Download citation
Download citation
link to html
The title compound, C23H18Cl2O2, is the reaction product of a Michael addition. The two chloro­phenyl rings are almost perpendicular to the phenyl ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807020405/bt2349sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807020405/bt2349Isup2.hkl
Contains datablock I

CCDC reference: 651380

Key indicators

  • Single-crystal X-ray study
  • T = 153 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.036
  • wR factor = 0.095
  • Data-to-parameter ratio = 17.8

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.789 0.984 Tmin(prime) and Tmax expected: 0.811 0.906 RR(prime) = 0.896 Please check that your absorption correction is appropriate. PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.89 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.92
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.920 Tmax scaled 0.906 Tmin scaled 0.727
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The Michael addition is one of the most important C—C bond forming reactions employed in organic synthesis (Qian & Widenhoefer, 2003). In recent years, the catalytic asymmetric Michael addition promoted by chiral metal complexes has been recognized as an efficient method for carbon-carbon bond formation (Emori et al., 1998). The asymmetric catalyzers of Michael reaction have metal catalyzers such as La3(O-tBu)9, Y3(O-tBu)8Cl, Y5(O-iPr)13O (Sasai et al., 1994), lithium diisopropylamide (Murai et al., 2000), and non-metal catalyzers that includes MacMillan's chiral imidazolidinone (Wang et al., 2005). We synthesized 1,5-bis(4-chlorophenyl)-3-phenylpentane-1,5-dione with tetrabutylammonium bromide. The two chlorophenyl rings are almost perpendicular to the central phenyl ring.

Related literature top

For related literature, see: Emori et al. (1998); Sasai et al. (1994); Murai et al. (2000); Wang & Shen (1999); Wang et al. (2005).

For related literature, see: Hua (2003).

Experimental top

A mixture of 1-(4-chloro-phenyl)-3-phenyl-2-propylene-1-ketone (Wang & Shen, 1999) (1 mmol), 4-chloro-acetopnone (2 mmol) and tetrabutylammonium-bromide (0.1 mmol) was dissolved in toluene (5 mL). To this mixture was added 50% KOH (1 mL) and stirred at room temperature for 24 h. The reaction was quenched with water and extracted with ether (3 times with 10 mL). The combined organic layers were dried (Na2SO4), concentrated to furnish the crude product, which was purified by flash chromatography (yield 54%). M.p. 463 k. Analysis, found (calculated for C23H18Cl2O2): C 69.53 (69.55%) H 4.57 (4.53%) O 8.05 (8.11%). Crystals were grown from a mixture of ethyl acetate and petroleum ether by slow evaporation.

Refinement top

H atoms were positioned geometrically, with C—H ranging from 0.95 - 1.00Å and Uiso(H) = 1.2Ueq(C).

Structure description top

The Michael addition is one of the most important C—C bond forming reactions employed in organic synthesis (Qian & Widenhoefer, 2003). In recent years, the catalytic asymmetric Michael addition promoted by chiral metal complexes has been recognized as an efficient method for carbon-carbon bond formation (Emori et al., 1998). The asymmetric catalyzers of Michael reaction have metal catalyzers such as La3(O-tBu)9, Y3(O-tBu)8Cl, Y5(O-iPr)13O (Sasai et al., 1994), lithium diisopropylamide (Murai et al., 2000), and non-metal catalyzers that includes MacMillan's chiral imidazolidinone (Wang et al., 2005). We synthesized 1,5-bis(4-chlorophenyl)-3-phenylpentane-1,5-dione with tetrabutylammonium bromide. The two chlorophenyl rings are almost perpendicular to the central phenyl ring.

For related literature, see: Emori et al. (1998); Sasai et al. (1994); Murai et al. (2000); Wang & Shen (1999); Wang et al. (2005).

For related literature, see: Hua (2003).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the molecule structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
1,5-Bis(4-chlorophenyl)-3-phenylpentane-1,5-dione top
Crystal data top
C23H18Cl2O2F(000) = 824
Mr = 397.27Dx = 1.378 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 17167 reflections
a = 15.5591 (4) Åθ = 3.1–27.5°
b = 10.7610 (3) ŵ = 0.35 mm1
c = 11.6784 (3) ÅT = 153 K
β = 101.616 (1)°Platelet, colorless
V = 1915.28 (9) Å30.58 × 0.42 × 0.28 mm
Z = 4
Data collection top
Rigaku R-AXIS SPIDER
diffractometer
4359 independent reflections
Radiation source: Rotating Anode4090 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
h = 2019
Tmin = 0.790, Tmax = 0.984k = 1313
18363 measured reflectionsl = 1415
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0463P)2 + 1.0487P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.004
4359 reflectionsΔρmax = 0.55 e Å3
245 parametersΔρmin = 0.57 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0082 (11)
Crystal data top
C23H18Cl2O2V = 1915.28 (9) Å3
Mr = 397.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.5591 (4) ŵ = 0.35 mm1
b = 10.7610 (3) ÅT = 153 K
c = 11.6784 (3) Å0.58 × 0.42 × 0.28 mm
β = 101.616 (1)°
Data collection top
Rigaku R-AXIS SPIDER
diffractometer
4359 independent reflections
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
4090 reflections with I > 2σ(I)
Tmin = 0.790, Tmax = 0.984Rint = 0.018
18363 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.02Δρmax = 0.55 e Å3
4359 reflectionsΔρmin = 0.57 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.06138 (3)0.71183 (4)0.28055 (3)0.04330 (13)
Cl20.45939 (3)0.37752 (3)1.07691 (4)0.04019 (12)
O10.27113 (7)0.59521 (9)0.82643 (9)0.0334 (2)
O20.39430 (7)0.23645 (9)1.09861 (9)0.0302 (2)
C10.14266 (11)0.48713 (14)0.55234 (12)0.0345 (3)
H1A0.13490.40280.57190.041*
C20.10076 (11)0.53260 (15)0.44387 (13)0.0376 (3)
H2A0.06370.48020.38980.045*
C30.11383 (9)0.65468 (14)0.41596 (11)0.0290 (3)
C40.16723 (10)0.73318 (14)0.49289 (12)0.0311 (3)
H4A0.17610.81680.47190.037*
C50.20748 (9)0.68735 (13)0.60125 (12)0.0274 (3)
H5A0.24370.74070.65540.033*
C60.19580 (8)0.56417 (12)0.63229 (11)0.0228 (3)
C70.24130 (8)0.52038 (12)0.75086 (11)0.0230 (3)
C80.25264 (9)0.38214 (12)0.77148 (11)0.0255 (3)
H8A0.29320.35000.72310.031*
H8B0.19520.34100.74480.031*
C90.28827 (8)0.34624 (11)0.89939 (11)0.0214 (2)
H9A0.34160.39760.92970.026*
C100.22093 (8)0.37083 (11)0.97502 (11)0.0206 (2)
C110.13589 (9)0.32426 (13)0.94369 (12)0.0277 (3)
H11A0.12010.27510.87510.033*
C120.07355 (9)0.34871 (15)1.01146 (14)0.0333 (3)
H12A0.01590.31620.98890.040*
C130.09565 (9)0.42023 (14)1.11146 (13)0.0310 (3)
H13A0.05320.43751.15750.037*
C140.18007 (10)0.46638 (13)1.14393 (12)0.0297 (3)
H14A0.19570.51521.21280.036*
C150.24218 (9)0.44168 (12)1.07642 (11)0.0255 (3)
H15A0.30000.47361.09990.031*
C160.31568 (9)0.20906 (12)0.90226 (11)0.0239 (3)
H16A0.26210.15740.88230.029*
H16B0.35030.19530.84100.029*
C170.36896 (8)0.16484 (12)1.01783 (11)0.0229 (3)
C180.39015 (8)0.02895 (12)1.03035 (11)0.0225 (3)
C190.43314 (9)0.01583 (13)1.13895 (12)0.0269 (3)
H19A0.44820.04001.20290.032*
C200.45433 (9)0.14104 (13)1.15504 (13)0.0292 (3)
H20A0.48310.17141.22920.035*
C210.43236 (9)0.22036 (12)1.06020 (13)0.0278 (3)
C220.38999 (9)0.17912 (13)0.95109 (13)0.0294 (3)
H22A0.37560.23520.88730.035*
C230.36897 (9)0.05401 (13)0.93699 (12)0.0264 (3)
H23A0.33970.02430.86270.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0490 (2)0.0551 (3)0.02385 (18)0.02066 (18)0.00284 (15)0.00384 (15)
Cl20.0380 (2)0.02220 (18)0.0565 (3)0.00195 (13)0.00033 (17)0.00760 (15)
O10.0477 (6)0.0244 (5)0.0251 (5)0.0049 (4)0.0000 (4)0.0019 (4)
O20.0327 (5)0.0267 (5)0.0296 (5)0.0024 (4)0.0029 (4)0.0044 (4)
C10.0467 (8)0.0272 (7)0.0275 (7)0.0051 (6)0.0025 (6)0.0022 (5)
C20.0452 (8)0.0380 (8)0.0261 (7)0.0040 (7)0.0013 (6)0.0055 (6)
C30.0296 (7)0.0379 (7)0.0201 (6)0.0109 (6)0.0068 (5)0.0014 (5)
C40.0367 (7)0.0281 (7)0.0293 (7)0.0030 (6)0.0089 (6)0.0051 (5)
C50.0305 (7)0.0259 (7)0.0256 (6)0.0019 (5)0.0052 (5)0.0006 (5)
C60.0254 (6)0.0235 (6)0.0207 (6)0.0013 (5)0.0076 (5)0.0010 (5)
C70.0264 (6)0.0222 (6)0.0216 (6)0.0013 (5)0.0080 (5)0.0004 (5)
C80.0360 (7)0.0209 (6)0.0211 (6)0.0007 (5)0.0092 (5)0.0001 (5)
C90.0240 (6)0.0194 (6)0.0218 (6)0.0009 (4)0.0067 (5)0.0001 (4)
C100.0237 (6)0.0178 (5)0.0206 (5)0.0039 (4)0.0053 (5)0.0039 (4)
C110.0260 (6)0.0285 (7)0.0285 (7)0.0002 (5)0.0054 (5)0.0028 (5)
C120.0236 (6)0.0373 (8)0.0404 (8)0.0002 (5)0.0097 (6)0.0025 (6)
C130.0319 (7)0.0332 (7)0.0320 (7)0.0096 (6)0.0159 (6)0.0073 (6)
C140.0374 (7)0.0295 (7)0.0231 (6)0.0062 (6)0.0086 (5)0.0012 (5)
C150.0260 (6)0.0260 (6)0.0246 (6)0.0012 (5)0.0053 (5)0.0005 (5)
C160.0258 (6)0.0214 (6)0.0250 (6)0.0034 (5)0.0062 (5)0.0011 (5)
C170.0196 (5)0.0242 (6)0.0261 (6)0.0021 (5)0.0075 (5)0.0000 (5)
C180.0180 (5)0.0238 (6)0.0267 (6)0.0008 (4)0.0067 (5)0.0012 (5)
C190.0239 (6)0.0296 (7)0.0268 (6)0.0021 (5)0.0044 (5)0.0001 (5)
C200.0245 (6)0.0316 (7)0.0309 (7)0.0021 (5)0.0042 (5)0.0071 (5)
C210.0216 (6)0.0211 (6)0.0406 (7)0.0001 (5)0.0063 (5)0.0053 (5)
C220.0281 (6)0.0231 (6)0.0356 (7)0.0015 (5)0.0031 (6)0.0022 (5)
C230.0254 (6)0.0247 (6)0.0276 (6)0.0006 (5)0.0020 (5)0.0011 (5)
Geometric parameters (Å, º) top
Cl1—C31.7393 (14)C11—C121.3949 (19)
Cl2—C211.7441 (14)C11—H11A0.9500
O1—C71.2156 (16)C12—C131.383 (2)
O2—C171.2204 (16)C12—H12A0.9500
C1—C61.3899 (19)C13—C141.384 (2)
C1—C21.392 (2)C13—H13A0.9500
C1—H1A0.9500C14—C151.3904 (19)
C2—C31.378 (2)C14—H14A0.9500
C2—H2A0.9500C15—H15A0.9500
C3—C41.382 (2)C16—C171.5115 (18)
C4—C51.3849 (19)C16—H16A0.9900
C4—H4A0.9500C16—H16B0.9900
C5—C61.3956 (18)C17—C181.4997 (17)
C5—H5A0.9500C18—C191.3952 (18)
C6—C71.4986 (17)C18—C231.3963 (18)
C7—C81.5115 (17)C19—C201.391 (2)
C8—C91.5345 (17)C19—H19A0.9500
C8—H8A0.9900C20—C211.386 (2)
C8—H8B0.9900C20—H20A0.9500
C9—C101.5232 (16)C21—C221.384 (2)
C9—C161.5351 (17)C22—C231.3875 (19)
C9—H9A1.0000C22—H22A0.9500
C10—C151.3911 (18)C23—H23A0.9500
C10—C111.3930 (18)
C6—C1—C2120.53 (14)C13—C12—C11120.07 (13)
C6—C1—H1A119.7C13—C12—H12A120.0
C2—C1—H1A119.7C11—C12—H12A120.0
C3—C2—C1119.08 (14)C12—C13—C14119.47 (12)
C3—C2—H2A120.5C12—C13—H13A120.3
C1—C2—H2A120.5C14—C13—H13A120.3
C2—C3—C4121.78 (13)C13—C14—C15120.38 (13)
C2—C3—Cl1119.17 (11)C13—C14—H14A119.8
C4—C3—Cl1119.04 (11)C15—C14—H14A119.8
C3—C4—C5118.58 (13)C14—C15—C10120.95 (12)
C3—C4—H4A120.7C14—C15—H15A119.5
C5—C4—H4A120.7C10—C15—H15A119.5
C4—C5—C6121.13 (13)C17—C16—C9114.98 (10)
C4—C5—H5A119.4C17—C16—H16A108.5
C6—C5—H5A119.4C9—C16—H16A108.5
C1—C6—C5118.88 (12)C17—C16—H16B108.5
C1—C6—C7122.65 (12)C9—C16—H16B108.5
C5—C6—C7118.46 (12)H16A—C16—H16B107.5
O1—C7—C6120.18 (12)O2—C17—C18120.65 (12)
O1—C7—C8121.40 (12)O2—C17—C16121.68 (12)
C6—C7—C8118.35 (11)C18—C17—C16117.67 (11)
C7—C8—C9114.24 (11)C19—C18—C23118.92 (12)
C7—C8—H8A108.7C19—C18—C17118.76 (12)
C9—C8—H8A108.7C23—C18—C17122.32 (12)
C7—C8—H8B108.7C20—C19—C18120.97 (13)
C9—C8—H8B108.7C20—C19—H19A119.5
H8A—C8—H8B107.6C18—C19—H19A119.5
C10—C9—C8111.40 (10)C21—C20—C19118.37 (13)
C10—C9—C16112.02 (10)C21—C20—H20A120.8
C8—C9—C16107.92 (10)C19—C20—H20A120.8
C10—C9—H9A108.5C22—C21—C20122.23 (13)
C8—C9—H9A108.5C22—C21—Cl2118.24 (11)
C16—C9—H9A108.5C20—C21—Cl2119.52 (11)
C15—C10—C11118.11 (12)C21—C22—C23118.52 (13)
C15—C10—C9121.02 (11)C21—C22—H22A120.7
C11—C10—C9120.87 (11)C23—C22—H22A120.7
C10—C11—C12121.02 (13)C22—C23—C18120.98 (12)
C10—C11—H11A119.5C22—C23—H23A119.5
C12—C11—H11A119.5C18—C23—H23A119.5
C6—C1—C2—C31.1 (2)C10—C11—C12—C130.0 (2)
C1—C2—C3—C40.2 (2)C11—C12—C13—C140.5 (2)
C1—C2—C3—Cl1179.88 (12)C12—C13—C14—C150.3 (2)
C2—C3—C4—C50.8 (2)C13—C14—C15—C100.3 (2)
Cl1—C3—C4—C5178.91 (10)C11—C10—C15—C140.65 (19)
C3—C4—C5—C60.9 (2)C9—C10—C15—C14178.53 (12)
C2—C1—C6—C51.0 (2)C10—C9—C16—C1768.81 (14)
C2—C1—C6—C7179.07 (13)C8—C9—C16—C17168.21 (11)
C4—C5—C6—C10.0 (2)C9—C16—C17—O26.14 (17)
C4—C5—C6—C7179.93 (12)C9—C16—C17—C18173.98 (10)
C1—C6—C7—O1164.12 (14)O2—C17—C18—C195.18 (18)
C5—C6—C7—O115.91 (18)C16—C17—C18—C19174.94 (11)
C1—C6—C7—C818.73 (19)O2—C17—C18—C23174.32 (12)
C5—C6—C7—C8161.24 (12)C16—C17—C18—C235.55 (17)
O1—C7—C8—C910.93 (18)C23—C18—C19—C200.41 (19)
C6—C7—C8—C9171.95 (11)C17—C18—C19—C20179.93 (12)
C7—C8—C9—C1069.29 (14)C18—C19—C20—C210.5 (2)
C7—C8—C9—C16167.34 (11)C19—C20—C21—C220.3 (2)
C8—C9—C10—C15126.99 (12)C19—C20—C21—Cl2179.10 (10)
C16—C9—C10—C15112.02 (13)C20—C21—C22—C230.0 (2)
C8—C9—C10—C1152.17 (15)Cl2—C21—C22—C23179.46 (10)
C16—C9—C10—C1168.83 (15)C21—C22—C23—C180.2 (2)
C15—C10—C11—C120.5 (2)C19—C18—C23—C220.04 (19)
C9—C10—C11—C12178.68 (12)C17—C18—C23—C22179.55 (12)

Experimental details

Crystal data
Chemical formulaC23H18Cl2O2
Mr397.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)15.5591 (4), 10.7610 (3), 11.6784 (3)
β (°) 101.616 (1)
V3)1915.28 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.58 × 0.42 × 0.28
Data collection
DiffractometerRigaku R-AXIS SPIDER
Absorption correctionEmpirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.790, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
18363, 4359, 4090
Rint0.018
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.02
No. of reflections4359
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.57

Computer programs: RAPID-AUTO (Rigaku, 2004), RAPID-AUTO, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001), SHELXTL.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds