Download citation
Download citation
link to html
In the title salt, [RuCl(C10H14)(C20H16N4)]PF6·CH3CN, the coordination of one pyridyl ring and of one N atom of the quinoxaline unit to ruthenium imposes considerable distortion on the 6,7-dimethyl-2,3-dipyridin-2-ylquinoxaline ligand. Indeed, the pyridyl ring and the plane of the quinoxaline unit become almost coplanar.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807021861/bt2357sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807021861/bt2357Isup2.hkl
Contains datablock I

CCDC reference: 650607

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.026
  • wR factor = 0.064
  • Data-to-parameter ratio = 14.6

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.79 Ratio
Alert level C PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.24 Ratio PLAT231_ALERT_4_C Hirshfeld Test (Solvent) P1 - F1 .. 7.65 su PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for P1 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C32 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.18
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.95 From the CIF: _reflns_number_total 6142 Count of symmetry unique reflns 3247 Completeness (_total/calc) 189.16% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2895 Fraction of Friedel pairs measured 0.892 Are heavy atom types Z>Si present yes PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The title complex (I) shows a typical piano-stool geometry with the metal centre coordinated by the arene ligand, a terminal chloride and the chelating 6,7-dimethyl-2,3-di(pyridin-2-yl)quinoxaline (dpqMe2) ligand. In the mononuclear complex (I), the metal centre is stereogenic. However, since none of the ligand contains a chiral information, (I) is obtained as a racemic mixture.

The Ru—N bond distances 2.060 (2) and 2.077 (2) Å in (I) are comparable to those in [(η6-p-PriC6H4Me)RuCl(η2-2,3-bis(2-pyridyl)pyrazine)][BF4] (Singh et al., 2002) and [(η6-p-PriC6H4Me)RuCl(η2-2,3-bis(α-pyridyl)quinoxaline)][PF6] (Lalrempuia & Kollipara, 2003). Accordingly, there is no significant difference in the Ru—Cl bond length in (I) [2.3732 (9) Å] and reported values (Lalrempuia & Kollipara, 2003)(Scott et al., 1999)(Canivet et al., 2005). The N(1)—Ru(1)—N(2) bond angle in complex (I) [76.04 (9)°] is similar to those of complexes [(η6-p-PriC6H4Me)RuCl(η2-2,3-bis(2-pyridyl)pyrazine)]+ [N(1)—Ru(1)—N(2) = 76.5 (2)°] (Singh et al., 2002) and [(η6-p-PriC6H4Me)RuCl(η2-2,3-bis(α-pyridyl)quinoxaline)]+ [N(1)—Ru(1)—N(2) = 76.2 (2)°] (Lalrempuia & Kollipara, 2003). An ORTEP drawing with the atom labelling scheme for (I) is shown in Figure 1.

Upon formation of the mononuclear complex (I), the bond length between the connecting carbon atoms [C(5)—C(6) = 1.472 (4) Å] of the coordinated pyridyl and quinoxaline moieties of the dpqMe2 ligand is slightly reduced as compared to the corresponding connecting C—C atoms [C(7)—C(8) = 1.496 (4) Å] of the non-coordinated pyridyl quinoxaline moities. Similarly, the C—C distances [1.493 Å] in the free dpqMe2 are longer (Wozniak et al., 1993). These bond length changes are in agreement with a back-donation from the metallic fragments to the dpqMe2 system, thus increasing the inter-ring bond order (Baumann et al., 1998) (Berg et al., 2002).

The major distortion imposed on the dpqMe2 structure upon coordination is encountered by the pyridyl groups. In the free ligand the two equivalent pyridyl groups are twisted by 39.6° relative to the plane of the quinoxaline unit (Wozniak et al., 1993). However, in (I) the twist of the coordinated pyridyl unit is 22.7 (1)°, while the non-coordinated pyridyl group is twisted by 54.2 (1)° relative to the plane of the quinoxaline unit.

Related literature top

The non-coordinated dpqMe2 ligand crystallizes in the centrosymmetric space group P21/a (Wozniak et al., 1993). Other arene–ruthenium and osmium complexes with chelating quinoxaline pyridyl derivatives have been synthesized and characterized by X-ray structure analysis (Baumann et al., 1998; Scott et al., 1999; Lalrempuia & Kollipara, 2003; Therrien et al., 2007).

For related literature, see: Berg et al. (2002); Canivet et al. (2005); Singh et al. (2002).

Experimental top

The dinuclear complex [(η6-1,2,4,5-C6H2Me4)Ru(µ-Cl)Cl]2 (70 mg, 0.11 mmol) is dissolved in methanol (50 ml). The resulting solution is added dropwise to a two-necked flask equipped with a reflux condenser and containing a methanol solution (50 ml) of dpqMe2 (71 mg, 0.23 mmol) and KPF6 (42 mg, 0.11 mmol). The mixture is heated to 50°C and stirred for 24 h. After cooling to room temperature, the volume is reduced and the product is precipitated by addition of diethylether. The orange solid is filtered, washed with n-pentane and dried under vacuo to give [(η6-1,2,4,5-C6H2Me4)RuCl(dpqMe2)][PF6] (130 mg, 0.12 mmol, yield 78.1%).

Crystals of (I) were obtained by the slow diffusion of diethylether into an acetonitrile solution of (I).

1H NMR (400 MHz, CD3CN): δ (p.p.m.) = 9.13 (d, 1H), 8.62 (d, 1H), 8.37 (s, 1H), 8.20 (m, 2H), 8.07 (s, 1H), 7.80 (dd, 1H), 7.64 (m, 2H), 7.10 (d, 1H), 5.63 (s, 2H), 2.69 (s, 3H), 2.65 (s, 3H), 2.19 (s, 6H), 2.12 (s, 6H,); IR (KBr, cm-1): 842 s υ(P—F), 558 m; ESI-MS (m/z): 583.1 [M+]; Anal. Calc. for C30H30N4ClF6PRu: C, 49.49; H, 4.15; N, 7.70. Found: C, 49.33; H, 4.26; N, 7.49.

Refinement top

The H atoms were included in calculated positions and refined using a riding model (including free rotation about the acetonitrile C—C bond), with C—H = 0.93–0.96 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Structure description top

The title complex (I) shows a typical piano-stool geometry with the metal centre coordinated by the arene ligand, a terminal chloride and the chelating 6,7-dimethyl-2,3-di(pyridin-2-yl)quinoxaline (dpqMe2) ligand. In the mononuclear complex (I), the metal centre is stereogenic. However, since none of the ligand contains a chiral information, (I) is obtained as a racemic mixture.

The Ru—N bond distances 2.060 (2) and 2.077 (2) Å in (I) are comparable to those in [(η6-p-PriC6H4Me)RuCl(η2-2,3-bis(2-pyridyl)pyrazine)][BF4] (Singh et al., 2002) and [(η6-p-PriC6H4Me)RuCl(η2-2,3-bis(α-pyridyl)quinoxaline)][PF6] (Lalrempuia & Kollipara, 2003). Accordingly, there is no significant difference in the Ru—Cl bond length in (I) [2.3732 (9) Å] and reported values (Lalrempuia & Kollipara, 2003)(Scott et al., 1999)(Canivet et al., 2005). The N(1)—Ru(1)—N(2) bond angle in complex (I) [76.04 (9)°] is similar to those of complexes [(η6-p-PriC6H4Me)RuCl(η2-2,3-bis(2-pyridyl)pyrazine)]+ [N(1)—Ru(1)—N(2) = 76.5 (2)°] (Singh et al., 2002) and [(η6-p-PriC6H4Me)RuCl(η2-2,3-bis(α-pyridyl)quinoxaline)]+ [N(1)—Ru(1)—N(2) = 76.2 (2)°] (Lalrempuia & Kollipara, 2003). An ORTEP drawing with the atom labelling scheme for (I) is shown in Figure 1.

Upon formation of the mononuclear complex (I), the bond length between the connecting carbon atoms [C(5)—C(6) = 1.472 (4) Å] of the coordinated pyridyl and quinoxaline moieties of the dpqMe2 ligand is slightly reduced as compared to the corresponding connecting C—C atoms [C(7)—C(8) = 1.496 (4) Å] of the non-coordinated pyridyl quinoxaline moities. Similarly, the C—C distances [1.493 Å] in the free dpqMe2 are longer (Wozniak et al., 1993). These bond length changes are in agreement with a back-donation from the metallic fragments to the dpqMe2 system, thus increasing the inter-ring bond order (Baumann et al., 1998) (Berg et al., 2002).

The major distortion imposed on the dpqMe2 structure upon coordination is encountered by the pyridyl groups. In the free ligand the two equivalent pyridyl groups are twisted by 39.6° relative to the plane of the quinoxaline unit (Wozniak et al., 1993). However, in (I) the twist of the coordinated pyridyl unit is 22.7 (1)°, while the non-coordinated pyridyl group is twisted by 54.2 (1)° relative to the plane of the quinoxaline unit.

The non-coordinated dpqMe2 ligand crystallizes in the centrosymmetric space group P21/a (Wozniak et al., 1993). Other arene–ruthenium and osmium complexes with chelating quinoxaline pyridyl derivatives have been synthesized and characterized by X-ray structure analysis (Baumann et al., 1998; Scott et al., 1999; Lalrempuia & Kollipara, 2003; Therrien et al., 2007).

For related literature, see: Berg et al. (2002); Canivet et al. (2005); Singh et al. (2002).

Computing details top

Data collection: EXPOSE (Stoe, 2000); cell refinement: CELL (Stoe, 2000); data reduction: INTEGRATE (Stoe, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2001); program(s) used to refine structure: SHELXL97 (Sheldrick, 2001); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) at 50% probability level with hydrogen atoms, acetonitrile molecule and hexafluorophosphate anion being omitted for clarity.
Chlorido(6,7-dimethyl-2,3-dipyridin-2-ylquinoxaline-κ2N,N')(η6– 1,2,4,5-tetramethylbenzene)ruthenium(II) hexafluorophosphate acetonitrile solvate top
Crystal data top
[RuCl(C10H14)(C20H16N4)]PF6·C2H3NF(000) = 1560
Mr = 769.12Dx = 1.539 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 8000 reflections
a = 13.1725 (11) Åθ = 2.1–26.0°
b = 25.6651 (17) ŵ = 0.67 mm1
c = 10.1222 (9) ÅT = 173 K
β = 104.14 (1)°Block, orange
V = 3318.4 (5) Å30.34 × 0.22 × 0.19 mm
Z = 4
Data collection top
Stoe IPDS
diffractometer
5710 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 26.0°, θmin = 2.4°
Detector resolution: 0.81Å pixels mm-1h = 1616
phi oscillation scansk = 3131
13015 measured reflectionsl = 1212
6142 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.042P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
6142 reflectionsΔρmax = 0.51 e Å3
422 parametersΔρmin = 0.27 e Å3
2 restraintsAbsolute structure: Flack (1983), 2912 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
[RuCl(C10H14)(C20H16N4)]PF6·C2H3NV = 3318.4 (5) Å3
Mr = 769.12Z = 4
Monoclinic, CcMo Kα radiation
a = 13.1725 (11) ŵ = 0.67 mm1
b = 25.6651 (17) ÅT = 173 K
c = 10.1222 (9) Å0.34 × 0.22 × 0.19 mm
β = 104.14 (1)°
Data collection top
Stoe IPDS
diffractometer
5710 reflections with I > 2σ(I)
13015 measured reflectionsRint = 0.034
6142 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.064Δρmax = 0.51 e Å3
S = 1.01Δρmin = 0.27 e Å3
6142 reflectionsAbsolute structure: Flack (1983), 2912 Friedel pairs
422 parametersAbsolute structure parameter: 0.01 (2)
2 restraints
Special details top

Experimental. A crystal was mounted at 173 K on a Stoe Image Plate Diffraction System (Stoe & Cie, 2000) using Mo Kα graphite monochromated radiation. Image plate distance 70 mm, φ oscillation scans 0 - 200°, step Δφ = 1.0°, 3 minutes per frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6737 (3)0.39051 (13)0.2351 (3)0.0307 (7)
H10.70450.37670.16940.037*
C20.6820 (3)0.44337 (14)0.2618 (4)0.0397 (8)
H20.71640.46500.21310.048*
C30.6390 (3)0.46340 (14)0.3613 (4)0.0421 (9)
H30.64390.49890.38060.050*
C40.5882 (3)0.43078 (12)0.4326 (3)0.0317 (7)
H40.56010.44390.50170.038*
C50.5796 (2)0.37805 (11)0.3999 (3)0.0206 (6)
C60.5389 (2)0.33765 (11)0.4764 (3)0.0177 (6)
C70.4808 (2)0.34576 (11)0.5771 (3)0.0198 (6)
C80.4218 (3)0.39516 (13)0.5831 (4)0.0286 (7)
C90.4299 (3)0.42035 (18)0.7062 (4)0.0475 (10)
H90.47660.40910.78540.057*
C100.3656 (4)0.4631 (2)0.7064 (5)0.0673 (14)
H100.36930.48150.78660.081*
C110.2965 (4)0.47820 (17)0.5880 (5)0.0583 (12)
H110.25240.50660.58630.070*
C120.2943 (3)0.45008 (14)0.4719 (4)0.0416 (9)
H120.24730.46020.39160.050*
C130.5065 (2)0.26073 (12)0.6437 (3)0.0197 (6)
C140.5539 (2)0.24969 (11)0.5364 (3)0.0181 (6)
C150.5899 (2)0.19883 (12)0.5216 (3)0.0206 (6)
H150.62300.19180.45230.025*
C160.5769 (2)0.15968 (12)0.6077 (3)0.0231 (6)
C170.5245 (2)0.17017 (12)0.7126 (3)0.0246 (6)
C180.4924 (2)0.22013 (12)0.7308 (3)0.0223 (6)
H180.46080.22710.80160.027*
C190.6161 (3)0.10587 (14)0.5893 (4)0.0386 (8)
H19A0.64780.10570.51340.058*
H19B0.55860.08180.57250.058*
H19C0.66710.09570.67030.058*
C200.5024 (3)0.12652 (14)0.8013 (4)0.0396 (9)
H20A0.46240.13970.86160.059*
H20B0.56730.11240.85370.059*
H20C0.46340.09970.74490.059*
C210.4337 (3)0.25966 (16)0.1676 (4)0.0231 (8)
C220.4661 (2)0.29775 (13)0.0880 (3)0.0238 (6)
C230.5573 (3)0.28838 (11)0.0386 (3)0.0227 (6)
H230.57740.31350.01610.027*
C240.6182 (2)0.24295 (13)0.0690 (3)0.0247 (6)
C250.5849 (3)0.20366 (12)0.1513 (3)0.0248 (6)
C260.4947 (2)0.21243 (12)0.1960 (3)0.0245 (7)
H260.47240.18660.24670.029*
C270.3433 (3)0.26601 (16)0.2315 (4)0.0359 (8)
H27A0.34350.30070.26700.054*
H27B0.34950.24130.30430.054*
H27C0.27910.26010.16430.054*
C280.4090 (3)0.34842 (14)0.0542 (4)0.0374 (8)
H28A0.34930.34340.02100.056*
H28B0.45490.37380.03010.056*
H28C0.38610.36050.13200.056*
C290.7168 (3)0.23601 (16)0.0209 (4)0.0375 (8)
H29A0.70700.20850.04540.056*
H29B0.77360.22720.09690.056*
H29C0.73280.26790.01950.056*
C300.6503 (3)0.15529 (13)0.1905 (4)0.0375 (8)
H30A0.62370.13560.25540.056*
H30B0.72160.16500.23030.056*
H30C0.64710.13440.11090.056*
C310.9370 (5)0.5418 (2)0.0826 (5)0.0691 (14)
H31A0.92210.57830.08840.104*
H31B0.87420.52210.07700.104*
H31C0.96240.53550.00280.104*
C321.0143 (4)0.52645 (17)0.2005 (5)0.0536 (11)
Cl10.77649 (7)0.26807 (4)0.37328 (9)0.0297 (2)
F10.6671 (3)0.59853 (15)0.4129 (3)0.0876 (10)
F20.8737 (3)0.61602 (15)0.3128 (5)0.1120 (14)
F30.8192 (3)0.56190 (14)0.4539 (5)0.1267 (18)
F40.7226 (3)0.56792 (12)0.2415 (3)0.0917 (12)
F50.7142 (3)0.65335 (13)0.2704 (4)0.1225 (18)
F60.8135 (3)0.64711 (13)0.4792 (4)0.0918 (11)
N10.62207 (19)0.35849 (10)0.3015 (2)0.0211 (5)
N20.56634 (18)0.28914 (9)0.4497 (2)0.0159 (5)
N30.46743 (18)0.30878 (10)0.6597 (2)0.0216 (5)
N40.3554 (2)0.40938 (11)0.4679 (3)0.0332 (6)
N51.0773 (4)0.51534 (17)0.2953 (5)0.0852 (16)
P10.77074 (8)0.60751 (4)0.35790 (11)0.0365 (2)
Ru10.597916 (16)0.280275 (7)0.259714 (18)0.01590 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0343 (17)0.0305 (18)0.0299 (17)0.0100 (14)0.0128 (14)0.0035 (13)
C20.053 (2)0.0294 (18)0.0429 (19)0.0145 (16)0.0231 (18)0.0038 (15)
C30.057 (2)0.0196 (17)0.051 (2)0.0127 (16)0.0158 (18)0.0014 (15)
C40.0417 (19)0.0217 (16)0.0345 (17)0.0069 (14)0.0148 (15)0.0035 (13)
C50.0210 (14)0.0196 (14)0.0204 (14)0.0006 (11)0.0039 (11)0.0011 (11)
C60.0157 (12)0.0168 (14)0.0191 (13)0.0014 (11)0.0012 (10)0.0016 (11)
C70.0182 (14)0.0208 (14)0.0198 (13)0.0004 (11)0.0037 (11)0.0019 (11)
C80.0301 (17)0.0227 (16)0.0362 (19)0.0006 (13)0.0141 (15)0.0039 (14)
C90.057 (3)0.051 (3)0.036 (2)0.021 (2)0.0134 (18)0.0081 (18)
C100.096 (4)0.056 (3)0.054 (3)0.026 (3)0.028 (3)0.015 (2)
C110.061 (3)0.038 (2)0.082 (3)0.028 (2)0.030 (2)0.002 (2)
C120.040 (2)0.0317 (19)0.056 (2)0.0110 (16)0.0162 (18)0.0125 (17)
C130.0154 (13)0.0241 (14)0.0181 (14)0.0006 (11)0.0012 (11)0.0002 (11)
C140.0150 (13)0.0203 (15)0.0172 (14)0.0007 (11)0.0007 (11)0.0038 (11)
C150.0201 (14)0.0247 (15)0.0177 (13)0.0047 (12)0.0057 (11)0.0008 (11)
C160.0238 (14)0.0226 (15)0.0218 (14)0.0039 (12)0.0034 (12)0.0041 (11)
C170.0256 (14)0.0263 (16)0.0204 (14)0.0024 (12)0.0031 (12)0.0062 (11)
C180.0222 (14)0.0291 (16)0.0171 (12)0.0002 (13)0.0075 (11)0.0039 (12)
C190.049 (2)0.0281 (18)0.044 (2)0.0088 (16)0.0223 (17)0.0085 (15)
C200.053 (2)0.0327 (19)0.0385 (19)0.0021 (17)0.0220 (17)0.0168 (15)
C210.0146 (16)0.0341 (19)0.0184 (16)0.0089 (14)0.0002 (12)0.0070 (15)
C220.0213 (14)0.0308 (16)0.0155 (13)0.0013 (12)0.0029 (11)0.0000 (12)
C230.0291 (17)0.0237 (16)0.0138 (13)0.0080 (12)0.0021 (12)0.0022 (11)
C240.0238 (15)0.0326 (17)0.0186 (15)0.0024 (13)0.0070 (12)0.0061 (12)
C250.0269 (15)0.0201 (14)0.0244 (14)0.0019 (12)0.0007 (12)0.0048 (12)
C260.0255 (15)0.0268 (16)0.0191 (15)0.0103 (12)0.0012 (12)0.0013 (11)
C270.0206 (15)0.056 (2)0.0298 (17)0.0052 (15)0.0042 (14)0.0038 (15)
C280.0382 (19)0.035 (2)0.0357 (18)0.0122 (15)0.0027 (15)0.0067 (14)
C290.0330 (19)0.049 (2)0.0325 (18)0.0021 (16)0.0126 (15)0.0084 (16)
C300.046 (2)0.0253 (17)0.0402 (19)0.0090 (15)0.0078 (16)0.0063 (15)
C310.087 (4)0.069 (3)0.051 (3)0.015 (3)0.015 (3)0.003 (2)
C320.059 (3)0.036 (2)0.069 (3)0.0002 (19)0.023 (3)0.008 (2)
Cl10.0175 (4)0.0464 (5)0.0245 (4)0.0022 (4)0.0035 (3)0.0033 (4)
F10.076 (2)0.106 (3)0.090 (2)0.0250 (18)0.0380 (17)0.0415 (19)
F20.108 (3)0.095 (3)0.166 (4)0.052 (2)0.095 (3)0.039 (3)
F30.110 (3)0.062 (2)0.184 (4)0.004 (2)0.010 (3)0.060 (2)
F40.153 (3)0.069 (2)0.071 (2)0.060 (2)0.061 (2)0.0387 (16)
F50.126 (3)0.063 (2)0.130 (3)0.016 (2)0.063 (3)0.037 (2)
F60.089 (2)0.076 (2)0.092 (2)0.0130 (17)0.0146 (18)0.0393 (17)
N10.0246 (14)0.0205 (12)0.0181 (12)0.0054 (9)0.0049 (10)0.0001 (9)
N20.0122 (11)0.0194 (13)0.0159 (11)0.0009 (9)0.0034 (9)0.0008 (9)
N30.0208 (12)0.0245 (14)0.0199 (12)0.0016 (10)0.0057 (10)0.0028 (10)
N40.0310 (15)0.0267 (15)0.0421 (16)0.0016 (12)0.0096 (13)0.0056 (12)
N50.092 (4)0.057 (3)0.097 (4)0.026 (3)0.005 (3)0.008 (2)
P10.0404 (5)0.0233 (5)0.0451 (6)0.0048 (4)0.0093 (4)0.0034 (4)
Ru10.01498 (9)0.01835 (10)0.01457 (9)0.00139 (12)0.00397 (6)0.00083 (12)
Geometric parameters (Å, º) top
C1—N11.347 (4)C21—C261.444 (5)
C1—C21.382 (5)C21—C271.497 (5)
C1—H10.9300C21—Ru12.200 (3)
C2—C31.370 (6)C22—C231.430 (5)
C2—H20.9300C22—C281.500 (5)
C3—C41.381 (5)C22—Ru12.182 (3)
C3—H30.9300C23—C241.406 (5)
C4—C51.391 (4)C23—Ru12.180 (3)
C4—H40.9300C23—H230.9300
C5—N11.352 (4)C24—C251.443 (5)
C5—C61.472 (4)C24—C291.505 (5)
C6—N21.342 (4)C24—Ru12.229 (3)
C6—C71.431 (4)C25—C261.390 (5)
C7—N31.305 (4)C25—C301.507 (4)
C7—C81.496 (4)C25—Ru12.238 (3)
C8—N41.326 (5)C26—Ru12.206 (3)
C8—C91.384 (5)C26—H260.9300
C9—C101.387 (6)C27—H27A0.9600
C9—H90.9300C27—H27B0.9600
C10—C111.372 (7)C27—H27C0.9600
C10—H100.9300C28—H28A0.9600
C11—C121.373 (6)C28—H28B0.9600
C11—H110.9300C28—H28C0.9600
C12—N41.325 (5)C29—H29A0.9600
C12—H120.9300C29—H29B0.9600
C13—N31.361 (4)C29—H29C0.9600
C13—C181.406 (4)C30—H30A0.9600
C13—C141.407 (4)C30—H30B0.9600
C14—N21.376 (4)C30—H30C0.9600
C14—C151.409 (4)C31—C321.423 (7)
C15—C161.368 (4)C31—H31A0.9600
C15—H150.9300C31—H31B0.9600
C16—C171.427 (4)C31—H31C0.9600
C16—C191.502 (5)C32—N51.141 (6)
C17—C181.377 (4)Cl1—Ru12.3732 (9)
C17—C201.507 (4)F1—P11.612 (3)
C18—H180.9300F2—P11.548 (4)
C19—H19A0.9600F3—P11.555 (3)
C19—H19B0.9600F4—P11.568 (3)
C19—H19C0.9600F5—P11.550 (3)
C20—H20A0.9600F6—P11.588 (3)
C20—H20B0.9600N1—Ru12.060 (2)
C20—H20C0.9600N2—Ru12.077 (2)
C21—C221.398 (5)
N1—C1—C2121.8 (3)C25—C26—C21123.4 (3)
N1—C1—H1119.1C25—C26—Ru173.02 (17)
C2—C1—H1119.1C21—C26—Ru170.64 (18)
C3—C2—C1119.0 (3)C25—C26—H26118.3
C3—C2—H2120.5C21—C26—H26118.3
C1—C2—H2120.5Ru1—C26—H26131.1
C2—C3—C4119.8 (3)C21—C27—H27A109.5
C2—C3—H3120.1C21—C27—H27B109.5
C4—C3—H3120.1H27A—C27—H27B109.5
C3—C4—C5119.1 (3)C21—C27—H27C109.5
C3—C4—H4120.4H27A—C27—H27C109.5
C5—C4—H4120.4H27B—C27—H27C109.5
N1—C5—C4120.8 (3)C22—C28—H28A109.5
N1—C5—C6113.3 (2)C22—C28—H28B109.5
C4—C5—C6125.4 (3)H28A—C28—H28B109.5
N2—C6—C7119.7 (3)C22—C28—H28C109.5
N2—C6—C5113.4 (2)H28A—C28—H28C109.5
C7—C6—C5126.8 (3)H28B—C28—H28C109.5
N3—C7—C6122.0 (3)C24—C29—H29A109.5
N3—C7—C8115.9 (3)C24—C29—H29B109.5
C6—C7—C8121.7 (3)H29A—C29—H29B109.5
N4—C8—C9123.5 (3)C24—C29—H29C109.5
N4—C8—C7115.8 (3)H29A—C29—H29C109.5
C9—C8—C7120.4 (3)H29B—C29—H29C109.5
C8—C9—C10117.3 (4)C25—C30—H30A109.5
C8—C9—H9121.4C25—C30—H30B109.5
C10—C9—H9121.4H30A—C30—H30B109.5
C11—C10—C9119.8 (4)C25—C30—H30C109.5
C11—C10—H10120.1H30A—C30—H30C109.5
C9—C10—H10120.1H30B—C30—H30C109.5
C10—C11—C12118.0 (4)C32—C31—H31A109.5
C10—C11—H11121.0C32—C31—H31B109.5
C12—C11—H11121.0H31A—C31—H31B109.5
N4—C12—C11123.7 (4)C32—C31—H31C109.5
N4—C12—H12118.2H31A—C31—H31C109.5
C11—C12—H12118.2H31B—C31—H31C109.5
N3—C13—C18119.0 (3)N5—C32—C31178.3 (5)
N3—C13—C14121.7 (3)C1—N1—C5119.4 (3)
C18—C13—C14119.1 (3)C1—N1—Ru1124.3 (2)
N2—C14—C13119.3 (3)C5—N1—Ru1116.24 (19)
N2—C14—C15121.2 (3)C6—N2—C14118.3 (2)
C13—C14—C15119.5 (3)C6—N2—Ru1114.41 (18)
C16—C15—C14121.0 (3)C14—N2—Ru1126.31 (19)
C16—C15—H15119.5C7—N3—C13118.0 (3)
C14—C15—H15119.5C12—N4—C8117.7 (3)
C15—C16—C17119.6 (3)F2—P1—F593.3 (3)
C15—C16—C19119.8 (3)F2—P1—F392.0 (3)
C17—C16—C19120.6 (3)F5—P1—F3174.4 (3)
C18—C17—C16119.7 (3)F2—P1—F495.3 (2)
C18—C17—C20120.2 (3)F5—P1—F490.7 (2)
C16—C17—C20120.1 (3)F3—P1—F490.6 (2)
C17—C18—C13121.0 (3)F2—P1—F688.1 (2)
C17—C18—H18119.5F5—P1—F689.2 (2)
C13—C18—H18119.5F3—P1—F689.1 (2)
C16—C19—H19A109.5F4—P1—F6176.6 (2)
C16—C19—H19B109.5F2—P1—F1177.0 (2)
H19A—C19—H19B109.5F5—P1—F188.7 (2)
C16—C19—H19C109.5F3—P1—F185.9 (2)
H19A—C19—H19C109.5F4—P1—F186.91 (17)
H19B—C19—H19C109.5F6—P1—F189.68 (19)
C17—C20—H20A109.5N1—Ru1—N276.04 (9)
C17—C20—H20B109.5N1—Ru1—C2396.01 (10)
H20A—C20—H20B109.5N2—Ru1—C23152.33 (11)
C17—C20—H20C109.5N1—Ru1—C2290.94 (10)
H20A—C20—H20C109.5N2—Ru1—C22114.50 (11)
H20B—C20—H20C109.5C23—Ru1—C2238.26 (12)
C22—C21—C26117.9 (3)N1—Ru1—C21114.07 (13)
C22—C21—C27124.1 (4)N2—Ru1—C2191.16 (12)
C26—C21—C27117.9 (3)C23—Ru1—C2167.59 (13)
C22—C21—Ru170.71 (18)C22—Ru1—C2137.21 (14)
C26—C21—Ru171.11 (18)N1—Ru1—C26151.92 (11)
C27—C21—Ru1126.5 (2)N2—Ru1—C2696.24 (10)
C21—C22—C23119.0 (3)C23—Ru1—C2678.23 (11)
C21—C22—C28122.0 (3)C22—Ru1—C2667.40 (12)
C23—C22—C28119.0 (3)C21—Ru1—C2638.24 (14)
C21—C22—Ru172.09 (17)N1—Ru1—C24123.48 (11)
C23—C22—Ru170.78 (16)N2—Ru1—C24160.48 (10)
C28—C22—Ru1128.1 (2)C23—Ru1—C2437.16 (12)
C24—C23—C22123.1 (3)C22—Ru1—C2468.81 (11)
C24—C23—Ru173.31 (17)C21—Ru1—C2480.96 (13)
C22—C23—Ru170.96 (16)C26—Ru1—C2466.62 (12)
C24—C23—H23118.4N1—Ru1—C25161.15 (11)
C22—C23—H23118.4N2—Ru1—C25122.80 (11)
Ru1—C23—H23130.1C23—Ru1—C2567.07 (11)
C23—C24—C25118.0 (3)C22—Ru1—C2580.76 (11)
C23—C24—C29121.2 (3)C21—Ru1—C2568.38 (13)
C25—C24—C29120.8 (3)C26—Ru1—C2536.43 (12)
C23—C24—Ru169.53 (17)C24—Ru1—C2537.69 (13)
C25—C24—Ru171.49 (18)N1—Ru1—Cl186.79 (7)
C29—C24—Ru1128.8 (2)N2—Ru1—Cl187.99 (7)
C26—C25—C24118.6 (3)C23—Ru1—Cl1118.38 (9)
C26—C25—C30121.8 (3)C22—Ru1—Cl1156.13 (9)
C24—C25—C30119.6 (3)C21—Ru1—Cl1158.26 (10)
C26—C25—Ru170.55 (17)C26—Ru1—Cl1120.31 (9)
C24—C25—Ru170.82 (17)C24—Ru1—Cl192.79 (8)
C30—C25—Ru1128.6 (2)C25—Ru1—Cl193.98 (8)
N1—C1—C2—C31.8 (6)C14—N2—Ru1—C2411.7 (4)
C1—C2—C3—C40.0 (6)C6—N2—Ru1—C25155.77 (19)
C2—C3—C4—C51.4 (5)C14—N2—Ru1—C2512.5 (3)
C3—C4—C5—N11.3 (5)C6—N2—Ru1—Cl1110.79 (19)
C3—C4—C5—C6172.5 (3)C14—N2—Ru1—Cl180.9 (2)
N1—C5—C6—N210.1 (3)C24—C23—Ru1—N1141.19 (19)
C4—C5—C6—N2161.6 (3)C22—C23—Ru1—N183.85 (18)
N1—C5—C6—C7173.5 (2)C24—C23—Ru1—N2147.6 (2)
C4—C5—C6—C714.7 (5)C22—C23—Ru1—N212.6 (3)
N2—C6—C7—N311.2 (4)C24—C23—Ru1—C22135.0 (3)
C5—C6—C7—N3165.0 (3)C24—C23—Ru1—C21105.2 (2)
N2—C6—C7—C8161.8 (3)C22—C23—Ru1—C2129.7 (2)
C5—C6—C7—C822.1 (4)C24—C23—Ru1—C2666.65 (19)
N3—C7—C8—N4120.4 (3)C22—C23—Ru1—C2668.30 (19)
C6—C7—C8—N452.9 (4)C22—C23—Ru1—C24135.0 (3)
N3—C7—C8—C953.2 (4)C24—C23—Ru1—C2530.19 (18)
C6—C7—C8—C9133.5 (4)C22—C23—Ru1—C25104.8 (2)
N4—C8—C9—C101.0 (7)C24—C23—Ru1—Cl151.60 (19)
C7—C8—C9—C10174.0 (4)C22—C23—Ru1—Cl1173.45 (15)
C8—C9—C10—C111.0 (8)C21—C22—Ru1—N1130.8 (2)
C9—C10—C11—C120.4 (8)C23—C22—Ru1—N198.54 (18)
C10—C11—C12—N40.2 (7)C28—C22—Ru1—N113.7 (3)
N3—C13—C14—N23.7 (4)C21—C22—Ru1—N255.7 (2)
C18—C13—C14—N2178.9 (2)C23—C22—Ru1—N2173.61 (16)
N3—C13—C14—C15177.8 (2)C28—C22—Ru1—N261.4 (3)
C18—C13—C14—C152.6 (4)C21—C22—Ru1—C23130.7 (3)
N2—C14—C15—C16179.7 (3)C28—C22—Ru1—C23112.2 (4)
C13—C14—C15—C161.9 (4)C23—C22—Ru1—C21130.7 (3)
C14—C15—C16—C171.1 (4)C28—C22—Ru1—C21117.1 (4)
C14—C15—C16—C19180.0 (3)C21—C22—Ru1—C2630.8 (2)
C15—C16—C17—C183.4 (4)C23—C22—Ru1—C2699.85 (19)
C19—C16—C17—C18177.8 (3)C28—C22—Ru1—C26147.9 (3)
C15—C16—C17—C20175.3 (3)C21—C22—Ru1—C24103.4 (2)
C19—C16—C17—C203.5 (4)C23—C22—Ru1—C2427.29 (17)
C16—C17—C18—C132.6 (4)C28—C22—Ru1—C24139.5 (3)
C20—C17—C18—C13176.1 (3)C21—C22—Ru1—C2566.2 (2)
N3—C13—C18—C17175.7 (3)C23—C22—Ru1—C2564.46 (18)
C14—C13—C18—C170.3 (4)C28—C22—Ru1—C25176.7 (3)
C26—C21—C22—C230.0 (4)C21—C22—Ru1—Cl1145.1 (2)
C27—C21—C22—C23176.5 (3)C23—C22—Ru1—Cl114.4 (3)
Ru1—C21—C22—C2354.9 (2)C28—C22—Ru1—Cl197.9 (3)
C26—C21—C22—C28179.2 (3)C22—C21—Ru1—N156.0 (2)
C27—C21—C22—C282.7 (5)C26—C21—Ru1—N1173.84 (17)
Ru1—C21—C22—C28124.2 (3)C27—C21—Ru1—N162.6 (4)
C26—C21—C22—Ru155.0 (2)C22—C21—Ru1—N2131.2 (2)
C27—C21—C22—Ru1121.5 (3)C26—C21—Ru1—N298.63 (19)
C21—C22—C23—C241.6 (4)C27—C21—Ru1—N212.6 (3)
C28—C22—C23—C24177.7 (3)C22—C21—Ru1—C2330.5 (2)
Ru1—C22—C23—C2454.0 (3)C26—C21—Ru1—C2399.6 (2)
C21—C22—C23—Ru155.6 (2)C27—C21—Ru1—C23149.2 (4)
C28—C22—C23—Ru1123.6 (3)C26—C21—Ru1—C22130.1 (3)
C22—C23—C24—C251.4 (4)C27—C21—Ru1—C22118.6 (4)
Ru1—C23—C24—C2554.4 (2)C22—C21—Ru1—C26130.1 (3)
C22—C23—C24—C29176.7 (3)C27—C21—Ru1—C26111.2 (4)
Ru1—C23—C24—C29123.7 (3)C22—C21—Ru1—C2466.7 (2)
C22—C23—C24—Ru153.0 (2)C26—C21—Ru1—C2463.4 (2)
C23—C24—C25—C260.3 (4)C27—C21—Ru1—C24174.7 (4)
C29—C24—C25—C26178.5 (3)C22—C21—Ru1—C25103.7 (2)
Ru1—C24—C25—C2653.7 (2)C26—C21—Ru1—C2526.45 (18)
C23—C24—C25—C30177.7 (3)C27—C21—Ru1—C25137.7 (4)
C29—C24—C25—C300.5 (4)C22—C21—Ru1—Cl1141.3 (2)
Ru1—C24—C25—C30124.2 (3)C26—C21—Ru1—Cl111.1 (4)
C23—C24—C25—Ru153.5 (2)C27—C21—Ru1—Cl1100.1 (4)
C29—C24—C25—Ru1124.7 (3)C25—C26—Ru1—N1147.8 (2)
C24—C25—C26—C211.9 (4)C21—C26—Ru1—N112.0 (3)
C30—C25—C26—C21176.0 (3)C25—C26—Ru1—N2140.30 (17)
Ru1—C25—C26—C2152.0 (3)C21—C26—Ru1—N283.9 (2)
C24—C25—C26—Ru153.9 (2)C25—C26—Ru1—C2367.18 (18)
C30—C25—C26—Ru1124.1 (3)C21—C26—Ru1—C2368.6 (2)
C22—C21—C26—C251.8 (5)C25—C26—Ru1—C22105.7 (2)
C27—C21—C26—C25175.0 (3)C21—C26—Ru1—C2230.1 (2)
Ru1—C21—C26—C2553.0 (3)C25—C26—Ru1—C21135.8 (3)
C22—C21—C26—Ru154.8 (3)C25—C26—Ru1—C2430.00 (18)
C27—C21—C26—Ru1122.0 (3)C21—C26—Ru1—C24105.8 (2)
C2—C1—N1—C51.9 (5)C21—C26—Ru1—C25135.8 (3)
C2—C1—N1—Ru1176.0 (3)C25—C26—Ru1—Cl148.97 (19)
C4—C5—N1—C10.3 (4)C21—C26—Ru1—Cl1175.25 (19)
C6—C5—N1—C1171.9 (2)C23—C24—Ru1—N148.4 (2)
C4—C5—N1—Ru1177.7 (2)C25—C24—Ru1—N1179.10 (16)
C6—C5—N1—Ru110.1 (3)C29—C24—Ru1—N165.9 (3)
C7—C6—N2—C1411.3 (4)C23—C24—Ru1—N2131.8 (3)
C5—C6—N2—C14165.3 (2)C25—C24—Ru1—N21.0 (4)
C7—C6—N2—Ru1157.96 (19)C29—C24—Ru1—N2114.0 (4)
C5—C6—N2—Ru125.4 (3)C25—C24—Ru1—C23130.7 (3)
C13—C14—N2—C64.3 (4)C29—C24—Ru1—C23114.2 (4)
C15—C14—N2—C6174.1 (2)C23—C24—Ru1—C2228.03 (19)
C13—C14—N2—Ru1163.54 (19)C25—C24—Ru1—C22102.7 (2)
C15—C14—N2—Ru118.0 (4)C29—C24—Ru1—C22142.2 (3)
C6—C7—N3—C133.0 (4)C23—C24—Ru1—C2164.6 (2)
C8—C7—N3—C13170.3 (2)C25—C24—Ru1—C2166.16 (19)
C18—C13—N3—C7179.5 (2)C29—C24—Ru1—C21178.8 (3)
C14—C13—N3—C74.2 (4)C23—C24—Ru1—C26101.7 (2)
C11—C12—N4—C80.3 (6)C25—C24—Ru1—C2629.06 (17)
C9—C8—N4—C120.3 (5)C29—C24—Ru1—C26144.1 (3)
C7—C8—N4—C12173.7 (3)C23—C24—Ru1—C25130.7 (3)
C1—N1—Ru1—N2164.2 (3)C29—C24—Ru1—C25115.0 (4)
C5—N1—Ru1—N217.92 (19)C23—C24—Ru1—Cl1136.35 (18)
C1—N1—Ru1—C2342.8 (3)C25—C24—Ru1—Cl192.90 (17)
C5—N1—Ru1—C23135.1 (2)C29—C24—Ru1—Cl122.1 (3)
C1—N1—Ru1—C2280.8 (2)C26—C25—Ru1—N1129.0 (3)
C5—N1—Ru1—C2297.1 (2)C24—C25—Ru1—N12.3 (4)
C1—N1—Ru1—C21110.9 (3)C30—C25—Ru1—N1115.3 (4)
C5—N1—Ru1—C2167.0 (2)C26—C25—Ru1—N249.1 (2)
C1—N1—Ru1—C26119.0 (3)C24—C25—Ru1—N2179.59 (16)
C5—N1—Ru1—C2658.9 (3)C30—C25—Ru1—N266.6 (3)
C1—N1—Ru1—C2415.8 (3)C26—C25—Ru1—C23101.55 (19)
C5—N1—Ru1—C24162.13 (19)C24—C25—Ru1—C2329.79 (18)
C1—N1—Ru1—C2517.5 (5)C30—C25—Ru1—C23142.8 (4)
C5—N1—Ru1—C25160.4 (3)C26—C25—Ru1—C2264.20 (18)
C1—N1—Ru1—Cl175.4 (2)C24—C25—Ru1—C2267.14 (18)
C5—N1—Ru1—Cl1106.65 (19)C30—C25—Ru1—C22179.8 (3)
C6—N2—Ru1—N123.60 (19)C26—C25—Ru1—C2127.67 (19)
C14—N2—Ru1—N1168.1 (2)C24—C25—Ru1—C21103.7 (2)
C6—N2—Ru1—C2352.4 (3)C30—C25—Ru1—C21143.3 (4)
C14—N2—Ru1—C23115.8 (3)C24—C25—Ru1—C26131.3 (3)
C6—N2—Ru1—C2261.0 (2)C30—C25—Ru1—C26115.6 (4)
C14—N2—Ru1—C22107.3 (2)C26—C25—Ru1—C24131.3 (3)
C6—N2—Ru1—C2190.9 (2)C30—C25—Ru1—C24113.0 (4)
C14—N2—Ru1—C2177.3 (2)C26—C25—Ru1—Cl1139.24 (16)
C6—N2—Ru1—C26128.9 (2)C24—C25—Ru1—Cl189.41 (17)
C14—N2—Ru1—C2639.3 (2)C30—C25—Ru1—Cl123.6 (3)
C6—N2—Ru1—C24156.5 (3)

Experimental details

Crystal data
Chemical formula[RuCl(C10H14)(C20H16N4)]PF6·C2H3N
Mr769.12
Crystal system, space groupMonoclinic, Cc
Temperature (K)173
a, b, c (Å)13.1725 (11), 25.6651 (17), 10.1222 (9)
β (°) 104.14 (1)
V3)3318.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.34 × 0.22 × 0.19
Data collection
DiffractometerStoe IPDS
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13015, 6142, 5710
Rint0.034
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.064, 1.01
No. of reflections6142
No. of parameters422
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.27
Absolute structureFlack (1983), 2912 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: EXPOSE (Stoe, 2000), CELL (Stoe, 2000), INTEGRATE (Stoe, 2000), SHELXS97 (Sheldrick, 2001), SHELXL97 (Sheldrick, 2001), ORTEP-3 (Farrugia, 1997), SHELXL97.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds