Download citation
Download citation
link to html
In the title compound, {[Cd(C8H10O2)(C4H6N2)2]·2H2O}n, each CdII atom is six-coordinated by two N atoms from two 2-methyl-1H-imidazole (mi) mol­ecules and four O atoms from two cyclo­hexane-1,4-dicarboxyl­ate (1,4-chdc) ligands in a distorted octa­hedral environment. The asymmetric unit consists of two independent mononuclear complex units and two solvent water molecules. Each 1,4-chdc acts as a bis-chelating ligand that binds two CdII atoms, thus forming two unique helical chains. These chains are decorated with mi ligands alternately on the two sides. Furthermore, O—H...O and N—H...O hydrogen bonds link the chains together, forming a three-dimensional supra­molecular structure. There are weak π–π inter­actions between mi ligands in neighbouring chains at (x, y, z) and (−x, −y, 2 − z), with an inter­planar distance of 3.62 (2) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807022416/at2287sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807022416/at2287Isup2.hkl
Contains datablock I

CCDC reference: 650670

Key indicators

  • Single-crystal X-ray study
  • T = 292 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.054
  • wR factor = 0.127
  • Data-to-parameter ratio = 18.9

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT222_ALERT_3_B Large Non-Solvent H Ueq(max)/Ueq(min) ... 4.20 Ratio PLAT241_ALERT_2_B Check High Ueq as Compared to Neighbors for O1 PLAT241_ALERT_2_B Check High Ueq as Compared to Neighbors for C19 PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for C18 PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for C30
Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.39 Ratio PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.88 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.49 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O2 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C20 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C22 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O5 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O6 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C3 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N5 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C23 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C25 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C7 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 8
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cd1 (2) 2.03 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cd2 (2) 2.05 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 24
0 ALERT level A = In general: serious problem 5 ALERT level B = Potentially serious problem 14 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 16 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

Helical structures have received much attention in coordination chemistry and materials chemistry (Lehn, 1990). So far, many helical complexes have been generated by self-assembly processes (Chen & Liu, 2002). An appropriate flexible bidentate organic acid bridge could be useful in the formation of helical chains in the presence of secondary ligands, such as 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen) (Li et al., 2002). The N atoms from the secondary ligand may occupy two coordination positions of metal ions. The rest of the coordination positions are available for other carboxylate ligands to allow the formation of a helix. We selected cyclohexane-1,4-dicarboxylic acid (1,4-chdcH2) as a bridging ligand and 2-methyl-1H-imidazole (mi) as a secondary ligand, generating a new helical chain coordination polymer, [Cd(1,4-chdc)(mi)2].2H2O, (I), which is reported here.

In compound (I), the asymmetric unit contains two crystallographically nonequivalent CdII atoms (Cd1 and Cd2), two 1,4-chdc anions, four mi ligands, and four free water molecules (Fig. 1). Each CdII atom is six-coordinated by two N atoms from two mi molecules, and four O atoms from two 1,4-chdc ligands in a distorted octahedral environment (Fig. 1). The Cd—O distances range from 2.279 (5) to 2.457 (4) Å, and the Cd—N distances vary from 2.235 (5) to 2.269 (4) Å (Table 1). As shown in Fig. 2, each 1,4-chdc moiety acts as a bis-chelating ligand that binds two CdII atoms, forming two unique helical chains. These chains are decorated with mi ligands alternately at two sides. Furthermore, the O—H···O and N—H···O hydrogen bonds (Table 2) link the chains together, forming a three-dimensional supramolecular structure of (I). There are weak ππ interactions between 2-methyl- 1H-imidazole ligands in neighboring chains at (x, y, z) and (-x, -y, 2 - z), with the interplanar distance of 3.62 (2) Å.

Related literature top

Two related helical coordination polymers with mixed ligands, [Co2(phen)2(1,4-chdc)2(H2O)2]n and [Ni2(phen)2(1,4-chdc)2(H2O)2]n, have been prepared under hydrothermal conditions. The most attractive structural feature of the two isomorphic compounds is that they both exhibit an infinite helical chainlike structure with 21 helices. Moreover, the adjacent chains are linked via hydrogen bonds and π-π interactions into three-dimensional supramolecular structures (Qi et al., 2003).

For related literature, see: Chen & Liu (2002); Lehn (1990); Li et al. (2002).

Experimental top

A mixture of CdCl2.2H2O (0.5 mmol), 1,4-chdc acid (0.5 mmol), mi (0.5 mmol), and H2O (500 mmol) was adjusted to pH = 7 by addition of aqueous NaOH solution, and heated at 453 K for 6 days. After the mixture was slowly cooled to room temperature, colourless crystals of (I) were yielded (37% yield).

Refinement top

All H atoms on C and N atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93 Å) and refined as riding, with Uiso(H) =1.2Ueq(carrier). The water H-atoms were located in a difference Fourier map, and were refined with distance restraints of O—H = 0.85 Å; their temperature factors were tied to those of parent atoms by a factor of 1.2.

Structure description top

Helical structures have received much attention in coordination chemistry and materials chemistry (Lehn, 1990). So far, many helical complexes have been generated by self-assembly processes (Chen & Liu, 2002). An appropriate flexible bidentate organic acid bridge could be useful in the formation of helical chains in the presence of secondary ligands, such as 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen) (Li et al., 2002). The N atoms from the secondary ligand may occupy two coordination positions of metal ions. The rest of the coordination positions are available for other carboxylate ligands to allow the formation of a helix. We selected cyclohexane-1,4-dicarboxylic acid (1,4-chdcH2) as a bridging ligand and 2-methyl-1H-imidazole (mi) as a secondary ligand, generating a new helical chain coordination polymer, [Cd(1,4-chdc)(mi)2].2H2O, (I), which is reported here.

In compound (I), the asymmetric unit contains two crystallographically nonequivalent CdII atoms (Cd1 and Cd2), two 1,4-chdc anions, four mi ligands, and four free water molecules (Fig. 1). Each CdII atom is six-coordinated by two N atoms from two mi molecules, and four O atoms from two 1,4-chdc ligands in a distorted octahedral environment (Fig. 1). The Cd—O distances range from 2.279 (5) to 2.457 (4) Å, and the Cd—N distances vary from 2.235 (5) to 2.269 (4) Å (Table 1). As shown in Fig. 2, each 1,4-chdc moiety acts as a bis-chelating ligand that binds two CdII atoms, forming two unique helical chains. These chains are decorated with mi ligands alternately at two sides. Furthermore, the O—H···O and N—H···O hydrogen bonds (Table 2) link the chains together, forming a three-dimensional supramolecular structure of (I). There are weak ππ interactions between 2-methyl- 1H-imidazole ligands in neighboring chains at (x, y, z) and (-x, -y, 2 - z), with the interplanar distance of 3.62 (2) Å.

Two related helical coordination polymers with mixed ligands, [Co2(phen)2(1,4-chdc)2(H2O)2]n and [Ni2(phen)2(1,4-chdc)2(H2O)2]n, have been prepared under hydrothermal conditions. The most attractive structural feature of the two isomorphic compounds is that they both exhibit an infinite helical chainlike structure with 21 helices. Moreover, the adjacent chains are linked via hydrogen bonds and π-π interactions into three-dimensional supramolecular structures (Qi et al., 2003).

For related literature, see: Chen & Liu (2002); Lehn (1990); Li et al. (2002).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. (H atoms have been omitted). Symmetry code: (i) x + 1/2, y, 1.5 - z; (ii) 0.5 - x, 1/2 + y, z.
[Figure 2] Fig. 2. View of the chain structure in (I). H atoms have been omitted.
catena-Poly[[[bis(2-methyl-1H-imidazole-κN3)cadmium(II)]-µ- cyclohexane-1,4-dicarboxylato] dihydrate] top
Crystal data top
[Cd(C8H10O2)(C4H6N2)2]·2H2OF(000) = 3936
Mr = 482.81Dx = 1.496 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 51297 reflections
a = 17.593 (4) Åθ = 3.2–27.5°
b = 16.005 (3) ŵ = 1.06 mm1
c = 30.446 (6) ÅT = 292 K
V = 8573 (3) Å3Block, colourless
Z = 160.33 × 0.31 × 0.28 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
9751 independent reflections
Radiation source: rotating anode6833 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 2222
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2020
Tmin = 0.698, Tmax = 0.742l = 3938
71497 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0421P)2 + 26.2686P]
where P = (Fo2 + 2Fc2)/3
9751 reflections(Δ/σ)max = 0.002
515 parametersΔρmax = 1.41 e Å3
24 restraintsΔρmin = 1.01 e Å3
Crystal data top
[Cd(C8H10O2)(C4H6N2)2]·2H2OV = 8573 (3) Å3
Mr = 482.81Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 17.593 (4) ŵ = 1.06 mm1
b = 16.005 (3) ÅT = 292 K
c = 30.446 (6) Å0.33 × 0.31 × 0.28 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
9751 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
6833 reflections with I > 2σ(I)
Tmin = 0.698, Tmax = 0.742Rint = 0.074
71497 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05424 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0421P)2 + 26.2686P]
where P = (Fo2 + 2Fc2)/3
9751 reflectionsΔρmax = 1.41 e Å3
515 parametersΔρmin = 1.01 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3487 (4)0.0299 (4)0.8365 (2)0.0655 (16)
C20.3969 (4)0.0552 (5)0.8728 (2)0.084 (2)
H2A0.40820.00750.89080.125*
H2B0.37100.09660.89000.125*
H2C0.44330.07830.86150.125*
C30.2583 (6)0.0328 (6)0.8009 (3)0.117 (4)
H30.21630.06580.79430.140*
C40.2962 (5)0.0120 (5)0.7727 (2)0.093 (3)
H40.28620.01650.74280.111*
C50.4929 (5)0.0180 (4)0.6884 (2)0.086 (2)
H50.46820.00880.66540.104*
C60.5290 (5)0.0929 (5)0.6857 (2)0.091 (3)
H60.53350.12680.66100.109*
C70.5378 (3)0.0443 (4)0.75212 (19)0.0567 (14)
C80.5594 (5)0.0398 (6)0.7991 (2)0.114 (3)
H8A0.56260.09530.81100.171*
H8B0.52180.00850.81500.171*
H8C0.60790.01280.80180.171*
C90.3491 (3)0.2185 (3)0.70464 (16)0.0418 (11)
C100.3014 (3)0.2702 (3)0.67294 (15)0.0425 (11)
H100.33730.30100.65440.051*
C110.2531 (3)0.3359 (3)0.69652 (18)0.0471 (12)
H11A0.23520.37670.67530.057*
H11B0.28420.36490.71790.057*
C120.1844 (3)0.2963 (3)0.71987 (16)0.0464 (12)
H12A0.20220.25920.74290.056*
H12B0.15410.33990.73340.056*
C130.1358 (3)0.2479 (3)0.68804 (15)0.0407 (11)
H130.11870.28660.66520.049*
C140.1845 (3)0.1795 (3)0.66569 (16)0.0451 (12)
H14A0.20190.14000.68760.054*
H14B0.15360.14930.64460.054*
C150.2530 (3)0.2179 (4)0.64228 (15)0.0500 (13)
H15A0.28390.17360.62990.060*
H15B0.23530.25270.61830.060*
C160.0660 (3)0.2092 (3)0.70850 (15)0.0421 (11)
C170.0291 (5)0.2609 (8)0.8744 (3)0.140 (4)
H17A0.01820.30130.85190.210*
H17B0.02540.28680.90270.210*
H17C0.00670.21580.87250.210*
C180.1073 (4)0.2279 (4)0.86811 (18)0.0582 (15)
C190.2189 (5)0.1846 (8)0.8780 (2)0.132 (4)
H190.26370.16740.89150.158*
C200.2070 (6)0.1864 (7)0.8342 (3)0.125 (3)
H200.24140.17220.81220.150*
C210.0350 (4)0.1632 (5)0.9842 (3)0.088 (2)
H210.04510.21141.00020.106*
C220.0868 (5)0.1091 (6)0.9702 (3)0.117 (3)
H220.13900.11200.97460.140*
C230.0253 (4)0.0665 (4)0.9494 (2)0.0644 (16)
C240.0853 (5)0.0148 (5)0.9297 (3)0.116 (3)
H24A0.12990.01700.94780.174*
H24B0.09720.03540.90090.174*
H24C0.06800.04200.92760.174*
C250.2703 (3)0.1530 (3)1.01604 (16)0.0446 (12)
C260.3384 (3)0.1297 (3)1.04391 (17)0.0487 (12)
H260.35310.18021.06010.058*
C270.4074 (3)0.1047 (3)1.01558 (18)0.0489 (13)
H27A0.41410.14540.99230.059*
H27B0.45290.10521.03360.059*
C280.3971 (3)0.0188 (3)0.99572 (16)0.0440 (11)
H28A0.44150.00480.97840.053*
H28B0.35340.01930.97630.053*
C290.3855 (3)0.0475 (3)1.03110 (15)0.0414 (11)
H290.42940.04611.05080.050*
C300.3793 (3)0.1346 (3)1.01204 (17)0.0466 (12)
C320.3221 (4)0.0625 (4)1.07818 (16)0.0561 (15)
H32A0.36270.06191.09970.067*
H32B0.27520.07601.09340.067*
C330.3150 (3)0.0239 (3)1.05761 (16)0.0500 (13)
H33A0.27080.02501.03850.060*
H33B0.30720.06491.08060.060*
N10.3556 (3)0.0527 (3)0.79580 (16)0.0665 (14)
N20.2897 (3)0.0240 (4)0.84165 (18)0.0800 (17)
H20.27510.04770.86560.096*
N30.4986 (3)0.0114 (3)0.73007 (15)0.0572 (12)
N40.5567 (3)0.1078 (3)0.72553 (18)0.0638 (13)
H4A0.58260.15110.73310.077*
N50.1569 (3)0.2111 (3)0.89909 (14)0.0599 (13)
N60.1345 (3)0.2130 (4)0.82889 (16)0.0862 (19)
H6A0.11090.21910.80440.103*
N70.0366 (3)0.1368 (3)0.97121 (16)0.0603 (12)
N80.0480 (4)0.0483 (4)0.9479 (2)0.0862 (19)
H80.06790.00560.93520.103*
O10.2783 (2)0.1910 (3)0.98117 (14)0.0797 (14)
O20.2054 (2)0.1357 (3)1.02861 (14)0.0738 (13)
O1W0.1019 (3)0.0996 (3)1.09298 (15)0.0737 (13)
HW110.139 (2)0.113 (4)1.0753 (18)0.088*
HW120.067 (3)0.138 (3)1.090 (2)0.088*
O30.3518 (4)0.1455 (3)0.97550 (18)0.112 (2)
O2W0.4907 (3)0.2497 (3)1.09893 (13)0.0690 (12)
HW210.464 (3)0.218 (3)1.0825 (15)0.083*
HW220.491 (4)0.232 (4)1.1251 (8)0.083*
O40.4037 (3)0.1952 (3)1.03138 (15)0.0824 (15)
O3W0.2434 (3)0.0813 (4)0.92112 (18)0.0933 (16)
HW310.209 (3)0.120 (4)0.924 (2)0.112*
HW320.277 (3)0.090 (5)0.941 (2)0.112*
O50.3690 (2)0.2477 (2)0.74102 (13)0.0610 (11)
O4W0.3630 (3)0.2924 (4)0.9246 (2)0.1069 (19)
HW410.344 (4)0.252 (4)0.940 (3)0.128*
HW420.407 (3)0.275 (5)0.915 (3)0.128*
O60.3704 (3)0.1473 (3)0.69354 (13)0.0691 (12)
O70.0579 (2)0.2059 (3)0.74928 (11)0.0602 (11)
O80.0155 (2)0.1791 (3)0.68348 (11)0.0533 (9)
Cd10.44158 (2)0.12656 (2)0.758212 (12)0.04416 (11)
Cd20.14412 (2)0.21222 (2)0.973230 (11)0.04324 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.060 (4)0.071 (4)0.065 (4)0.002 (3)0.006 (3)0.001 (3)
C20.068 (5)0.123 (6)0.060 (4)0.019 (4)0.000 (3)0.019 (4)
C30.127 (8)0.136 (8)0.087 (5)0.081 (7)0.001 (5)0.013 (5)
C40.113 (7)0.100 (6)0.065 (4)0.048 (5)0.006 (4)0.005 (4)
C50.123 (7)0.066 (4)0.070 (4)0.030 (4)0.038 (4)0.010 (3)
C60.116 (7)0.074 (5)0.081 (5)0.032 (5)0.031 (5)0.030 (4)
C70.048 (3)0.057 (3)0.064 (3)0.014 (3)0.005 (3)0.008 (3)
C80.133 (8)0.131 (8)0.077 (5)0.072 (6)0.019 (5)0.013 (5)
C90.031 (2)0.051 (3)0.044 (3)0.007 (2)0.001 (2)0.006 (2)
C100.029 (2)0.058 (3)0.040 (2)0.002 (2)0.0027 (19)0.010 (2)
C110.036 (3)0.045 (3)0.061 (3)0.000 (2)0.002 (2)0.009 (2)
C120.038 (3)0.055 (3)0.046 (3)0.006 (2)0.006 (2)0.008 (2)
C130.031 (3)0.053 (3)0.038 (2)0.001 (2)0.0010 (19)0.007 (2)
C140.032 (3)0.061 (3)0.042 (3)0.005 (2)0.001 (2)0.008 (2)
C150.035 (3)0.078 (4)0.036 (2)0.002 (3)0.000 (2)0.002 (3)
C160.032 (3)0.055 (3)0.039 (2)0.003 (2)0.000 (2)0.003 (2)
C170.096 (7)0.233 (13)0.091 (6)0.073 (8)0.003 (5)0.037 (7)
C180.059 (4)0.068 (4)0.047 (3)0.002 (3)0.006 (3)0.003 (3)
C190.084 (6)0.256 (13)0.054 (4)0.081 (7)0.015 (4)0.039 (6)
C200.114 (6)0.188 (8)0.072 (5)0.056 (6)0.000 (4)0.028 (5)
C210.077 (5)0.077 (5)0.110 (6)0.019 (4)0.022 (4)0.024 (4)
C220.066 (5)0.133 (8)0.152 (8)0.030 (5)0.025 (5)0.053 (7)
C230.084 (5)0.046 (3)0.064 (4)0.004 (3)0.010 (3)0.001 (3)
C240.121 (8)0.065 (5)0.163 (9)0.012 (5)0.004 (7)0.037 (5)
C250.052 (3)0.037 (3)0.044 (3)0.005 (2)0.003 (2)0.006 (2)
C260.056 (3)0.042 (3)0.048 (3)0.001 (3)0.011 (2)0.009 (2)
C270.038 (3)0.041 (3)0.068 (3)0.001 (2)0.008 (2)0.001 (2)
C280.036 (3)0.049 (3)0.048 (3)0.001 (2)0.006 (2)0.003 (2)
C290.041 (3)0.042 (3)0.041 (2)0.006 (2)0.009 (2)0.003 (2)
C300.048 (3)0.048 (3)0.044 (3)0.000 (3)0.006 (2)0.003 (2)
C320.071 (4)0.062 (4)0.035 (3)0.018 (3)0.005 (2)0.006 (2)
C330.060 (4)0.051 (3)0.039 (3)0.004 (3)0.004 (2)0.011 (2)
N10.072 (4)0.065 (3)0.062 (3)0.016 (3)0.002 (3)0.003 (3)
N20.087 (4)0.088 (4)0.065 (3)0.039 (3)0.003 (3)0.010 (3)
N30.060 (3)0.052 (3)0.059 (3)0.007 (2)0.007 (2)0.002 (2)
N40.064 (3)0.046 (3)0.081 (3)0.012 (2)0.009 (3)0.000 (2)
N50.053 (3)0.083 (4)0.043 (2)0.003 (3)0.007 (2)0.014 (2)
N60.077 (4)0.137 (6)0.044 (3)0.022 (4)0.017 (3)0.008 (3)
N70.067 (3)0.052 (3)0.061 (3)0.010 (2)0.006 (2)0.002 (2)
N80.088 (5)0.077 (4)0.093 (4)0.040 (4)0.017 (4)0.006 (3)
O10.056 (3)0.111 (4)0.072 (3)0.000 (3)0.006 (2)0.040 (3)
O20.049 (3)0.101 (4)0.071 (3)0.014 (2)0.007 (2)0.028 (2)
O1W0.081 (3)0.073 (3)0.066 (3)0.024 (3)0.014 (2)0.004 (2)
O30.175 (5)0.058 (3)0.102 (4)0.009 (3)0.076 (4)0.016 (3)
O2W0.069 (3)0.088 (3)0.049 (2)0.014 (3)0.001 (2)0.004 (2)
O40.124 (4)0.045 (2)0.078 (3)0.015 (3)0.038 (3)0.005 (2)
O3W0.074 (4)0.115 (4)0.091 (4)0.005 (3)0.004 (3)0.042 (3)
O50.071 (3)0.055 (2)0.058 (2)0.012 (2)0.031 (2)0.0038 (18)
O4W0.072 (4)0.112 (5)0.136 (5)0.011 (3)0.014 (3)0.041 (4)
O60.078 (3)0.067 (3)0.062 (2)0.030 (2)0.017 (2)0.012 (2)
O70.045 (2)0.099 (3)0.0366 (18)0.019 (2)0.0004 (16)0.0044 (19)
O80.040 (2)0.080 (3)0.0404 (18)0.0171 (19)0.0017 (15)0.0007 (18)
Cd10.03687 (19)0.0486 (2)0.0470 (2)0.00164 (17)0.01030 (16)0.00212 (17)
Cd20.0455 (2)0.0431 (2)0.04110 (19)0.00382 (17)0.00389 (16)0.00270 (16)
Geometric parameters (Å, º) top
C1—N11.298 (8)C21—N71.386 (9)
C1—N21.360 (8)C21—H210.9300
C1—C21.449 (9)C22—N81.368 (10)
C2—H2A0.9600C22—H220.9300
C2—H2B0.9600C23—N81.323 (8)
C2—H2C0.9600C23—N71.322 (7)
C3—C41.303 (10)C23—C241.468 (10)
C3—N21.364 (9)C24—H24A0.9600
C3—H30.9300C24—H24B0.9600
C4—N11.416 (9)C24—H24C0.9600
C4—H40.9300C25—O11.232 (6)
C5—C61.359 (9)C25—O21.234 (7)
C5—N31.356 (7)C25—C261.516 (7)
C5—H50.9300C26—C321.527 (8)
C6—N41.329 (8)C26—C271.542 (8)
C6—H60.9300C26—H260.9800
C7—N31.313 (7)C27—C281.513 (7)
C7—N41.342 (7)C27—H27A0.9700
C7—C81.482 (9)C27—H27B0.9700
C8—H8A0.9600C28—C291.525 (7)
C8—H8B0.9600C28—H28A0.9700
C8—H8C0.9600C28—H28B0.9700
C9—O61.246 (6)C29—C301.515 (7)
C9—O51.252 (6)C29—C331.527 (7)
C9—C101.523 (7)C29—H290.9800
C10—C151.516 (7)C30—O41.214 (6)
C10—C111.531 (7)C30—O31.226 (6)
C10—H100.9800C32—C331.523 (8)
C11—C121.538 (7)C32—H32A0.9700
C11—H11A0.9700C32—H32B0.9700
C11—H11B0.9700C33—H33A0.9700
C12—C131.508 (7)C33—H33B0.9700
C12—H12A0.9700Cd1—N12.235 (5)
C12—H12B0.9700N2—H20.8600
C13—C161.509 (7)Cd1—N32.266 (5)
C13—C141.547 (7)N4—H4A0.8600
C13—H130.9800Cd2—N52.269 (4)
C14—C151.530 (7)N6—H6A0.8600
C14—H14A0.9700Cd2—N72.244 (5)
C14—H14B0.9700N8—H80.8600
C15—H15A0.9700Cd2—O12.397 (4)
C15—H15B0.9700Cd2—O22.347 (4)
C16—O71.251 (6)O1W—HW110.87 (5)
C16—O81.266 (6)O1W—HW120.87 (5)
C17—C181.485 (10)O2W—HW210.85 (5)
C17—H17A0.9600O2W—HW220.844 (19)
C17—H17B0.9600O3W—HW310.87 (6)
C17—H17C0.9600O3W—HW320.86 (6)
C18—N61.308 (7)O4W—HW410.87 (7)
C18—N51.313 (7)O4W—HW420.87 (6)
C19—N51.335 (8)Cd1—O52.380 (4)
C19—C201.352 (10)Cd1—O62.357 (4)
C19—H190.9300Cd1—O8i2.355 (3)
C20—N61.354 (10)Cd1—O7i2.419 (4)
C20—H200.9300Cd2—O3ii2.279 (5)
C21—C221.327 (10)Cd2—O4ii2.457 (4)
N1—C1—N2111.0 (6)C25—C26—C32114.0 (5)
N1—C1—C2126.5 (6)C25—C26—C27111.9 (4)
N2—C1—C2122.5 (6)C32—C26—C27110.3 (4)
C1—C2—H2A109.5C25—C26—H26106.7
C1—C2—H2B109.5C32—C26—H26106.7
H2A—C2—H2B109.5C27—C26—H26106.7
C1—C2—H2C109.5C28—C27—C26111.4 (4)
H2A—C2—H2C109.5C28—C27—H27A109.3
H2B—C2—H2C109.5C26—C27—H27A109.3
C4—C3—N2109.6 (7)C28—C27—H27B109.3
C4—C3—H3125.2C26—C27—H27B109.3
N2—C3—H3125.2H27A—C27—H27B108.0
C3—C4—N1107.7 (7)C27—C28—C29111.5 (4)
C3—C4—H4126.1C27—C28—H28A109.3
N1—C4—H4126.1C29—C28—H28A109.3
C6—C5—N3109.3 (6)C27—C28—H28B109.3
C6—C5—H5125.4C29—C28—H28B109.3
N3—C5—H5125.4H28A—C28—H28B108.0
N4—C6—C5105.9 (6)C30—C29—C28112.3 (4)
N4—C6—H6127.1C30—C29—C33111.9 (4)
C5—C6—H6127.1C28—C29—C33108.1 (4)
N3—C7—N4109.7 (5)C30—C29—H29108.2
N3—C7—C8126.6 (6)C28—C29—H29108.2
N4—C7—C8123.7 (6)C33—C29—H29108.2
C7—C8—H8A109.5O4—C30—O3117.8 (5)
C7—C8—H8B109.5O4—C30—C29121.7 (5)
H8A—C8—H8B109.5O3—C30—C29120.5 (5)
C7—C8—H8C109.5O4—C30—Cd2iii63.2 (3)
H8A—C8—H8C109.5O3—C30—Cd2iii54.8 (3)
H8B—C8—H8C109.5C29—C30—Cd2iii174.5 (4)
O6—C9—O5119.8 (5)C33—C32—C26112.0 (4)
O6—C9—C10119.4 (4)C33—C32—H32A109.2
O5—C9—C10120.8 (5)C26—C32—H32A109.2
C15—C10—C9113.5 (4)C33—C32—H32B109.2
C15—C10—C11110.8 (4)C26—C32—H32B109.2
C9—C10—C11112.4 (4)H32A—C32—H32B107.9
C15—C10—H10106.5C32—C33—C29112.0 (5)
C9—C10—H10106.5C32—C33—H33A109.2
C11—C10—H10106.5C29—C33—H33A109.2
C10—C11—C12111.8 (4)C32—C33—H33B109.2
C10—C11—H11A109.3C29—C33—H33B109.2
C12—C11—H11A109.3H33A—C33—H33B107.9
C10—C11—H11B109.3C1—N1—C4106.0 (6)
C12—C11—H11B109.3C1—N1—Cd1134.5 (4)
H11A—C11—H11B107.9C4—N1—Cd1119.2 (4)
C13—C12—C11111.1 (4)C1—N2—C3105.7 (6)
C13—C12—H12A109.4C1—N2—H2127.2
C11—C12—H12A109.4C3—N2—H2127.2
C13—C12—H12B109.4C7—N3—C5106.3 (5)
C11—C12—H12B109.4C7—N3—Cd1126.3 (4)
H12A—C12—H12B108.0C5—N3—Cd1127.1 (4)
C12—C13—C16114.0 (4)C6—N4—C7108.9 (5)
C12—C13—C14109.4 (4)C6—N4—H4A125.6
C16—C13—C14110.0 (4)C7—N4—H4A125.6
C12—C13—H13107.7C18—N5—C19105.3 (5)
C16—C13—H13107.7C18—N5—Cd2130.3 (4)
C14—C13—H13107.7C19—N5—Cd2124.2 (4)
C15—C14—C13110.9 (4)C18—N6—C20107.1 (6)
C15—C14—H14A109.5C18—N6—H6A126.4
C13—C14—H14A109.5C20—N6—H6A126.4
C15—C14—H14B109.5C23—N7—C21105.4 (6)
C13—C14—H14B109.5C23—N7—Cd2126.7 (5)
H14A—C14—H14B108.0C21—N7—Cd2126.5 (4)
C10—C15—C14112.2 (4)C23—N8—C22108.3 (6)
C10—C15—H15A109.2C23—N8—H8125.9
C14—C15—H15A109.2C22—N8—H8125.9
C10—C15—H15B109.2C25—O1—Cd292.5 (4)
C14—C15—H15B109.2C25—O2—Cd294.9 (3)
H15A—C15—H15B107.9HW11—O1W—HW12107 (3)
O7—C16—O8120.0 (4)C30—O3—Cd2iii99.1 (4)
O7—C16—C13121.4 (4)HW21—O2W—HW22111 (3)
O8—C16—C13118.6 (4)C30—O4—Cd2iii90.6 (3)
C18—C17—H17A109.5HW31—O3W—HW32108 (3)
C18—C17—H17B109.5C9—O5—Cd192.3 (3)
H17A—C17—H17B109.5HW41—O4W—HW42107 (7)
C18—C17—H17C109.5C9—O6—Cd193.5 (3)
H17A—C17—H17C109.5C16—O7—Cd1iv91.5 (3)
H17B—C17—H17C109.5C16—O8—Cd1iv94.0 (3)
N6—C18—N5112.0 (6)N1—Cd1—N393.62 (19)
N6—C18—C17121.4 (6)N1—Cd1—O8i100.17 (15)
N5—C18—C17126.6 (6)N3—Cd1—O8i109.32 (16)
N5—C19—C20110.0 (7)N1—Cd1—O698.18 (18)
N5—C19—H19125.0N3—Cd1—O691.94 (15)
C20—C19—H19125.0O8i—Cd1—O6150.77 (15)
N6—C20—C19105.6 (7)N1—Cd1—O5100.37 (18)
N6—C20—H20127.2N3—Cd1—O5144.75 (15)
C19—C20—H20127.2O8i—Cd1—O599.87 (13)
C22—C21—N7109.5 (7)O6—Cd1—O554.29 (13)
C22—C21—H21125.2N1—Cd1—O7i153.96 (16)
N7—C21—H21125.2N3—Cd1—O7i90.96 (17)
C21—C22—N8106.3 (7)O8i—Cd1—O7i54.33 (11)
C21—C22—H22126.9O6—Cd1—O7i107.27 (15)
N8—C22—H22126.9O5—Cd1—O7i90.33 (15)
N8—C23—N7110.5 (6)N7—Cd2—N592.99 (18)
N8—C23—C24124.3 (7)N7—Cd2—O3ii124.4 (2)
N7—C23—C24125.2 (7)N5—Cd2—O3ii91.99 (19)
C23—C24—H24A109.5N7—Cd2—O297.27 (17)
C23—C24—H24B109.5N5—Cd2—O2131.71 (17)
H24A—C24—H24B109.5O3ii—Cd2—O2119.0 (2)
C23—C24—H24C109.5N7—Cd2—O1139.16 (18)
H24A—C24—H24C109.5N5—Cd2—O190.09 (16)
H24B—C24—H24C109.5O3ii—Cd2—O196.1 (2)
O1—C25—O2119.0 (5)O2—Cd2—O153.20 (14)
O1—C25—C26120.9 (5)N7—Cd2—O4ii93.16 (18)
O2—C25—C26120.1 (5)N5—Cd2—O4ii139.08 (18)
O1—C25—Cd260.8 (3)O3ii—Cd2—O4ii52.18 (15)
O2—C25—Cd258.5 (3)O2—Cd2—O4ii87.38 (17)
C26—C25—Cd2172.4 (3)O1—Cd2—O4ii110.49 (19)
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z; (iv) x1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW11···O20.87 (5)1.88 (5)2.737 (6)169 (7)
O2W—HW21···O40.85 (5)1.92 (3)2.708 (6)153 (6)
O2W—HW22···O8v0.84 (2)1.97 (2)2.814 (5)173 (5)
O3W—HW32···O30.86 (6)1.90 (4)2.727 (7)160 (8)
O3W—HW31···O4Wiii0.87 (6)1.89 (6)2.758 (8)176 (9)
O4W—HW41···O10.87 (7)1.97 (8)2.797 (7)160 (7)
O4W—HW42···O2Wvi0.87 (6)1.90 (3)2.756 (7)170 (9)
N2—H2···O3W0.861.862.712 (7)171
N4—H4A···O5vii0.861.992.845 (6)171
N6—H6A···O70.861.932.776 (6)167
N8—H8···O1Wviii0.861.982.839 (7)173
Symmetry codes: (iii) x+1/2, y1/2, z; (v) x+1/2, y, z+1/2; (vi) x+1, y, z+2; (vii) x+1, y1/2, z+3/2; (viii) x, y, z+2.

Experimental details

Crystal data
Chemical formula[Cd(C8H10O2)(C4H6N2)2]·2H2O
Mr482.81
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)292
a, b, c (Å)17.593 (4), 16.005 (3), 30.446 (6)
V3)8573 (3)
Z16
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.33 × 0.31 × 0.28
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.698, 0.742
No. of measured, independent and
observed [I > 2σ(I)] reflections
71497, 9751, 6833
Rint0.074
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.127, 1.01
No. of reflections9751
No. of parameters515
No. of restraints24
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0421P)2 + 26.2686P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.41, 1.01

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990), SHELXL97.

Selected geometric parameters (Å, º) top
Cd1—N12.235 (5)Cd1—O52.380 (4)
Cd1—N32.266 (5)Cd1—O62.357 (4)
Cd2—N52.269 (4)Cd1—O8i2.355 (3)
Cd2—N72.244 (5)Cd1—O7i2.419 (4)
Cd2—O12.397 (4)Cd2—O3ii2.279 (5)
Cd2—O22.347 (4)Cd2—O4ii2.457 (4)
N1—Cd1—N393.62 (19)N7—Cd2—N592.99 (18)
N1—Cd1—O8i100.17 (15)N7—Cd2—O3ii124.4 (2)
N3—Cd1—O8i109.32 (16)N5—Cd2—O3ii91.99 (19)
N1—Cd1—O698.18 (18)N7—Cd2—O297.27 (17)
N3—Cd1—O691.94 (15)N5—Cd2—O2131.71 (17)
O8i—Cd1—O6150.77 (15)O3ii—Cd2—O2119.0 (2)
N1—Cd1—O5100.37 (18)N7—Cd2—O1139.16 (18)
N3—Cd1—O5144.75 (15)N5—Cd2—O190.09 (16)
O8i—Cd1—O599.87 (13)O3ii—Cd2—O196.1 (2)
O6—Cd1—O554.29 (13)O2—Cd2—O153.20 (14)
N1—Cd1—O7i153.96 (16)N7—Cd2—O4ii93.16 (18)
N3—Cd1—O7i90.96 (17)N5—Cd2—O4ii139.08 (18)
O8i—Cd1—O7i54.33 (11)O3ii—Cd2—O4ii52.18 (15)
O6—Cd1—O7i107.27 (15)O2—Cd2—O4ii87.38 (17)
O5—Cd1—O7i90.33 (15)O1—Cd2—O4ii110.49 (19)
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW11···O20.87 (5)1.88 (5)2.737 (6)169 (7)
O2W—HW21···O40.85 (5)1.92 (3)2.708 (6)153 (6)
O2W—HW22···O8iii0.844 (19)1.97 (2)2.814 (5)173 (5)
O3W—HW32···O30.86 (6)1.90 (4)2.727 (7)160 (8)
O3W—HW31···O4Wiv0.87 (6)1.89 (6)2.758 (8)176 (9)
O4W—HW41···O10.87 (7)1.97 (8)2.797 (7)160 (7)
O4W—HW42···O2Wv0.87 (6)1.90 (3)2.756 (7)170 (9)
N2—H2···O3W0.861.862.712 (7)170.6
N4—H4A···O5vi0.861.992.845 (6)170.5
N6—H6A···O70.861.932.776 (6)167.3
N8—H8···O1Wvii0.861.982.839 (7)173.2
Symmetry codes: (iii) x+1/2, y, z+1/2; (iv) x+1/2, y1/2, z; (v) x+1, y, z+2; (vi) x+1, y1/2, z+3/2; (vii) x, y, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds