Download citation
Download citation
link to html
A new polymorphic form of the title compound, [Mo(C27H26P2)(CO)4], has been crystallized and structurally characterized. The new polymorph, (I), is monoclinic in the space group P21/c, with one mol­ecule in the asymmetric unit, while the previously reported polymorph, (I'), is ortho­rhom­bic in the space group Pnma, with one half-mol­ecule in the asymmetric unit and lies on a mirror plane. The geometry at the Mo centres is octa­hedral in both (I) and (I'), while both phosphines coordinate in a cis fashion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680702185X/bt2358sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680702185X/bt2358Isup2.hkl
Contains datablock I

CCDC reference: 650616

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.061
  • wR factor = 0.135
  • Data-to-parameter ratio = 19.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Ditertiary phosphines are valuable synthetic tools widely used in coordination chemistry and homogeneous catalysis. (Sekabunga et al., 2002; Wu & Li, 2003; Balch et al., 1990). A number of Mo—P—C—X—C—P (X = N or C) forming a six-membered chelated metallocycle have been described in the literature (Sanchez-Ballester et al., 2007; Ueng & Hwang, 1991). A second polymorph of Mo(CO)4{Ph2P(CH2)3PPh2} I has been structurally determined (Figure 1), with selected geometric data in Table 1, together with those for the related compounds Mo(CO4){Ph2P(CH2)3PPh2}, I' (Ueng & Hwang, 1991), and [Mo(CO4){Ph2PCH2N(Ph)CH2PPh2}], II (Sanchez-Ballester et al., 2007). The Mo—P bond lengths and P—Mo—P bite angle in (I) are similar to (I') but slightly longer than 2. The six-membered chelate ring in (I) adopts a chair conformation with C14 above the P2C2 mean plane by 0.747 (6)Å and Mo below the plane by 0.764 (3) Å. Figures 2 and 3 show packing plots of (I) and (I') viewed along the crystallographic b and c axes respectively. These show the substantial differences in packing between the two polymorphs. In (I) adjacent molecules are off-set and canted by 26° with respect to the ab plane with a whole molecule in the asymmetric unit, while in (I') molecules lie directly stacked in parallel columns with individual molecules lying on mirror planes.

In summary, we have reported the crystal structure of a new monoclinic, polymorph I that displays very similar Mo—P/Mo—CO bond lengths, bond angles and core molecular conformation to the known orthorhombic, polymorph I' (Ueng & Hwang, 1991), but substantial differences in crystal packing.

Related literature top

An orthorhombic polymorph (Ueng & Hwang, 1991) has been reported previously and shows a different packing arrangement in which molecules are lying directly stacked in parallel columns with individual molecules lying on mirror planes. See also Sekabunga et al., 2002, Wu & Li, 2003, and Balch et al., 1990 for broader information on phospines in catalysis and Sanchez Ballester et al., 2007 for a closely related structure.

Experimental top

The preparation of I was carried out as follows. A solution of Mo(CO)4(norbornadiene) (0.0408 g, 0.136 mmol) and Ph2P(CH2)3PPh2 (0.0559 g, 0.135 mmol) in CH2Cl2 (10 ml) was stirred for 12 h at room temperature under N2. The volume was reduced to ca 2–3 ml under reduced pressure. Addition of diethyl ether (20 ml) and petroleum ether (b.p. 60–80°C, 10 ml) gave a pale yellow solid which was collected by suction filtration. Yield: 0.0749 g, 89%. Suitable X-ray quality crystals of 1 were obtained by slow evaporation of the CH2Cl2/diethyl ether/petroleum ether filtrate. Selected data for I: 31P{1H} NMR (162 MHz, CDCl3): δ(P) 25.1 p.p.m. IR νmax (KBr)/cm-1: 2018, 1919, 1891, 1854 (CO).

Refinement top

H atoms were placed in geometric positions (C—H distance = 0.95 Å for aryl H; 0.99 Å for methylene H) using a riding model. Uiso values were set to 1.2Ueq.

Structure description top

Ditertiary phosphines are valuable synthetic tools widely used in coordination chemistry and homogeneous catalysis. (Sekabunga et al., 2002; Wu & Li, 2003; Balch et al., 1990). A number of Mo—P—C—X—C—P (X = N or C) forming a six-membered chelated metallocycle have been described in the literature (Sanchez-Ballester et al., 2007; Ueng & Hwang, 1991). A second polymorph of Mo(CO)4{Ph2P(CH2)3PPh2} I has been structurally determined (Figure 1), with selected geometric data in Table 1, together with those for the related compounds Mo(CO4){Ph2P(CH2)3PPh2}, I' (Ueng & Hwang, 1991), and [Mo(CO4){Ph2PCH2N(Ph)CH2PPh2}], II (Sanchez-Ballester et al., 2007). The Mo—P bond lengths and P—Mo—P bite angle in (I) are similar to (I') but slightly longer than 2. The six-membered chelate ring in (I) adopts a chair conformation with C14 above the P2C2 mean plane by 0.747 (6)Å and Mo below the plane by 0.764 (3) Å. Figures 2 and 3 show packing plots of (I) and (I') viewed along the crystallographic b and c axes respectively. These show the substantial differences in packing between the two polymorphs. In (I) adjacent molecules are off-set and canted by 26° with respect to the ab plane with a whole molecule in the asymmetric unit, while in (I') molecules lie directly stacked in parallel columns with individual molecules lying on mirror planes.

In summary, we have reported the crystal structure of a new monoclinic, polymorph I that displays very similar Mo—P/Mo—CO bond lengths, bond angles and core molecular conformation to the known orthorhombic, polymorph I' (Ueng & Hwang, 1991), but substantial differences in crystal packing.

An orthorhombic polymorph (Ueng & Hwang, 1991) has been reported previously and shows a different packing arrangement in which molecules are lying directly stacked in parallel columns with individual molecules lying on mirror planes. See also Sekabunga et al., 2002, Wu & Li, 2003, and Balch et al., 1990 for broader information on phospines in catalysis and Sanchez Ballester et al., 2007 for a closely related structure.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Figures top
[Figure 1] Fig. 1. View of I, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. All H atoms have been removed for clarity.
[Figure 2] Fig. 2. Packing plot of I viewed parallel to the crystallographic b axis. Hydrogen atoms have been removed for clarity.
[Figure 3] Fig. 3. Packing plot of I' (Ueng & Hwang, 1991) viewed parallel to the crystallographic c axis. H atoms have been removed for clarity.
[Figure 4] Fig. 4. Polymorphs.
[1,3-bis(diphenylphosphino)propane]tetracarbonylmolybdenum(0) top
Crystal data top
[Mo(C27H26P2)(CO)4]F(000) = 1264
Mr = 620.40Dx = 1.421 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6633 reflections
a = 15.5925 (6) Åθ = 2.9–27.5°
b = 8.8293 (3) ŵ = 0.60 mm1
c = 21.0760 (6) ÅT = 120 K
β = 91.979 (2)°Block, colourless
V = 2899.82 (17) Å30.10 × 0.05 × 0.03 mm
Z = 4
Data collection top
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
6604 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode5497 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.076
φ and ω scansθmax = 27.6°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2020
Tmin = 0.965, Tmax = 0.982k = 1111
33177 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + 15.4402P]
where P = (Fo2 + 2Fc2)/3
6604 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 1.34 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Mo(C27H26P2)(CO)4]V = 2899.82 (17) Å3
Mr = 620.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.5925 (6) ŵ = 0.60 mm1
b = 8.8293 (3) ÅT = 120 K
c = 21.0760 (6) Å0.10 × 0.05 × 0.03 mm
β = 91.979 (2)°
Data collection top
Bruker-Nonius 95mm CCD camera on κ-goniostat
diffractometer
6604 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
5497 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.982Rint = 0.076
33177 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + 15.4402P]
where P = (Fo2 + 2Fc2)/3
6604 reflectionsΔρmax = 1.34 e Å3
343 parametersΔρmin = 0.72 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.80343 (2)0.83793 (4)0.487754 (16)0.01481 (11)
C10.9296 (3)0.6703 (5)0.3555 (2)0.0186 (8)
C20.9387 (3)0.5816 (5)0.3015 (2)0.0242 (10)
H20.89740.50550.29160.029*
C31.0067 (3)0.6023 (6)0.2622 (2)0.0303 (11)
H31.01170.54040.22560.036*
C41.0675 (3)0.7125 (6)0.2758 (2)0.0287 (11)
H41.11430.72710.24880.034*
C51.0595 (3)0.8013 (5)0.3293 (2)0.0246 (10)
H51.10160.87630.33920.029*
C60.9911 (3)0.7827 (5)0.3685 (2)0.0207 (9)
H60.98580.84650.40450.025*
C70.7567 (3)0.5721 (5)0.3543 (2)0.0184 (9)
C80.7362 (3)0.4209 (5)0.3431 (2)0.0225 (9)
H80.76630.34380.36610.027*
C90.6719 (3)0.3813 (6)0.2986 (2)0.0300 (11)
H90.65790.27770.29170.036*
C100.6289 (3)0.4922 (6)0.2646 (2)0.0315 (12)
H100.58550.46510.23400.038*
C110.6485 (3)0.6432 (6)0.2749 (2)0.0295 (11)
H110.61860.71950.25130.035*
C120.7115 (3)0.6835 (5)0.3196 (2)0.0237 (9)
H120.72430.78750.32680.028*
P10.84233 (7)0.63373 (12)0.41003 (5)0.0155 (2)
C130.8838 (3)0.4563 (5)0.4452 (2)0.0177 (8)
H13A0.89240.38290.41050.021*
H13B0.94070.47710.46560.021*
C140.8270 (3)0.3816 (5)0.4945 (2)0.0191 (9)
H14A0.76680.38340.47800.023*
H14B0.84420.27420.49920.023*
C150.8309 (3)0.4562 (5)0.5601 (2)0.0189 (9)
H15A0.89200.47380.57230.023*
H15B0.80810.38340.59100.023*
P20.77312 (7)0.63617 (12)0.56842 (5)0.0163 (2)
C160.6601 (3)0.5822 (5)0.5736 (2)0.0202 (9)
C170.6009 (3)0.6958 (6)0.5873 (2)0.0298 (11)
H170.61970.79780.59170.036*
C180.5153 (3)0.6608 (7)0.5947 (2)0.0349 (12)
H180.47570.73870.60410.042*
C190.4870 (3)0.5118 (7)0.5882 (2)0.0325 (12)
H190.42830.48770.59380.039*
C200.5442 (3)0.4000 (6)0.5738 (2)0.0301 (11)
H200.52470.29870.56840.036*
C210.6308 (3)0.4339 (5)0.5667 (2)0.0228 (9)
H210.66990.35530.55730.027*
C220.8008 (3)0.6718 (5)0.65245 (19)0.0187 (8)
C230.8620 (3)0.7794 (5)0.6713 (2)0.0235 (10)
H230.88750.84150.64030.028*
C240.8860 (3)0.7965 (6)0.7353 (2)0.0273 (10)
H240.92800.86990.74740.033*
C250.8495 (3)0.7081 (6)0.7811 (2)0.0274 (11)
H250.86590.72040.82460.033*
C260.7884 (3)0.6010 (6)0.7628 (2)0.0283 (11)
H260.76260.53970.79390.034*
C270.7647 (3)0.5830 (5)0.6990 (2)0.0238 (10)
H270.72320.50880.68710.029*
C280.8256 (3)0.9952 (5)0.4224 (2)0.0184 (9)
O10.8362 (2)1.0873 (4)0.38470 (15)0.0285 (8)
C290.9276 (3)0.8437 (5)0.5207 (2)0.0185 (8)
O20.9971 (2)0.8496 (4)0.53965 (16)0.0288 (7)
C300.7700 (3)0.9967 (5)0.5489 (2)0.0202 (9)
O30.7490 (2)1.0904 (4)0.58319 (15)0.0297 (8)
C310.6779 (3)0.8437 (5)0.4551 (2)0.0229 (9)
O40.6091 (2)0.8598 (5)0.43742 (18)0.0382 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01750 (18)0.00963 (18)0.01729 (18)0.00135 (15)0.00041 (12)0.00034 (14)
C10.019 (2)0.015 (2)0.022 (2)0.0007 (17)0.0004 (16)0.0038 (17)
C20.023 (2)0.020 (2)0.030 (2)0.0005 (18)0.0050 (18)0.0030 (18)
C30.029 (3)0.030 (3)0.032 (3)0.004 (2)0.010 (2)0.006 (2)
C40.025 (3)0.029 (3)0.032 (3)0.002 (2)0.010 (2)0.008 (2)
C50.019 (2)0.020 (2)0.035 (3)0.0004 (18)0.0008 (18)0.0070 (19)
C60.021 (2)0.016 (2)0.025 (2)0.0005 (17)0.0015 (17)0.0013 (17)
C70.020 (2)0.016 (2)0.019 (2)0.0021 (17)0.0033 (16)0.0028 (16)
C80.024 (2)0.018 (2)0.026 (2)0.0045 (18)0.0024 (17)0.0054 (18)
C90.029 (3)0.030 (3)0.031 (3)0.010 (2)0.001 (2)0.013 (2)
C100.025 (3)0.043 (3)0.026 (2)0.009 (2)0.0016 (19)0.007 (2)
C110.031 (3)0.032 (3)0.025 (2)0.000 (2)0.0042 (19)0.005 (2)
C120.026 (2)0.020 (2)0.025 (2)0.0025 (19)0.0012 (18)0.0013 (18)
P10.0170 (5)0.0107 (5)0.0190 (5)0.0010 (4)0.0008 (4)0.0002 (4)
C130.018 (2)0.013 (2)0.022 (2)0.0013 (16)0.0010 (16)0.0005 (16)
C140.025 (2)0.008 (2)0.025 (2)0.0022 (16)0.0045 (17)0.0011 (16)
C150.023 (2)0.013 (2)0.021 (2)0.0002 (17)0.0013 (16)0.0029 (16)
P20.0189 (5)0.0117 (5)0.0182 (5)0.0013 (4)0.0007 (4)0.0002 (4)
C160.017 (2)0.024 (2)0.020 (2)0.0036 (18)0.0009 (16)0.0048 (17)
C170.031 (3)0.025 (3)0.034 (3)0.001 (2)0.005 (2)0.002 (2)
C180.022 (2)0.045 (3)0.038 (3)0.005 (2)0.008 (2)0.003 (2)
C190.019 (2)0.047 (3)0.032 (3)0.006 (2)0.0029 (19)0.005 (2)
C200.027 (3)0.032 (3)0.031 (3)0.015 (2)0.000 (2)0.005 (2)
C210.028 (2)0.018 (2)0.023 (2)0.0052 (19)0.0010 (17)0.0011 (17)
C220.022 (2)0.013 (2)0.020 (2)0.0055 (18)0.0012 (16)0.0030 (16)
C230.028 (2)0.016 (2)0.026 (2)0.0014 (19)0.0006 (18)0.0018 (18)
C240.032 (3)0.021 (2)0.029 (2)0.000 (2)0.0040 (19)0.0054 (19)
C250.035 (3)0.027 (3)0.019 (2)0.010 (2)0.0027 (19)0.0040 (18)
C260.035 (3)0.030 (3)0.020 (2)0.004 (2)0.0072 (19)0.0017 (19)
C270.023 (2)0.024 (2)0.025 (2)0.0018 (19)0.0029 (18)0.0003 (18)
C280.021 (2)0.015 (2)0.019 (2)0.0014 (17)0.0004 (16)0.0009 (16)
O10.045 (2)0.0165 (17)0.0241 (17)0.0013 (15)0.0010 (14)0.0027 (13)
C290.022 (2)0.0091 (19)0.025 (2)0.0034 (17)0.0009 (17)0.0002 (16)
O20.0236 (18)0.0283 (19)0.0342 (18)0.0024 (15)0.0047 (14)0.0040 (15)
C300.022 (2)0.016 (2)0.023 (2)0.0033 (18)0.0022 (17)0.0017 (17)
O30.043 (2)0.0217 (18)0.0245 (17)0.0036 (16)0.0052 (15)0.0011 (14)
C310.025 (2)0.019 (2)0.025 (2)0.0050 (19)0.0034 (17)0.0011 (18)
O40.0215 (18)0.046 (2)0.046 (2)0.0021 (17)0.0058 (16)0.0017 (18)
Geometric parameters (Å, º) top
Mo1—C301.985 (5)C14—C151.532 (6)
Mo1—C281.995 (4)C14—H14A0.9900
Mo1—C292.035 (4)C14—H14B0.9900
Mo1—C312.052 (5)C15—P21.838 (4)
Mo1—P22.5185 (11)C15—H15A0.9900
Mo1—P12.5239 (11)C15—H15B0.9900
C1—C21.392 (6)P2—C161.832 (4)
C1—C61.401 (6)P2—C221.836 (4)
C1—P11.840 (4)C16—C211.393 (6)
C2—C31.380 (6)C16—C171.401 (7)
C2—H20.9500C17—C181.384 (7)
C3—C41.382 (7)C17—H170.9500
C3—H30.9500C18—C191.393 (8)
C4—C51.381 (7)C18—H180.9500
C4—H40.9500C19—C201.371 (8)
C5—C61.381 (6)C19—H190.9500
C5—H50.9500C20—C211.396 (7)
C6—H60.9500C20—H200.9500
C7—C81.391 (6)C21—H210.9500
C7—C121.400 (6)C22—C271.390 (6)
C7—P11.831 (4)C22—C231.394 (6)
C8—C91.394 (6)C23—C241.396 (6)
C8—H80.9500C23—H230.9500
C9—C101.375 (8)C24—C251.381 (7)
C9—H90.9500C24—H240.9500
C10—C111.384 (7)C25—C261.388 (7)
C10—H100.9500C25—H250.9500
C11—C121.385 (7)C26—C271.389 (7)
C11—H110.9500C26—H260.9500
C12—H120.9500C27—H270.9500
P1—C131.841 (4)C28—O11.152 (5)
C13—C141.537 (6)C29—O21.143 (5)
C13—H13A0.9900C30—O31.154 (5)
C13—H13B0.9900C31—O41.133 (6)
C30—Mo1—C2890.68 (17)P1—C13—H13B108.3
C30—Mo1—C2991.63 (18)H13A—C13—H13B107.4
C28—Mo1—C2991.88 (17)C15—C14—C13114.8 (4)
C30—Mo1—C3186.08 (19)C15—C14—H14A108.6
C28—Mo1—C3186.41 (18)C13—C14—H14A108.6
C29—Mo1—C31177.12 (17)C15—C14—H14B108.6
C30—Mo1—P290.11 (13)C13—C14—H14B108.6
C28—Mo1—P2178.65 (13)H14A—C14—H14B107.5
C29—Mo1—P289.19 (12)C14—C15—P2116.9 (3)
C31—Mo1—P292.56 (13)C14—C15—H15A108.1
C30—Mo1—P1178.66 (13)P2—C15—H15A108.1
C28—Mo1—P189.88 (13)C14—C15—H15B108.1
C29—Mo1—P189.56 (12)P2—C15—H15B108.1
C31—Mo1—P192.75 (13)H15A—C15—H15B107.3
P2—Mo1—P189.30 (4)C16—P2—C22100.5 (2)
C2—C1—C6118.1 (4)C16—P2—C15104.9 (2)
C2—C1—P1120.7 (3)C22—P2—C1598.03 (19)
C6—C1—P1121.2 (3)C16—P2—Mo1115.30 (14)
C3—C2—C1121.3 (4)C22—P2—Mo1119.13 (15)
C3—C2—H2119.4C15—P2—Mo1116.30 (14)
C1—C2—H2119.4C21—C16—C17118.6 (4)
C2—C3—C4120.2 (5)C21—C16—P2123.5 (4)
C2—C3—H3119.9C17—C16—P2117.9 (4)
C4—C3—H3119.9C18—C17—C16120.5 (5)
C5—C4—C3119.3 (4)C18—C17—H17119.7
C5—C4—H4120.4C16—C17—H17119.7
C3—C4—H4120.4C17—C18—C19120.3 (5)
C6—C5—C4120.9 (4)C17—C18—H18119.9
C6—C5—H5119.5C19—C18—H18119.9
C4—C5—H5119.5C20—C19—C18119.6 (5)
C5—C6—C1120.3 (4)C20—C19—H19120.2
C5—C6—H6119.9C18—C19—H19120.2
C1—C6—H6119.9C19—C20—C21120.6 (5)
C8—C7—C12118.6 (4)C19—C20—H20119.7
C8—C7—P1123.5 (3)C21—C20—H20119.7
C12—C7—P1117.9 (3)C16—C21—C20120.4 (5)
C7—C8—C9120.7 (5)C16—C21—H21119.8
C7—C8—H8119.7C20—C21—H21119.8
C9—C8—H8119.7C27—C22—C23118.2 (4)
C10—C9—C8119.9 (5)C27—C22—P2119.8 (3)
C10—C9—H9120.0C23—C22—P2121.8 (3)
C8—C9—H9120.0C22—C23—C24120.4 (4)
C9—C10—C11120.2 (5)C22—C23—H23119.8
C9—C10—H10119.9C24—C23—H23119.8
C11—C10—H10119.9C25—C24—C23120.8 (5)
C10—C11—C12120.2 (5)C25—C24—H24119.6
C10—C11—H11119.9C23—C24—H24119.6
C12—C11—H11119.9C24—C25—C26119.1 (4)
C11—C12—C7120.4 (4)C24—C25—H25120.5
C11—C12—H12119.8C26—C25—H25120.5
C7—C12—H12119.8C25—C26—C27120.3 (4)
C7—P1—C1100.96 (19)C25—C26—H26119.9
C7—P1—C13104.1 (2)C27—C26—H26119.9
C1—P1—C1398.26 (19)C26—C27—C22121.2 (5)
C7—P1—Mo1116.27 (14)C26—C27—H27119.4
C1—P1—Mo1118.66 (15)C22—C27—H27119.4
C13—P1—Mo1115.81 (14)O1—C28—Mo1178.3 (4)
C14—C13—P1115.8 (3)O2—C29—Mo1178.7 (4)
C14—C13—H13A108.3O3—C30—Mo1178.2 (4)
P1—C13—H13A108.3O4—C31—Mo1174.2 (4)
C14—C13—H13B108.3
C6—C1—C2—C30.7 (7)C13—C14—C15—P275.6 (4)
P1—C1—C2—C3176.3 (4)C14—C15—P2—C1677.7 (4)
C1—C2—C3—C40.0 (8)C14—C15—P2—C22179.1 (3)
C2—C3—C4—C50.1 (8)C14—C15—P2—Mo150.9 (4)
C3—C4—C5—C60.9 (7)C30—Mo1—P2—C1681.8 (2)
C4—C5—C6—C11.6 (7)C29—Mo1—P2—C16173.4 (2)
C2—C1—C6—C51.4 (6)C31—Mo1—P2—C164.3 (2)
P1—C1—C6—C5175.5 (3)P1—Mo1—P2—C1697.04 (17)
C12—C7—C8—C90.2 (7)C30—Mo1—P2—C2237.9 (2)
P1—C7—C8—C9178.0 (3)C29—Mo1—P2—C2253.8 (2)
C7—C8—C9—C100.8 (7)C31—Mo1—P2—C22124.0 (2)
C8—C9—C10—C110.6 (8)P1—Mo1—P2—C22143.33 (16)
C9—C10—C11—C120.1 (8)C30—Mo1—P2—C15154.9 (2)
C10—C11—C12—C70.7 (7)C29—Mo1—P2—C1563.2 (2)
C8—C7—C12—C110.6 (7)C31—Mo1—P2—C15119.1 (2)
P1—C7—C12—C11177.4 (4)P1—Mo1—P2—C1526.34 (16)
C8—C7—P1—C199.0 (4)C22—P2—C16—C21106.0 (4)
C12—C7—P1—C178.8 (4)C15—P2—C16—C214.7 (4)
C8—C7—P1—C132.5 (4)Mo1—P2—C16—C21124.6 (3)
C12—C7—P1—C13179.7 (3)C22—P2—C16—C1771.7 (4)
C8—C7—P1—Mo1131.1 (3)C15—P2—C16—C17173.0 (4)
C12—C7—P1—Mo151.0 (4)Mo1—P2—C16—C1757.7 (4)
C2—C1—P1—C734.5 (4)C21—C16—C17—C180.7 (7)
C6—C1—P1—C7148.6 (4)P2—C16—C17—C18177.1 (4)
C2—C1—P1—C1371.7 (4)C16—C17—C18—C190.2 (8)
C6—C1—P1—C13105.2 (4)C17—C18—C19—C200.9 (8)
C2—C1—P1—Mo1162.8 (3)C18—C19—C20—C211.4 (8)
C6—C1—P1—Mo120.3 (4)C17—C16—C21—C200.2 (7)
C28—Mo1—P1—C783.9 (2)P2—C16—C21—C20177.4 (3)
C29—Mo1—P1—C7175.8 (2)C19—C20—C21—C160.8 (7)
C31—Mo1—P1—C72.5 (2)C16—P2—C22—C2735.7 (4)
P2—Mo1—P1—C795.04 (16)C15—P2—C22—C2771.1 (4)
C28—Mo1—P1—C136.9 (2)Mo1—P2—C22—C27162.6 (3)
C29—Mo1—P1—C155.0 (2)C16—P2—C22—C23148.8 (4)
C31—Mo1—P1—C1123.3 (2)C15—P2—C22—C23104.4 (4)
P2—Mo1—P1—C1144.21 (16)Mo1—P2—C22—C2321.8 (4)
C28—Mo1—P1—C13153.4 (2)C27—C22—C23—C240.1 (7)
C29—Mo1—P1—C1361.5 (2)P2—C22—C23—C24175.5 (4)
C31—Mo1—P1—C13120.2 (2)C22—C23—C24—C250.3 (7)
P2—Mo1—P1—C1327.70 (16)C23—C24—C25—C260.2 (7)
C7—P1—C13—C1475.1 (3)C24—C25—C26—C270.2 (7)
C1—P1—C13—C14178.7 (3)C25—C26—C27—C220.5 (7)
Mo1—P1—C13—C1453.8 (3)C23—C22—C27—C260.3 (7)
P1—C13—C14—C1577.1 (4)P2—C22—C27—C26176.0 (4)

Experimental details

Crystal data
Chemical formula[Mo(C27H26P2)(CO)4]
Mr620.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)15.5925 (6), 8.8293 (3), 21.0760 (6)
β (°) 91.979 (2)
V3)2899.82 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.10 × 0.05 × 0.03
Data collection
DiffractometerBruker-Nonius 95mm CCD camera on κ-goniostat
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.965, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
33177, 6604, 5497
Rint0.076
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.135, 1.17
No. of reflections6604
No. of parameters343
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + 15.4402P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.34, 0.72

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, SHELXTL (Bruker, 2000), SHELXTL and local programs.

Selected geometric parameters (Å, °) for (I) and a comparison with reported compounds (I') and (II) top
11'2
Mo—C(trans to C)2.035 (4)/2.052 (5)2.035 (7)/2.023 (7)2.016 (3)/2.043 (3)
Mo—C(trans to P)1.995 (4)/1.985 (5)1.968 (5)/1.968 (5)2.007 (3)/1.994 (3)
Mo—P2.5239 (11)/2.5185 (11)2.538 (1)/2.538 (1)2.5005 (8)/2.4986 (8)
C—Mo—C(trans to C)177.12 (17)174.8 (3)178.21 (12)
C—Mo—C(cis, av.)89.34 (18)88.7 (2)89.72 (13)
P—Mo—P89.30 (4)89.74 (4)86.75 (2)
Notes: (I) this work; (I') orthorhombic polymorph (Ueng & Hwang, 1991); (II) [Mo(CO4){Ph2PCH2N(Ph)CH2PPh2}] (Sanchez-Ballester et al., 2007).
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds