supplementary materials


Acta Cryst. (2007). E63, m1750    [ doi:10.1107/S1600536807023744 ]

Tetraaquabis[3-(4-carboxyphenoxy)propionato-[kappa]O]copper(II) dihydrate

Y.-H. Xiao, L.-L. Kong and S. Gao

Abstract top

The title compound, [Cu(C10H9O5)2(H2O)4]·2H2O, is a neutral mononuclear complex. The CuII ion, which lies on an inversion center, displays an octahedral coordination geometry defined by two carboxylate O atoms of two different 3-(4-carboxyphenoxy)propionate ligands and four water molecules. The crystal structure is stabilized through strong O-H...O hydrogen bonds involving uncoordinated carboxylic acid groups, and coordinated and solvent water molecules, leading to a three-dimensional network. The O...O separations range from 2.623 (3) to 2.909 (3) Å and O-H...O angles range from 163 (4) to 179 (4)°.

Comment top

3-(4-Carboxyphenoxy)propionic acid acid [3-(p-CPOPH2)] is a dicarboxylic acid with both rigid and flexible parts, and is an excellent candidate for the construction of supramolecular architectures (Gao & Ng, 2006). Recently, we have reported a dinuclear CoII complex based on the 3-(4-carboxylatophenoxy)propionate ligand, 3-(p-CPOP), namely [Co2(C10H8O5)2(H2O)8].4H2O (Xiao et al., 2006).

As illustrated in Fig. 1, the title complex has a mononuclear structure, in which the 3-(4-carboxyphenoxy)propionate ligands are coordinated to the Cu atom through the carboxylate O atoms in a monodentate fashion. The Cu atom is located on an inversion center and is coordinated by two O atoms of [3-(p-CPOPH)]- groups and four water molecules. The Cu—Ocarboxyl bond length is 2.072 (2) Å, and the Cu—O1w and Cu—O2w bond lengths are 2.055 (2) and 2.091 (2) Å. The oxypropionate group is twisted out of the benzene plane and the C4—O3—C3—C2 torsion angle is 175.1 (3)°. A three-dimensional supramolecular network structure is formed through the extended hydrogen-bonding interactions between water molecules and 3-(4-carboxyphenoxy)propionate ligands.

Related literature top

The structure of 3-(4-carboxyphenoxy)propionic acid, 3-(p-CPOPH2), has been reported previously (Gao & Ng, 2006). In our previous work, a CoII complex of 3-(p-CPOP) has been characterized by X-ray crystallography (Xiao et al., 2006).

Experimental top

Copper(II) diacetate monohydrate (2 g, 10 mmol) was added to a hot aqueous solution of 3-(4-carboxyphenoxy)propionic acid (2.10 g, 10 mmol). Sodium hydroxide (0.1 M) was added dropwise until the solution registered a pH of 6. Blue single crystals separated from the filtered solution after several days. C, H analysis: calc. for C20H30O16Cu: C 40.72, H 5.13%. Found: C 40.75, H 5.11%.

Refinement top

All C-bonded H atoms were placed in calculated positions with C—H = 0.93 (aromatic CH) or 0.97 Å (methylene CH2) and Uiso(H) = 1.2Ueq (carrier C). They were included in the refinement in the riding model approximation. H atoms of water molecules and carboxylic acid group were located in a difference map and refined with O—H and H···H distances restrained to 0.85 (1) and 1.39 (1) Å, respectively, and with Uiso(H) = 1.5Ueq(carrier O).

Computing details top

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CrystalStructure; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids at the 30% probability level for non-H atoms. Dashed lines indicate O—H···O hydrogen bonds. Symmetry code: (i) -x + 1, -y + 1, -z + 1.
Tetraaquabis[3-(4-carboxyphenoxy)propionato-κO]copper(II) dihydrate top
Crystal data top
[Cu(C10H9O5)2(H2O)4]·2H2OF(000) = 614
Mr = 589.98Dx = 1.652 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12020 reflections
a = 22.481 (5) Åθ = 3.3–27.5°
b = 10.489 (2) ŵ = 1.00 mm1
c = 5.0315 (10) ÅT = 295 K
β = 92.01 (3)°Block, blue
V = 1185.7 (4) Å30.34 × 0.24 × 0.16 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2700 independent reflections
Radiation source: fine-focus sealed tube1952 reflections with I > 2σ(I)
graphiteRint = 0.058
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.3°
ω scanh = 2728
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1313
Tmin = 0.727, Tmax = 0.856l = 65
18487 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.067P)2 + 1.427P]
where P = (Fo2 + 2Fc2)/3
2700 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.59 e Å3
10 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Cu(C10H9O5)2(H2O)4]·2H2OV = 1185.7 (4) Å3
Mr = 589.98Z = 2
Monoclinic, P21/cMo Kα radiation
a = 22.481 (5) ŵ = 1.00 mm1
b = 10.489 (2) ÅT = 295 K
c = 5.0315 (10) Å0.34 × 0.24 × 0.16 mm
β = 92.01 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2700 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1952 reflections with I > 2σ(I)
Tmin = 0.727, Tmax = 0.856Rint = 0.058
18487 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.144Δρmax = 0.59 e Å3
S = 1.11Δρmin = 0.67 e Å3
2700 reflectionsAbsolute structure: ?
190 parametersFlack parameter: ?
10 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.02591 (19)
O1W0.48049 (10)0.6638 (2)0.2903 (5)0.0271 (5)
H1W10.4445 (6)0.670 (3)0.329 (8)0.041*
H1W20.4980 (12)0.7350 (19)0.306 (8)0.041*
O2W0.45059 (10)0.3984 (2)0.2108 (4)0.0285 (5)
H2W10.4174 (9)0.372 (4)0.263 (7)0.043*
H2W20.4461 (15)0.436 (4)0.063 (5)0.043*
O3W0.34049 (12)0.3097 (3)0.3764 (5)0.0391 (6)
H3W10.3159 (17)0.371 (3)0.388 (7)0.059*
H3W20.3470 (19)0.276 (4)0.527 (4)0.059*
O10.57442 (10)0.4844 (2)0.2707 (4)0.0267 (5)
O20.62831 (10)0.3584 (3)0.5433 (5)0.0349 (6)
O30.74732 (10)0.5110 (2)0.4805 (5)0.0316 (5)
O40.97158 (12)0.4020 (3)1.2501 (6)0.0496 (7)
O50.94757 (13)0.6015 (3)1.3586 (6)0.0532 (8)
H100.9724 (19)0.601 (6)1.489 (7)0.080*
C10.62233 (14)0.4256 (3)0.3416 (6)0.0248 (7)
C20.67492 (14)0.4399 (3)0.1609 (6)0.0280 (7)
H70.66900.38420.00840.034*
H20.67620.52690.09610.034*
C30.73369 (14)0.4085 (3)0.2980 (6)0.0281 (7)
H40.73100.32840.39330.034*
H30.76450.40090.16890.034*
C40.79649 (14)0.5024 (3)0.6474 (7)0.0263 (7)
C50.83516 (15)0.3997 (3)0.6581 (7)0.0311 (7)
H50.82930.33090.54350.037*
C60.88292 (15)0.4003 (4)0.8421 (7)0.0322 (8)
H60.90910.33150.84970.039*
C70.89182 (15)0.5021 (3)1.0134 (7)0.0303 (7)
C80.85372 (17)0.6061 (4)0.9960 (8)0.0370 (8)
H80.86030.67601.10700.044*
C90.80624 (15)0.6065 (3)0.8157 (7)0.0342 (8)
H90.78070.67620.80610.041*
C100.94073 (16)0.5011 (4)1.2192 (7)0.0330 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0282 (3)0.0251 (3)0.0243 (3)0.0013 (2)0.0005 (2)0.0011 (2)
O1W0.0294 (12)0.0222 (12)0.0296 (12)0.0005 (9)0.0010 (10)0.0045 (9)
O2W0.0295 (12)0.0306 (13)0.0252 (12)0.0029 (10)0.0003 (10)0.0017 (9)
O3W0.0416 (15)0.0366 (15)0.0389 (15)0.0026 (12)0.0002 (12)0.0001 (12)
O10.0229 (11)0.0348 (13)0.0224 (11)0.0045 (9)0.0006 (9)0.0040 (9)
O20.0312 (13)0.0435 (15)0.0298 (13)0.0054 (11)0.0004 (10)0.0134 (11)
O30.0292 (12)0.0308 (13)0.0341 (13)0.0044 (10)0.0098 (10)0.0068 (10)
O40.0429 (15)0.0512 (18)0.0534 (18)0.0084 (13)0.0180 (13)0.0014 (14)
O50.0532 (17)0.0535 (19)0.0510 (19)0.0015 (14)0.0258 (14)0.0071 (14)
C10.0278 (16)0.0251 (16)0.0213 (15)0.0016 (13)0.0031 (12)0.0041 (12)
C20.0270 (16)0.0305 (18)0.0263 (16)0.0008 (13)0.0012 (13)0.0015 (13)
C30.0263 (16)0.0302 (18)0.0276 (17)0.0004 (13)0.0015 (13)0.0045 (13)
C40.0205 (14)0.0312 (17)0.0267 (16)0.0018 (13)0.0042 (12)0.0029 (13)
C50.0309 (17)0.0303 (18)0.0319 (18)0.0007 (14)0.0019 (14)0.0031 (14)
C60.0274 (17)0.0344 (19)0.0346 (19)0.0039 (14)0.0031 (14)0.0032 (14)
C70.0238 (16)0.0368 (19)0.0300 (17)0.0018 (14)0.0029 (13)0.0025 (14)
C80.0379 (19)0.034 (2)0.038 (2)0.0003 (15)0.0066 (15)0.0069 (15)
C90.0314 (18)0.0292 (19)0.041 (2)0.0030 (14)0.0077 (15)0.0016 (15)
C100.0301 (17)0.040 (2)0.0288 (17)0.0027 (15)0.0050 (14)0.0022 (15)
Geometric parameters (Å, °) top
Cu1—O1W2.055 (2)O5—H100.85 (4)
Cu1—O1Wi2.055 (2)C1—C21.524 (5)
Cu1—O1i2.072 (2)C2—C31.505 (4)
Cu1—O12.072 (2)C2—H70.9700
Cu1—O2W2.091 (2)C2—H20.9700
Cu1—O2Wi2.091 (2)C3—H40.9700
O1W—H1W10.841 (10)C3—H30.9700
O1W—H1W20.846 (10)C4—C51.384 (5)
O2W—H2W10.85 (3)C4—C91.394 (5)
O2W—H2W20.85 (3)C5—C61.393 (5)
O3W—H3W10.85 (3)C5—H50.9300
O3W—H3W20.85 (3)C6—C71.382 (5)
O1—C11.281 (4)C6—H60.9300
O2—C11.240 (4)C7—C81.388 (5)
O3—C41.368 (4)C7—C101.484 (5)
O3—C31.440 (4)C8—C91.376 (5)
O4—C101.256 (5)C8—H80.9300
O5—C101.272 (5)C9—H90.9300
O1W—Cu1—O1Wi180.0C3—C2—H2109.0
O1W—Cu1—O1i93.34 (9)C1—C2—H2109.0
O1Wi—Cu1—O1i86.66 (9)H7—C2—H2107.8
O1W—Cu1—O186.66 (9)O3—C3—C2107.0 (3)
O1Wi—Cu1—O193.34 (9)O3—C3—H4110.3
O1i—Cu1—O1180.0C2—C3—H4110.3
O1W—Cu1—O2W88.27 (9)O3—C3—H3110.3
O1Wi—Cu1—O2W91.73 (9)C2—C3—H3110.3
O1i—Cu1—O2W90.46 (9)H4—C3—H3108.6
O1—Cu1—O2W89.54 (9)O3—C4—C5124.6 (3)
O1W—Cu1—O2Wi91.73 (9)O3—C4—C9115.4 (3)
O1Wi—Cu1—O2Wi88.27 (9)C5—C4—C9120.0 (3)
O1i—Cu1—O2Wi89.54 (9)C4—C5—C6119.4 (3)
O1—Cu1—O2Wi90.46 (9)C4—C5—H5120.3
O2W—Cu1—O2Wi180.0C6—C5—H5120.3
Cu1—O1W—H1W198 (3)C7—C6—C5120.6 (3)
Cu1—O1W—H1W2127 (3)C7—C6—H6119.7
H1W1—O1W—H1W2110.8 (17)C5—C6—H6119.7
Cu1—O2W—H2W1114 (3)C6—C7—C8119.5 (3)
Cu1—O2W—H2W2115 (3)C6—C7—C10121.1 (3)
H2W1—O2W—H2W2110.3 (17)C8—C7—C10119.3 (3)
H3W1—O3W—H3W2110 (4)C9—C8—C7120.4 (3)
C1—O1—Cu1124.8 (2)C9—C8—H8119.8
C4—O3—C3119.5 (2)C7—C8—H8119.8
C10—O5—H10119 (4)C8—C9—C4120.0 (3)
O2—C1—O1124.6 (3)C8—C9—H9120.0
O2—C1—C2118.7 (3)C4—C9—H9120.0
O1—C1—C2116.7 (3)O4—C10—O5124.1 (3)
C3—C2—C1113.1 (3)O4—C10—C7119.0 (3)
C3—C2—H7109.0O5—C10—C7116.8 (3)
C1—C2—H7109.0
O1W—Cu1—O1—C1154.6 (3)C9—C4—C5—C61.4 (5)
O1Wi—Cu1—O1—C125.4 (3)C4—C5—C6—C70.1 (5)
O2W—Cu1—O1—C1117.1 (3)C5—C6—C7—C81.9 (5)
O2Wi—Cu1—O1—C162.9 (3)C5—C6—C7—C10176.9 (3)
Cu1—O1—C1—O28.4 (5)C6—C7—C8—C92.1 (6)
Cu1—O1—C1—C2172.1 (2)C10—C7—C8—C9176.7 (3)
O2—C1—C2—C320.4 (4)C7—C8—C9—C40.5 (6)
O1—C1—C2—C3160.1 (3)O3—C4—C9—C8178.4 (3)
C4—O3—C3—C2175.1 (3)C5—C4—C9—C81.2 (5)
C1—C2—C3—O372.2 (3)C6—C7—C10—O45.3 (5)
C3—O3—C4—C50.7 (5)C8—C7—C10—O4173.5 (4)
C3—O3—C4—C9179.7 (3)C6—C7—C10—O5176.4 (3)
O3—C4—C5—C6178.2 (3)C8—C7—C10—O54.9 (5)
Symmetry codes: (i) −x+1, −y+1, −z+1.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O5—H10···O4ii0.85 (4)1.79 (4)2.632 (4)176 (6)
O1W—H1W1···O2i0.84 (2)1.81 (1)2.623 (3)164 (4)
O1W—H1W2···O2Wiii0.85 (4)2.07 (1)2.909 (3)170 (3)
O2W—H2W1···O3W0.85 (4)1.95 (3)2.798 (4)179 (4)
O2W—H2W2···O1iv0.85 (4)1.92 (3)2.756 (3)173 (3)
O3W—H3W1···O3i0.85 (4)2.01 (4)2.838 (4)163 (4)
O3W—H3W2···O3Wv0.85 (4)1.99 (2)2.811 (2)166 (4)
Symmetry codes: (ii) −x+2, −y+1, −z+3; (i) −x+1, −y+1, −z+1; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+1, −y+1, −z; (v) x, −y+1/2, z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O5—H10···O4i0.85 (4)1.79 (4)2.632 (4)176 (6)
O1W—H1W1···O2ii0.84 (2)1.81 (1)2.623 (3)164 (4)
O1W—H1W2···O2Wiii0.85 (4)2.07 (1)2.909 (3)170 (3)
O2W—H2W1···O3W0.85 (4)1.95 (3)2.798 (4)179 (4)
O2W—H2W2···O1iv0.85 (4)1.92 (3)2.756 (3)173 (3)
O3W—H3W1···O3ii0.85 (4)2.01 (4)2.838 (4)163 (4)
O3W—H3W2···O3Wv0.85 (4)1.99 (2)2.811 (2)166 (4)
Symmetry codes: (i) −x+2, −y+1, −z+3; (ii) −x+1, −y+1, −z+1; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+1, −y+1, −z; (v) x, −y+1/2, z+1/2.
Acknowledgements top

We thank the Heilongjiang Province Natural Science Foundation (No. B200501), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (1054 G036), Heilongjiang University and Harbin Medical University for supporting this work.

references
References top

Gao, S. & Ng, S. W. (2006). Acta Cryst. E62, o3420–o3421.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Xiao, Y.-H., Gao, S. & Ng, S. W. (2006). Acta Cryst. E62, m2274–m2276.