Download citation
Download citation
link to html
The SnIV atom in the title complex, [Sn(NO3)4(C10H8N2)2], is ten-coordinated by two N atoms of 4,4′-bipyridine ligands and eight O atoms of four NO3 ligands. The Sn atom lies on a crystallographic twofold rotation axis. The Sn—O bond lengths are in the range 2.378 (5)–2.538 (5) Å. The Sn—N bond length is 2.601 (5) Å. C—H...O hydrogen bonds link mononuclear complex mol­ecules into a supra­molecular network structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807020880/at2281sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807020880/at2281Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.011 Å
  • R factor = 0.034
  • wR factor = 0.120
  • Data-to-parameter ratio = 12.2

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Sn1 - O1 .. 10.61 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Sn1 - O4 .. 10.50 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Sn1 - O6 .. 11.69 su PLAT241_ALERT_2_B Check High Ueq as Compared to Neighbors for O4 PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for Sn1 PLAT430_ALERT_2_B Short Inter D...A Contact N4 .. N4 .. 2.60 Ang.
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.96 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.99 PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Sn1 - O3 .. 9.38 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Sn1 - N3 .. 8.09 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O1 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O3 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O6 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N2 PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 11 PLAT432_ALERT_2_C Short Inter X...Y Contact O2 .. C5 .. 2.96 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H1 .. O1 .. 2.74 Ang.
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Sn1 (2) 2.67
0 ALERT level A = In general: serious problem 6 ALERT level B = Potentially serious problem 11 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 13 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

In recent years, the researches on tin complexes draw increasing attention owning to their potential applications as photovoltaic materials, holographic recording system and biological activities (Jiang & Ozin, 1998; Valiukonis et al., 1986; Hencher et al., 1982; Bandoli et al., 1992, 1993), solar control devices (Nair & Nair, 1991) and semiconductor materials. Mononuclear or binuclear tin materials are important candidates as molecular precursors to prepare tin film materials by chemical vapour deposition (CVD)(Barone et al., 2002). We report herein the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The ten-coordinate environment of the Sn atom is completed by two N atoms of 4,4'-bipyridine ligands and eight O atoms of four NO3- ligands (Table 1). The Sn—O bond lengths are in the range 2.378 (5) to 2.538 (5) Å. The Sn—N bond length is 2.601 (5) Å. The C—H···O hydrogen bonds link the mononuclear complex into a supramolecular network structure (Fig. 2).

Related literature top

For related literature, see: Allen et al. (1987); Bandoli et al. (1992); Bandoli et al. (1993); Barone et al. (2002); Hencher et al. (1982); Jiang & Ozin (1998); Nair & Nair (1991); Valiukonis et al. (1986).

Experimental top

Crystals of the title compound (I) were synthesized using hydrothermal method in a 23 ml Teflon-lined Parr bomb, which was then sealed. Tin dioxide (30.1 mg, 0.2 mmol), 4,4'-bipyridine (93.6 mg, 0.6 mmol), nitric acid (0.2 mol/l, 4 ml) and distilled water (2 g) were placed into the bomb and sealed. The bomb was then heated under autogenous pressure for 7 d at 413 K and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colorless solution was decanted from small colorless crystals. These crystals were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature. Powder X-ray diffraction was conducted on the sample.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

In recent years, the researches on tin complexes draw increasing attention owning to their potential applications as photovoltaic materials, holographic recording system and biological activities (Jiang & Ozin, 1998; Valiukonis et al., 1986; Hencher et al., 1982; Bandoli et al., 1992, 1993), solar control devices (Nair & Nair, 1991) and semiconductor materials. Mononuclear or binuclear tin materials are important candidates as molecular precursors to prepare tin film materials by chemical vapour deposition (CVD)(Barone et al., 2002). We report herein the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The ten-coordinate environment of the Sn atom is completed by two N atoms of 4,4'-bipyridine ligands and eight O atoms of four NO3- ligands (Table 1). The Sn—O bond lengths are in the range 2.378 (5) to 2.538 (5) Å. The Sn—N bond length is 2.601 (5) Å. The C—H···O hydrogen bonds link the mononuclear complex into a supramolecular network structure (Fig. 2).

For related literature, see: Allen et al. (1987); Bandoli et al. (1992); Bandoli et al. (1993); Barone et al. (2002); Hencher et al. (1982); Jiang & Ozin (1998); Nair & Nair (1991); Valiukonis et al. (1986).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code (A): 2 - x, y, 1 - z].
[Figure 2] Fig. 2. Packing diagram for (I) showing hydrogen bonds as dashed lines.
Bis(4,4'-bipyridine-κN)tetrakis(nitrato-κ2O,O')tin(IV) top
Crystal data top
[Sn(NO3)4(C10H8N2)2]F(000) = 1352
Mr = 679.10Dx = 1.879 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8336 reflections
a = 20.112 (6) Åθ = 2.4–29.3°
b = 7.813 (4) ŵ = 1.15 mm1
c = 17.302 (9) ÅT = 273 K
β = 117.991 (7)°Plate, colourless
V = 2400.9 (18) Å30.40 × 0.33 × 0.21 mm
Z = 4
Data collection top
Bruker APEX II area-detector
diffractometer
2286 independent reflections
Radiation source: fine-focus sealed tube2249 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
φ and ω scansθmax = 26.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2424
Tmin = 0.656, Tmax = 0.797k = 99
7607 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0667P)2 + 18.0815P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2286 reflectionsΔρmax = 0.91 e Å3
187 parametersΔρmin = 0.48 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0039 (4)
Crystal data top
[Sn(NO3)4(C10H8N2)2]V = 2400.9 (18) Å3
Mr = 679.10Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.112 (6) ŵ = 1.15 mm1
b = 7.813 (4) ÅT = 273 K
c = 17.302 (9) Å0.40 × 0.33 × 0.21 mm
β = 117.991 (7)°
Data collection top
Bruker APEX II area-detector
diffractometer
2286 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2249 reflections with I > 2σ(I)
Tmin = 0.656, Tmax = 0.797Rint = 0.014
7607 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0667P)2 + 18.0815P]
where P = (Fo2 + 2Fc2)/3
2286 reflectionsΔρmax = 0.91 e Å3
187 parametersΔρmin = 0.48 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn11.00000.33854 (5)0.75000.0270 (2)
O11.0922 (3)0.4420 (6)0.8899 (3)0.0648 (12)
O21.0826 (4)0.4128 (9)1.0030 (3)0.0938 (19)
O30.9970 (3)0.3044 (6)0.8849 (3)0.0653 (12)
O40.9294 (3)0.0723 (7)0.6688 (4)0.0745 (14)
O50.8183 (3)0.0051 (7)0.6530 (4)0.0817 (15)
O60.8783 (3)0.2147 (6)0.7288 (3)0.0650 (12)
N11.0580 (3)0.3864 (7)0.9290 (4)0.0600 (13)
N20.8730 (3)0.0901 (7)0.6819 (3)0.0558 (12)
N30.9364 (3)0.6015 (7)0.7804 (3)0.0552 (12)
C10.9745 (4)0.7368 (8)0.8256 (4)0.0563 (15)
H11.02320.75270.83380.068*
C20.9464 (4)0.8529 (8)0.8606 (5)0.0543 (15)
H20.97510.94650.89150.065*
C30.8638 (4)0.5856 (9)0.7678 (4)0.0612 (16)
H30.83520.49390.73440.073*
C40.8315 (4)0.6930 (8)0.8003 (4)0.0571 (15)
H40.78230.67650.79030.068*
C50.8742 (4)0.8304 (7)0.8496 (4)0.0501 (14)
C60.8428 (3)0.9443 (8)0.8911 (4)0.0498 (13)
C70.7946 (4)0.8782 (9)0.9187 (4)0.0549 (14)
H70.78250.76240.91240.066*
C80.7653 (4)0.9862 (9)0.9554 (4)0.0604 (15)
H80.73240.94310.97450.073*
N40.7817 (4)1.1533 (7)0.9655 (4)0.0616 (15)
C90.8274 (5)1.2168 (10)0.9397 (6)0.075 (2)
H90.83781.33340.94640.090*
C100.8605 (5)1.1178 (9)0.9031 (5)0.0685 (19)
H100.89421.16480.88630.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0322 (3)0.0257 (3)0.0323 (3)0.0000.0227 (2)0.000
O10.063 (3)0.072 (3)0.067 (3)0.012 (2)0.037 (2)0.000 (2)
O20.128 (5)0.098 (4)0.043 (3)0.012 (4)0.029 (3)0.005 (3)
O30.072 (3)0.073 (3)0.063 (3)0.018 (2)0.041 (2)0.006 (2)
O40.084 (4)0.067 (3)0.092 (4)0.002 (3)0.058 (3)0.015 (3)
O50.079 (3)0.078 (3)0.082 (3)0.034 (3)0.033 (3)0.017 (3)
O60.077 (3)0.059 (3)0.075 (3)0.011 (2)0.049 (3)0.018 (2)
N10.070 (4)0.058 (3)0.054 (3)0.001 (3)0.031 (3)0.002 (2)
N20.063 (3)0.052 (3)0.057 (3)0.006 (2)0.031 (3)0.005 (2)
N30.065 (3)0.056 (3)0.057 (3)0.002 (2)0.039 (3)0.003 (2)
C10.063 (4)0.051 (3)0.070 (4)0.005 (3)0.044 (3)0.006 (3)
C20.061 (4)0.051 (3)0.064 (4)0.006 (3)0.041 (3)0.008 (3)
C30.062 (4)0.062 (4)0.064 (4)0.002 (3)0.033 (3)0.015 (3)
C40.054 (4)0.063 (4)0.058 (3)0.001 (3)0.030 (3)0.011 (3)
C50.059 (4)0.051 (3)0.050 (3)0.004 (2)0.033 (3)0.001 (2)
C60.054 (3)0.052 (3)0.051 (3)0.002 (3)0.031 (3)0.002 (2)
C70.061 (4)0.055 (3)0.060 (3)0.003 (3)0.038 (3)0.007 (3)
C80.063 (4)0.068 (4)0.065 (4)0.004 (3)0.042 (3)0.007 (3)
N40.070 (4)0.064 (4)0.067 (3)0.005 (3)0.046 (3)0.009 (2)
C90.103 (6)0.055 (4)0.098 (6)0.007 (4)0.073 (5)0.014 (4)
C100.094 (6)0.052 (3)0.090 (5)0.007 (3)0.069 (5)0.012 (3)
Geometric parameters (Å, º) top
Sn1—O12.396 (5)C1—H10.9300
Sn1—O32.378 (5)C2—C51.384 (9)
Sn1—O42.538 (5)C2—H20.9300
Sn1—O62.495 (5)C3—C41.335 (9)
Sn1—N32.601 (5)C3—H30.9300
Sn1—O3i2.378 (5)C4—C51.389 (9)
Sn1—O1i2.396 (5)C4—H40.9300
Sn1—O6i2.495 (5)C5—C61.460 (8)
Sn1—O4i2.538 (5)C6—C71.367 (9)
O1—N11.247 (7)C6—C101.392 (9)
O2—N11.154 (7)C7—C81.347 (9)
O3—N11.272 (8)C7—H70.9300
O4—N21.265 (7)C8—N41.338 (9)
O5—N21.223 (7)C8—H80.9300
O6—N21.240 (7)N4—C91.294 (10)
N3—C11.324 (9)C9—C101.355 (10)
N3—C31.378 (9)C9—H90.9300
C1—C21.353 (8)C10—H100.9300
O1—Sn1—O353.85 (16)O2—N1—O1118.7 (7)
O1—Sn1—O4143.36 (18)O2—N1—O3123.1 (6)
O1—Sn1—O6121.36 (15)O1—N1—O3118.2 (5)
O3—Sn1—O4100.75 (17)O5—N2—O6122.0 (6)
O3—Sn1—O668.01 (16)O5—N2—O4124.7 (6)
O4—Sn1—O649.13 (15)O6—N2—O4113.3 (5)
O1—Sn1—N375.55 (18)C1—N3—C3116.2 (5)
O3—Sn1—N369.45 (17)C1—N3—Sn1123.2 (4)
O4—Sn1—N3123.99 (18)C3—N3—Sn1118.9 (4)
O6—Sn1—N378.13 (17)N3—C1—C2123.5 (6)
O3—Sn1—O3i167.1 (2)N3—C1—H1118.2
O3—Sn1—O1i131.72 (17)C2—C1—H1118.2
O3i—Sn1—O1i53.85 (16)C1—C2—C5119.0 (6)
O3i—Sn1—O1131.72 (18)C1—C2—H2120.5
O1i—Sn1—O1140.6 (2)C5—C2—H2120.5
O3i—Sn1—O6106.71 (17)C4—C3—N3124.4 (6)
O1i—Sn1—O675.01 (17)C4—C3—H3117.8
O3—Sn1—O6i106.70 (17)N3—C3—H3117.8
O3i—Sn1—O6i68.01 (16)C3—C4—C5117.5 (7)
O1i—Sn1—O6i121.36 (15)C3—C4—H4121.2
O1—Sn1—O6i75.01 (17)C5—C4—H4121.2
O6—Sn1—O6i134.3 (2)C2—C5—C4119.2 (6)
O3i—Sn1—O468.27 (18)C2—C5—C6121.6 (6)
O1i—Sn1—O475.55 (18)C4—C5—C6119.2 (6)
O6i—Sn1—O491.07 (17)C7—C6—C10119.3 (6)
O3—Sn1—O4i68.28 (18)C7—C6—C5118.9 (6)
O3i—Sn1—O4i100.75 (17)C10—C6—C5121.8 (6)
O1i—Sn1—O4i143.36 (18)C8—C7—C6117.8 (6)
O1—Sn1—O4i75.55 (18)C8—C7—H7121.1
O6—Sn1—O4i91.07 (17)C6—C7—H7121.1
O6i—Sn1—O4i49.12 (15)N4—C8—C7122.5 (6)
O4—Sn1—O4i69.9 (3)N4—C8—H8118.8
O3i—Sn1—N3121.88 (16)C7—C8—H8118.8
O1i—Sn1—N373.54 (16)C9—N4—C8120.0 (6)
O6i—Sn1—N3144.95 (18)N4—C9—C10121.7 (7)
O4i—Sn1—N3137.37 (17)N4—C9—H9119.1
N1—O1—Sn193.9 (4)C10—C9—H9119.1
N1—O3—Sn194.0 (3)C9—C10—C6118.6 (7)
N2—O4—Sn197.3 (4)C9—C10—H10120.7
N2—O6—Sn1100.2 (4)C6—C10—H10120.7
Symmetry code: (i) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O60.932.373.021 (8)127
C1—H1···O10.932.743.111 (9)105

Experimental details

Crystal data
Chemical formula[Sn(NO3)4(C10H8N2)2]
Mr679.10
Crystal system, space groupMonoclinic, C2/c
Temperature (K)273
a, b, c (Å)20.112 (6), 7.813 (4), 17.302 (9)
β (°) 117.991 (7)
V3)2400.9 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.40 × 0.33 × 0.21
Data collection
DiffractometerBruker APEX II area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.656, 0.797
No. of measured, independent and
observed [I > 2σ(I)] reflections
7607, 2286, 2249
Rint0.014
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.120, 1.08
No. of reflections2286
No. of parameters187
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0667P)2 + 18.0815P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.91, 0.48

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996), SHELXTL.

Selected geometric parameters (Å, º) top
Sn1—O12.396 (5)Sn1—O62.495 (5)
Sn1—O32.378 (5)Sn1—N32.601 (5)
Sn1—O42.538 (5)
O1—Sn1—O353.85 (16)O4—Sn1—O649.13 (15)
O1—Sn1—O4143.36 (18)O1—Sn1—N375.55 (18)
O1—Sn1—O6121.36 (15)O3—Sn1—N369.45 (17)
O3—Sn1—O4100.75 (17)O4—Sn1—N3123.99 (18)
O3—Sn1—O668.01 (16)O6—Sn1—N378.13 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O60.932.373.021 (8)127
C1—H1···O10.932.743.111 (9)105
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds