0278 (13)0.0292 (15)0.0002 (11)0.0081 (12)0.0007 (11)
C250.0325 (16)0.0414 (16)0.0344 (16)0.0010 (12)0.0051 (12)0.0107 (12)
C260.0316 (16)0.0363 (15)0.0347 (16)0.0031 (12)0.0093 (12)0.0087 (12)
C270.0409 (18)0.0406 (16)0.0488 (18)0.0009 (13)0.0057 (14)0.0072 (14)
C280.0288 (15)0.0348 (14)0.0322 (15)0.0011 (11)0.0048 (12)0.0008 (12)
C290.0362 (17)0.0556 (18)0.0410 (18)0.0036 (14)0.0009 (14)0.0038 (14)
C300.0385 (17)0.0429 (16)0.0471 (18)0.0095 (13)0.0067 (14)0.0014 (14)
C310.0337 (17)0.0511 (18)0.056 (2)0.0041 (14)0.0063 (14)0.0061 (15)
Geometric parameters (Å, º) top
O1—C11.450 (3)C11—H11A0.9800
O1—H10.853 (17)C11—H11B0.9800
O21—C211.445 (3)C11—H11C0.9800
O21—H210.832 (17)C21—C261.520 (3)
O32—H32A0.831 (17)C21—C271.521 (3)
O32—H32B0.852 (17)C21—C221.524 (3)
C1—C61.519 (3)C22—C231.530 (3)
C1—C21.519 (3)C22—H22A0.9900
C1—C71.520 (3)C22—H22B0.9900
C2—C31.526 (3)C23—C241.532 (3)
C2—H2A0.9900C23—H23A0.9900
C2—H2B0.9900C23—H23B0.9900
C3—C41.529 (3)C24—C251.529 (3)
C3—H3A0.9900C24—C281.554 (3)
C3—H3B0.9900C24—H241.0000
C4—C51.530 (3)C25—C261.526 (3)
C4—C81.551 (3)C25—H25A0.9900
C4—H41.0000C25—H25B0.9900
C5—C61.526 (3)C26—H26A0.9900
C5—H5A0.9900C26—H26B0.9900
C5—H5B0.9900C27—H27A0.9800
C6—H6A0.9900C27—H27B0.9800
C6—H6B0.9900C27—H27C0.9800
C7—H7A0.9800C28—C301.532 (4)
C7—H7B0.9800C28—C311.533 (4)
C7—H7C0.9800C28—C291.534 (4)
C8—C91.527 (4)C29—H29A0.9800
C8—C111.535 (3)C29—H29B0.9800
C8—C101.537 (4)C29—H29C0.9800
C9—H9A0.9800C30—H30A0.9800
C9—H9B0.9800C30—H30B0.9800
C9—H9C0.9800C30—H30C0.9800
C10—H10A0.9800C31—H31A0.9800
C10—H10B0.9800C31—H31B0.9800
C10—H10C0.9800C31—H31C0.9800
C1—O1—H1111.5 (19)H11B—C11—H11C109.5
C21—O21—H21105 (2)O21—C21—C26105.41 (19)
H32A—O32—H32B109 (3)O21—C21—C27108.6 (2)
O1—C1—C6108.9 (2)C26—C21—C27112.2 (2)
O1—C1—C2105.84 (18)O21—C21—C22109.26 (19)
C6—C1—C2109.1 (2)C26—C21—C22109.2 (2)
O1—C1—C7107.6 (2)C27—C21—C22111.9 (2)
C6—C1—C7112.5 (2)C21—C22—C23113.1 (2)
C2—C1—C7112.6 (2)C21—C22—H22A109.0
C1—C2—C3112.8 (2)C23—C22—H22A109.0
C1—C2—H2A109.0C21—C22—H22B109.0
C3—C2—H2A109.0C23—C22—H22B109.0
C1—C2—H2B109.0H22A—C22—H22B107.8
C3—C2—H2B109.0C22—C23—C24112.1 (2)
H2A—C2—H2B107.8C22—C23—H23A109.2
C2—C3—C4112.0 (2)C24—C23—H23A109.2
C2—C3—H3A109.2C22—C23—H23B109.2
C4—C3—H3A109.2C24—C23—H23B109.2
C2—C3—H3B109.2H23A—C23—H23B107.9
C4—C3—H3B109.2C25—C24—C23108.5 (2)
H3A—C3—H3B107.9C25—C24—C28114.5 (2)
C3—C4—C5108.6 (2)C23—C24—C28114.3 (2)
C3—C4—C8114.7 (2)C25—C24—H24106.3
C5—C4—C8113.9 (2)C23—C24—H24106.3
C3—C4—H4106.3C28—C24—H24106.3
C5—C4—H4106.3C26—C25—C24112.2 (2)
C8—C4—H4106.3C26—C25—H25A109.2
C6—C5—C4112.3 (2)C24—C25—H25A109.2
C6—C5—H5A109.1C26—C25—H25B109.2
C4—C5—H5A109.1C24—C25—H25B109.2
C6—C5—H5B109.1H25A—C25—H25B107.9
C4—C5—H5B109.1C21—C26—C25113.0 (2)
H5A—C5—H5B107.9C21—C26—H26A109.0
C1—C6—C5112.4 (2)C25—C26—H26A109.0
C1—C6—H6A109.1C21—C26—H26B109.0
C5—C6—H6A109.1C25—C26—H26B109.0
C1—C6—H6B109.1H26A—C26—H26B107.8
C5—C6—H6B109.1C21—C27—H27A109.5
H6A—C6—H6B107.9C21—C27—H27B109.5
C1—C7—H7A109.5H27A—C27—H27B109.5
C1—C7—H7B109.5C21—C27—H27C109.5
H7A—C7—H7B109.5H27A—C27—H27C109.5
C1—C7—H7C109.5H27B—C27—H27C109.5
H7A—C7—H7C109.5C30—C28—C31108.4 (2)
H7B—C7—H7C109.5C30—C28—C29108.7 (2)
C9—C8—C11107.7 (2)C31—C28—C29107.5 (2)
C9—C8—C10108.8 (2)C30—C28—C24112.3 (2)
C11—C8—C10108.4 (2)C31—C28—C24110.7 (2)
C9—C8—C4109.4 (2)C29—C28—C24109.1 (2)
C11—C8—C4110.3 (2)C28—C29—H29A109.5
C10—C8—C4112.0 (2)C28—C29—H29B109.5
C8—C9—H9A109.5H29A—C29—H29B109.5
C8—C9—H9B109.5C28—C29—H29C109.5
H9A—C9—H9B109.5H29A—C29—H29C109.5
C8—C9—H9C109.5H29B—C29—H29C109.5
H9A—C9—H9C109.5C28—C30—H30A109.5
H9B—C9—H9C109.5C28—C30—H30B109.5
C8—C10—H10A109.5H30A—C30—H30B109.5
C8—C10—H10B109.5C28—C30—H30C109.5
H10A—C10—H10B109.5H30A—C30—H30C109.5
C8—C10—H10C109.5H30B—C30—H30C109.5
H10A—C10—H10C109.5C28—C31—H31A109.5
H10B—C10—H10C109.5C28—C31—H31B109.5
C8—C11—H11A109.5H31A—C31—H31B109.5
C8—C11—H11B109.5C28—C31—H31C109.5
H11A—C11—H11B109.5H31A—C31—H31C109.5
C8—C11—H11C109.5H31B—C31—H31C109.5
H11A—C11—H11C109.5
O1—C1—C2—C3171.6 (2)O21—C21—C22—C23168.0 (2)
C6—C1—C2—C354.6 (3)C26—C21—C22—C2353.2 (3)
C7—C1—C2—C371.0 (3)C27—C21—C22—C2371.6 (3)
C1—C2—C3—C456.7 (3)C21—C22—C23—C2456.1 (3)
C2—C3—C4—C554.9 (3)C22—C23—C24—C2555.3 (3)
C2—C3—C4—C8176.4 (2)C22—C23—C24—C28175.6 (2)
C3—C4—C5—C655.2 (3)C23—C24—C25—C2655.7 (3)
C8—C4—C5—C6175.6 (2)C28—C24—C25—C26175.3 (2)
O1—C1—C6—C5169.57 (19)O21—C21—C26—C25170.8 (2)
C2—C1—C6—C554.5 (3)C27—C21—C26—C2571.2 (3)
C7—C1—C6—C571.2 (3)C22—C21—C26—C2553.5 (3)
C4—C5—C6—C156.9 (3)C24—C25—C26—C2156.9 (3)
C3—C4—C8—C9175.6 (2)C25—C24—C28—C3058.4 (3)
C5—C4—C8—C958.4 (3)C23—C24—C28—C3067.7 (3)
C3—C4—C8—C1157.2 (3)C25—C24—C28—C31179.7 (2)
C5—C4—C8—C11176.8 (2)C23—C24—C28—C3153.6 (3)
C3—C4—C8—C1063.7 (3)C25—C24—C28—C2962.2 (3)
C5—C4—C8—C1062.3 (3)C23—C24—C28—C29171.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O21—H21···O320.83 (2)1.90 (2)2.725 (3)172 (3)
O32—H32A···O10.83 (2)2.01 (2)2.834 (2)169 (3)
O32—H32B···O1i0.85 (2)1.98 (2)2.820 (3)170 (3)
O1—H1···O21ii0.85 (2)1.87 (2)2.727 (2)177 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H22O·0.5H2O
Mr179.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)18.3462 (14), 10.2347 (5), 12.3661 (9)
β (°) 99.049 (3)
V3)2293.1 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.40 × 0.35 × 0.05
Data collection
DiffractometerBruker Kappa-APEXII
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14932, 4033, 2783
Rint0.076
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.146, 1.16
No. of reflections4033
No. of parameters246
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: COLLECT (Bruker, 2004), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97, PLATON (Spek, 2003) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O21—H21···O320.83 (2)1.90 (2)2.725 (3)172 (3)
O32—H32A···O10.83 (2)2.01 (2)2.834 (2)169 (3)
O32—H32B···O1i0.85 (2)1.98 (2)2.820 (3)170 (3)
O1—H1···O21ii0.85 (2)1.87 (2)2.727 (2)177 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds