Download citation
Download citation
link to html
The asymmetric unit of the title compound, C3H4N2OS2, contains two independent mol­ecules, which differ in the orientation of the amino group by a 180° rotation around its bond with the thia­zoline ring. The mol­ecules are linked by N—H...O, N—H...N and N—H...S hydrogen bonds, forming a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807023690/at2296sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807023690/at2296Isup2.hkl
Contains datablock I

CCDC reference: 651501

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.032
  • wR factor = 0.085
  • Data-to-parameter ratio = 12.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT480_ALERT_4_C Long H...A H-Bond Reported H2A .. S1 .. 2.94 Ang. PLAT731_ALERT_1_C Bond Calc 0.90(2), Rep 0.899(9) ...... 2.22 su-Ra N2 -H2A 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.91(2), Rep 0.909(9) ...... 2.22 su-Ra N2 -H2B 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.902(19), Rep 0.902(9) ...... 2.11 su-Ra N4 -H4A 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.90(2), Rep 0.899(9) ...... 2.22 su-Ra N2 -H2A 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.90(2), Rep 0.899(9) ...... 2.22 su-Ra N2 -H2A 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.91(2), Rep 0.909(9) ...... 2.22 su-Ra N2 -H2B 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.902(19), Rep 0.902(9) ...... 2.11 su-Ra N4 -H4A 1.555 1.555
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 6
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 7 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In order to establish control over the preparation of crystalline solid materials so that their architecture and properties are predictable (Belloni et al., 2005; Tynan et al., 2005; Parashar et al., 1988), the synthesis of new and designed crystal structures has become a major strand of modern chemistry, we report the synthesis and structure of the title compound, (I).

The asymmetric unit of (I) comprises two independent molecules (Fig. 1), lying on the mirror planes, one at z = 0 and the other at z = 1/2. The two molecules differ in the orientation of the Amino group by a 180° rotation around its bond with the thiazoline ring. In both molecules the geometric parameters are normal. Each independent molecule is linked to a symmetry-equivalent molecule by intermolecular N—H···O and N—H···N hydrogen bonds,and linked to himself by N—H···S hydrogen bonds (Table 1), forming a three-dimensional network which leads to a stable crystal structure (Fig. 2).

Related literature top

For related literature, see: Belloni et al. (2005); Parashar et al. (1988); Santos et al. (2001); Tynan et al. (2005).

Experimental top

3-Amino-2-thioxo-thiazolidin-4-one (1 g) was added to an anhydrous ethanol (50 ml), with stirring at 350 K. The resulting colourless solution was filtered and the filtrate was allowed to stand in air at room temperature for 10 d, yielding colourless crystals of (I).

Refinement top

H atoms of the amino group were found from difference Fourier map and refined freely. H atoms of the methylene group were placed in calculated positions with C—H = 0.97 Å and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Structure description top

In order to establish control over the preparation of crystalline solid materials so that their architecture and properties are predictable (Belloni et al., 2005; Tynan et al., 2005; Parashar et al., 1988), the synthesis of new and designed crystal structures has become a major strand of modern chemistry, we report the synthesis and structure of the title compound, (I).

The asymmetric unit of (I) comprises two independent molecules (Fig. 1), lying on the mirror planes, one at z = 0 and the other at z = 1/2. The two molecules differ in the orientation of the Amino group by a 180° rotation around its bond with the thiazoline ring. In both molecules the geometric parameters are normal. Each independent molecule is linked to a symmetry-equivalent molecule by intermolecular N—H···O and N—H···N hydrogen bonds,and linked to himself by N—H···S hydrogen bonds (Table 1), forming a three-dimensional network which leads to a stable crystal structure (Fig. 2).

For related literature, see: Belloni et al. (2005); Parashar et al. (1988); Santos et al. (2001); Tynan et al. (2005).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the a axis. Hydrogen bonds are indicated by dashed lines.
3-Amino-2-thioxothiazolidin-4-one top
Crystal data top
C3H4N2OS2F(000) = 608
Mr = 148.20Dx = 1.668 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2513 reflections
a = 9.8257 (17) Åθ = 3.1–26.2°
b = 9.3118 (16) ŵ = 0.80 mm1
c = 13.416 (2) ÅT = 294 K
β = 105.924 (3)°Block, colourless
V = 1180.4 (3) Å30.30 × 0.26 × 0.20 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
2052 independent reflections
Radiation source: fine-focus sealed tube1686 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 119
Tmin = 0.797, Tmax = 0.857k = 911
5324 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.5975P]
where P = (Fo2 + 2Fc2)/3
2052 reflections(Δ/σ)max = 0.001
161 parametersΔρmax = 0.34 e Å3
6 restraintsΔρmin = 0.34 e Å3
Crystal data top
C3H4N2OS2V = 1180.4 (3) Å3
Mr = 148.20Z = 8
Monoclinic, P21/nMo Kα radiation
a = 9.8257 (17) ŵ = 0.80 mm1
b = 9.3118 (16) ÅT = 294 K
c = 13.416 (2) Å0.30 × 0.26 × 0.20 mm
β = 105.924 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2052 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1686 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.857Rint = 0.028
5324 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0326 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.34 e Å3
2052 reflectionsΔρmin = 0.34 e Å3
161 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.42862 (7)0.22451 (7)0.88952 (5)0.0471 (2)
S20.45652 (7)0.17983 (7)1.11280 (5)0.0469 (2)
S30.74095 (8)0.46329 (7)0.97871 (6)0.0562 (2)
S40.94214 (8)0.65599 (8)1.12373 (5)0.0547 (2)
O10.13941 (19)0.0621 (2)0.80930 (12)0.0521 (5)
O20.8082 (2)0.6549 (2)0.74386 (13)0.0655 (6)
N10.28161 (19)0.03994 (19)0.95556 (13)0.0320 (4)
N20.2236 (2)0.0421 (2)1.02200 (14)0.0384 (5)
N30.87489 (19)0.66393 (19)0.91821 (13)0.0332 (4)
N40.9526 (2)0.7909 (2)0.92041 (18)0.0447 (5)
C10.3843 (2)0.1415 (2)0.99099 (17)0.0326 (5)
C20.2310 (2)0.0216 (3)0.84990 (17)0.0368 (5)
C30.3057 (3)0.1194 (3)0.79385 (17)0.0436 (6)
H3A0.23810.18140.74700.052*
H3B0.35540.06380.75370.052*
C40.8593 (2)0.6040 (2)1.00653 (17)0.0356 (5)
C50.7091 (3)0.4857 (3)0.8416 (2)0.0552 (7)
H5A0.73390.39870.81080.066*
H5B0.60990.50640.80980.066*
C60.7985 (3)0.6077 (3)0.82491 (18)0.0427 (6)
H2A0.295 (2)0.080 (3)1.0717 (15)0.067 (9)*
H2B0.174 (2)0.021 (2)1.0505 (17)0.060 (8)*
H4A0.974 (3)0.788 (3)0.8592 (10)0.076 (10)*
H4B1.0315 (17)0.790 (3)0.9741 (12)0.065 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0468 (4)0.0497 (4)0.0476 (4)0.0103 (3)0.0177 (3)0.0000 (3)
S20.0439 (4)0.0494 (4)0.0388 (3)0.0025 (3)0.0031 (3)0.0089 (3)
S30.0545 (5)0.0407 (4)0.0734 (5)0.0070 (3)0.0178 (4)0.0075 (3)
S40.0518 (4)0.0744 (5)0.0339 (3)0.0148 (4)0.0048 (3)0.0048 (3)
O10.0526 (11)0.0622 (12)0.0380 (9)0.0170 (9)0.0066 (8)0.0129 (8)
O20.1022 (17)0.0598 (12)0.0319 (9)0.0172 (11)0.0136 (10)0.0003 (9)
N10.0328 (10)0.0334 (10)0.0291 (9)0.0017 (8)0.0074 (8)0.0010 (8)
N20.0419 (12)0.0391 (11)0.0347 (10)0.0022 (9)0.0114 (9)0.0031 (9)
N30.0347 (11)0.0297 (10)0.0338 (10)0.0020 (8)0.0073 (8)0.0014 (8)
N40.0437 (13)0.0348 (11)0.0580 (14)0.0057 (10)0.0178 (11)0.0014 (10)
C10.0285 (12)0.0301 (11)0.0379 (12)0.0056 (10)0.0069 (9)0.0031 (9)
C20.0357 (13)0.0411 (13)0.0326 (12)0.0047 (11)0.0078 (10)0.0041 (10)
C30.0495 (15)0.0491 (15)0.0343 (12)0.0028 (12)0.0149 (11)0.0000 (11)
C40.0328 (13)0.0355 (12)0.0390 (12)0.0091 (10)0.0108 (10)0.0028 (10)
C50.0480 (16)0.0411 (14)0.0646 (18)0.0005 (13)0.0048 (13)0.0139 (13)
C60.0501 (15)0.0366 (13)0.0363 (13)0.0111 (11)0.0036 (11)0.0054 (11)
Geometric parameters (Å, º) top
S1—C11.722 (2)N2—H2B0.909 (9)
S1—C31.793 (2)N3—C41.356 (3)
S2—C11.633 (2)N3—C61.374 (3)
S3—C41.724 (2)N3—N41.403 (3)
S3—C51.792 (3)N4—H4A0.902 (9)
S4—C41.633 (2)N4—H4B0.902 (10)
O1—C21.202 (3)C2—C31.495 (3)
O2—C61.201 (3)C3—H3A0.9700
N1—C11.370 (3)C3—H3B0.9700
N1—C21.378 (3)C5—C61.490 (4)
N1—N21.408 (3)C5—H5A0.9700
N2—H2A0.899 (9)C5—H5B0.9700
C1—S1—C393.10 (11)N1—C2—C3110.7 (2)
C4—S3—C592.92 (11)C2—C3—S1107.43 (15)
C1—N1—C2117.77 (19)C2—C3—H3A110.2
C1—N1—N2122.88 (17)S1—C3—H3A110.2
C2—N1—N2119.31 (19)C2—C3—H3B110.2
N1—N2—H2A108.4 (19)S1—C3—H3B110.2
N1—N2—H2B105.7 (17)H3A—C3—H3B108.5
H2A—N2—H2B109.9 (14)N3—C4—S4125.01 (18)
C4—N3—C6118.4 (2)N3—C4—S3110.78 (16)
C4—N3—N4121.30 (19)S4—C4—S3124.21 (14)
C6—N3—N4119.9 (2)C6—C5—S3107.41 (17)
N3—N4—H4A102.4 (19)C6—C5—H5A110.2
N3—N4—H4B110.5 (19)S3—C5—H5A110.2
H4A—N4—H4B111.3 (14)C6—C5—H5B110.2
N1—C1—S2125.08 (17)S3—C5—H5B110.2
N1—C1—S1110.96 (15)H5A—C5—H5B108.5
S2—C1—S1123.96 (14)O2—C6—N3121.8 (2)
O1—C2—N1124.1 (2)O2—C6—C5127.7 (2)
O1—C2—C3125.2 (2)N3—C6—C5110.5 (2)
C2—N1—C1—S2179.48 (16)C6—N3—C4—S4179.53 (17)
N2—N1—C1—S21.5 (3)N4—N3—C4—S48.4 (3)
C2—N1—C1—S10.6 (2)C6—N3—C4—S30.2 (3)
N2—N1—C1—S1178.61 (15)N4—N3—C4—S3172.31 (16)
C3—S1—C1—N10.33 (17)C5—S3—C4—N30.39 (18)
C3—S1—C1—S2179.58 (15)C5—S3—C4—S4179.72 (16)
C1—N1—C2—O1178.7 (2)C4—S3—C5—C60.45 (19)
N2—N1—C2—O10.6 (3)C4—N3—C6—O2179.4 (2)
C1—N1—C2—C31.4 (3)N4—N3—C6—O28.4 (3)
N2—N1—C2—C3179.52 (18)C4—N3—C6—C50.2 (3)
O1—C2—C3—S1178.6 (2)N4—N3—C6—C5172.1 (2)
N1—C2—C3—S11.5 (2)S3—C5—C6—O2179.1 (2)
C1—S1—C3—C21.05 (18)S3—C5—C6—N30.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.90 (1)2.38 (2)3.049 (3)131 (2)
N2—H2A···S1ii0.90 (1)2.95 (2)3.708 (2)144 (2)
N2—H2B···N4iii0.91 (1)2.25 (1)3.130 (3)164 (2)
N4—H4A···O1iv0.90 (1)2.38 (2)2.994 (3)126 (2)
N4—H4B···N2iv0.90 (1)2.40 (2)3.061 (3)130 (2)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1, y, z+2; (iii) x+1, y+1, z+2; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC3H4N2OS2
Mr148.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)9.8257 (17), 9.3118 (16), 13.416 (2)
β (°) 105.924 (3)
V3)1180.4 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.30 × 0.26 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.797, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
5324, 2052, 1686
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.03
No. of reflections2052
No. of parameters161
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.34

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.899 (9)2.38 (2)3.049 (3)131 (2)
N2—H2A···S1ii0.899 (9)2.945 (15)3.708 (2)143.8 (19)
N2—H2B···N4iii0.909 (9)2.246 (11)3.130 (3)164 (2)
N4—H4A···O1iv0.902 (9)2.38 (2)2.994 (3)126 (2)
N4—H4B···N2iv0.902 (10)2.40 (2)3.061 (3)130 (2)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1, y, z+2; (iii) x+1, y+1, z+2; (iv) x+1, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds