supplementary materials


Acta Cryst. (2007). E63, m1688    [ doi:10.1107/S1600536807024178 ]

Potassium N-chlorobenzenesulfonamidate monohydrate

B. T. Gowda, S. Foro, J. Kozísek and H. Fuess

Abstract top

In the title compound, K+·C6H5ClNO2S-·H2O, the S-N distance of 1.581 (4) Å is consistent with an S=N double bond. The ions and molecules in the crystal structure are held together by O-H...N hydrogen bonds.

Comment top

The chemistry of arylsulfonamides and their N-halo compounds is of interest as they show distinct physical, chemical and biological properties. Many of these compounds exhibit pharmacological, fungicidal and herbicidal activities due to their oxidizing action in aqueous, partial aqueous and non-aqueous media. Thus, N-halo arylsulfonamides are of interest in synthetic, mechanistic, analytical and biological chemistry (Gowda et al., 2005; Gowda & Shetty, 2004). In the present work, the structure of potassium N- chlorobenzenesulfonamde has been determined to explore the effect of substitution and replacing a sodium ion by a potassium ion on the solid state structures of N-chloroarylsulfonamides (Gowda, Jyothi et al., 2007; Gowda, Kozisek et al., 2007; Gowda, Savitha et al., 2007; Gowda, Srilatha et al., 2007). The structure of the title compound (Fig. 1) resembles those of sodium N-chloro- benzenesulfonamde (George et al., 2000) and other sodium N-chloro-arylsulfonamdes (Olmstead & Power, 1986; Gowda, Jyothi et al., 2007; Gowda, Kozisek et al., 2007; Gowda, Savitha et al., 2007; Gowda, Srilatha et al., 2007). The S—N distance of 1.581 (4)Å is consistent with a S—N double bond. The molecules in the structure are held together by O—H···N hydrogen bonds.

Related literature top

For related literature, see: George et al. (2000); Gowda & Shetty (2004); Gowda et al. (2003, 2005); Gowda, Jyothi et al. (2007); Gowda, Kozisek et al. (2007); Gowda, Savitha et al. (2007); Gowda, Srilatha et al. (2007); Jyothi & Gowda (2004); Olmstead & Power (1986).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2003; Jyothi & Gowda, 2004). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared, NMR (Jyothi & Gowda, 2004) and NQR spectra (Gowda et al., 2003). Single crystals of the title compound were obtained from a slow evaporation of its chloroform solution and used for X-ray diffraction studies at room temperature.

Refinement top

H atoms bonded to C were positioned geometrically and refined using a riding model with C—H = 0.93 Å and with Uiso(H) = 1.2 Ueq(C,O). The coordinates of the H atoms bonded to O were refined with a distance restraint of 0.84 (1) Å.

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram viewed down the axis b
Potassium N-chlorobenzenesulfonamidate monohydrate top
Crystal data top
K+.C6H5ClNO2S.H2OF(000) = 1008
Mr = 247.74Dx = 1.669 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 10.214 (1) Åθ = 8.7–25.0°
b = 6.8111 (4) ŵ = 9.03 mm1
c = 28.336 (1) ÅT = 303 K
V = 1971.3 (2) Å3Laminar, colourless
Z = 80.22 × 0.13 × 0.03 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1102 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
graphiteθmax = 66.9°, θmin = 3.1°
ω/2θ scansh = 012
Absorption correction: psi-scan
(North et al., 1968)
k = 08
Tmin = 0.305, Tmax = 0.798l = 333
1953 measured reflections3 standard reflections every 120 min
1756 independent reflections intensity decay: 4.8%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0611P)2]
where P = (Fo2 + 2Fc2)/3
1756 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 0.27 e Å3
2 restraintsΔρmin = 0.38 e Å3
Crystal data top
K+.C6H5ClNO2S.H2OV = 1971.3 (2) Å3
Mr = 247.74Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 10.214 (1) ŵ = 9.03 mm1
b = 6.8111 (4) ÅT = 303 K
c = 28.336 (1) Å0.22 × 0.13 × 0.03 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1102 reflections with I > 2σ(I)
Absorption correction: psi-scan
(North et al., 1968)
Rint = 0.035
Tmin = 0.305, Tmax = 0.798θmax = 66.9°
1953 measured reflections3 standard reflections every 120 min
1756 independent reflections intensity decay: 4.8%
Refinement top
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123Δρmax = 0.27 e Å3
S = 0.99Δρmin = 0.38 e Å3
1756 reflectionsAbsolute structure: ?
124 parametersFlack parameter: ?
2 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9541 (5)0.7329 (6)0.35902 (15)0.0416 (10)
C20.8421 (5)0.7230 (8)0.33231 (18)0.0579 (14)
H20.76870.65660.34340.070*
C30.8404 (8)0.8127 (10)0.2891 (2)0.083 (2)
H30.76510.80570.27070.100*
C40.9464 (10)0.9120 (9)0.2723 (2)0.090 (2)
H40.94350.97360.24300.108*
C51.0569 (8)0.9193 (9)0.2992 (2)0.081 (2)
H51.13010.98550.28790.097*
C61.0622 (5)0.8313 (8)0.34244 (19)0.0566 (13)
H61.13810.83780.36050.068*
N11.0836 (4)0.4749 (6)0.41555 (14)0.0477 (10)
O10.9920 (3)0.7666 (5)0.44928 (11)0.0544 (9)
O20.8372 (3)0.5189 (5)0.42122 (12)0.0524 (9)
O30.7965 (4)0.1477 (6)0.52779 (12)0.0558 (9)
H31O0.744 (4)0.130 (8)0.5507 (12)0.067*
H32O0.823 (5)0.260 (4)0.5366 (19)0.067*
S10.96138 (11)0.61724 (16)0.41499 (4)0.0386 (3)
Cl11.06255 (14)0.2980 (2)0.37111 (5)0.0634 (4)
K10.88083 (10)0.14650 (14)0.46609 (4)0.0455 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.049 (2)0.036 (2)0.039 (2)0.004 (2)0.003 (2)0.001 (2)
C20.068 (3)0.050 (3)0.056 (3)0.004 (3)0.009 (3)0.001 (3)
C30.115 (6)0.072 (4)0.062 (4)0.026 (4)0.034 (4)0.001 (4)
C40.170 (8)0.054 (4)0.046 (3)0.026 (5)0.008 (5)0.005 (3)
C50.128 (6)0.050 (3)0.064 (4)0.001 (4)0.046 (4)0.011 (3)
C60.063 (3)0.049 (3)0.058 (3)0.007 (3)0.006 (3)0.003 (3)
N10.049 (2)0.039 (2)0.055 (2)0.0110 (18)0.011 (2)0.013 (2)
O10.071 (2)0.0441 (18)0.0480 (19)0.0053 (18)0.0023 (17)0.0096 (16)
O20.0446 (17)0.0498 (19)0.063 (2)0.0084 (16)0.0104 (16)0.0080 (18)
O30.060 (2)0.049 (2)0.058 (2)0.003 (2)0.0111 (17)0.007 (2)
S10.0419 (6)0.0346 (5)0.0392 (5)0.0010 (5)0.0016 (5)0.0005 (5)
Cl10.0751 (9)0.0501 (7)0.0651 (8)0.0151 (7)0.0009 (7)0.0155 (7)
K10.0518 (6)0.0368 (5)0.0480 (5)0.0006 (5)0.0067 (5)0.0033 (5)
Geometric parameters (Å, °) top
C1—C21.373 (7)O2—S11.445 (3)
C1—C61.375 (7)O2—K1iii2.708 (3)
C1—S11.772 (4)O2—K12.872 (4)
C2—C31.370 (8)O3—K12.795 (4)
C2—H20.9300O3—K1iv2.881 (4)
C3—C41.362 (10)O3—K1v3.301 (4)
C3—H30.9300O3—H31O0.849 (10)
C4—C51.362 (9)O3—H32O0.846 (10)
C4—H40.9300S1—K13.6130 (15)
C5—C61.366 (8)S1—K1iii3.7886 (15)
C5—H50.9300Cl1—K13.4285 (18)
C6—H60.9300K1—O2iv2.708 (3)
N1—S11.581 (4)K1—O1i2.791 (3)
N1—Cl11.756 (4)K1—O1vi2.865 (3)
N1—K13.368 (4)K1—O3iii2.881 (4)
O1—S11.441 (3)K1—O3v3.301 (4)
O1—K1i2.791 (3)K1—K1v3.688 (2)
O1—K1ii2.865 (3)K1—S1iv3.7886 (15)
C2—C1—C6120.3 (5)O1i—K1—O2105.39 (11)
C2—C1—S1120.4 (4)O3—K1—O2149.56 (10)
C6—C1—S1119.2 (4)O1vi—K1—O2141.75 (10)
C3—C2—C1118.8 (6)O2iv—K1—O3iii85.65 (11)
C3—C2—H2120.6O1i—K1—O3iii70.61 (10)
C1—C2—H2120.6O3—K1—O3iii77.03 (8)
C4—C3—C2121.6 (6)O1vi—K1—O3iii142.11 (10)
C4—C3—H3119.2O2—K1—O3iii75.02 (10)
C2—C3—H3119.2O2iv—K1—O3v147.86 (11)
C5—C4—C3118.7 (6)O1i—K1—O3v59.30 (10)
C5—C4—H4120.6O3—K1—O3v106.07 (9)
C3—C4—H4120.6O1vi—K1—O3v67.38 (10)
C4—C5—C6121.3 (6)O2—K1—O3v100.14 (10)
C4—C5—H5119.4O3iii—K1—O3v126.49 (7)
C6—C5—H5119.4O2iv—K1—N1121.29 (10)
C5—C6—C1119.3 (6)O1i—K1—N186.46 (10)
C5—C6—H6120.4O3—K1—N1158.67 (10)
C1—C6—H6120.4O1vi—K1—N1106.57 (10)
S1—N1—Cl1108.5 (2)O2—K1—N147.22 (9)
S1—N1—K185.74 (16)O3iii—K1—N1108.76 (10)
Cl1—N1—K176.94 (14)O3v—K1—N153.59 (9)
S1—O1—K1i146.1 (2)O2iv—K1—Cl199.98 (8)
S1—O1—K1ii131.57 (19)O1i—K1—Cl1111.02 (8)
K1i—O1—K1ii81.38 (9)O3—K1—Cl1150.88 (8)
S1—O2—K1iii129.1 (2)O1vi—K1—Cl185.80 (8)
S1—O2—K1109.11 (17)O2—K1—Cl158.04 (7)
K1iii—O2—K1101.73 (10)O3iii—K1—Cl1132.09 (8)
K1—O3—K1iv99.38 (11)O3v—K1—Cl159.99 (7)
K1—O3—K1v73.93 (9)N1—K1—Cl129.93 (7)
K1iv—O3—K1v131.37 (13)O2iv—K1—S1106.50 (8)
K1—O3—H31O125 (4)O1i—K1—S192.88 (8)
K1iv—O3—H31O98 (4)O3—K1—S1163.14 (9)
K1v—O3—H31O126 (4)O1vi—K1—S1130.12 (8)
K1—O3—H32O137 (4)O2—K1—S122.21 (6)
K1iv—O3—H32O87 (4)O3iii—K1—S187.40 (8)
K1v—O3—H32O71 (4)O3v—K1—S177.96 (7)
H31O—O3—H32O96 (5)N1—K1—S125.88 (6)
O1—S1—O2115.8 (2)Cl1—K1—S145.17 (3)
O1—S1—N1104.8 (2)O2iv—K1—K1v127.87 (8)
O2—S1—N1114.1 (2)O1i—K1—K1v50.19 (7)
O1—S1—C1107.4 (2)O3—K1—K1v59.32 (8)
O2—S1—C1106.2 (2)O1vi—K1—K1v48.43 (7)
N1—S1—C1108.4 (2)O2—K1—K1v144.19 (8)
O1—S1—K1113.93 (14)O3iii—K1—K1v111.22 (8)
O2—S1—K148.69 (14)O3v—K1—K1v46.75 (7)
N1—S1—K168.38 (16)N1—K1—K1v100.07 (7)
C1—S1—K1138.02 (15)Cl1—K1—K1v102.39 (5)
O1—S1—K1iii84.57 (15)S1—K1—K1v122.60 (5)
O2—S1—K1iii33.70 (14)O2iv—K1—S1iv17.23 (7)
N1—S1—K1iii139.20 (16)O1i—K1—S1iv140.27 (8)
C1—S1—K1iii106.24 (16)O3—K1—S1iv85.24 (8)
K1—S1—K1iii71.54 (3)O1vi—K1—S1iv104.75 (8)
N1—Cl1—K173.13 (14)O2—K1—S1iv74.58 (7)
O2iv—K1—O1i148.70 (11)O3iii—K1—S1iv71.19 (8)
O2iv—K1—O379.05 (11)O3v—K1—S1iv160.31 (7)
O1i—K1—O376.00 (11)N1—K1—S1iv116.09 (7)
O2iv—K1—O1vi87.59 (10)Cl1—K1—S1iv102.43 (4)
O1i—K1—O1vi98.62 (9)S1—K1—S1iv95.94 (4)
O3—K1—O1vi65.09 (10)K1v—K1—S1iv141.23 (5)
O2iv—K1—O287.02 (9)
C6—C1—C2—C30.0 (8)S1—O2—K1—S1iv163.7 (2)
S1—C1—C2—C3179.4 (4)K1iii—O2—K1—S1iv57.42 (9)
C1—C2—C3—C40.5 (9)S1—N1—K1—O2iv60.56 (19)
C2—C3—C4—C50.8 (10)Cl1—N1—K1—O2iv49.51 (17)
C3—C4—C5—C60.7 (10)S1—N1—K1—O1i104.06 (16)
C4—C5—C6—C10.2 (9)Cl1—N1—K1—O1i145.87 (14)
C2—C1—C6—C50.1 (7)S1—N1—K1—O3138.5 (3)
S1—C1—C6—C5179.6 (4)Cl1—N1—K1—O3111.4 (3)
K1i—O1—S1—O294.6 (4)S1—N1—K1—O1vi158.00 (14)
K1ii—O1—S1—O269.3 (3)Cl1—N1—K1—O1vi47.93 (15)
K1i—O1—S1—N131.9 (4)S1—N1—K1—O210.75 (13)
K1ii—O1—S1—N1164.2 (2)Cl1—N1—K1—O299.32 (17)
K1i—O1—S1—C1147.0 (4)S1—N1—K1—O3iii35.91 (17)
K1ii—O1—S1—C149.1 (3)Cl1—N1—K1—O3iii145.98 (13)
K1i—O1—S1—K140.6 (4)S1—N1—K1—O3v157.9 (2)
K1ii—O1—S1—K1123.28 (19)Cl1—N1—K1—O3v92.03 (15)
K1i—O1—S1—K1iii107.7 (3)S1—N1—K1—Cl1110.1 (2)
K1ii—O1—S1—K1iii56.2 (2)Cl1—N1—K1—S1110.1 (2)
K1iii—O2—S1—O123.9 (3)S1—N1—K1—K1v152.57 (13)
K1—O2—S1—O1100.1 (2)Cl1—N1—K1—K1v97.36 (12)
K1iii—O2—S1—N1145.6 (2)S1—N1—K1—S1iv41.80 (16)
K1—O2—S1—N121.6 (3)Cl1—N1—K1—S1iv68.27 (13)
K1iii—O2—S1—C195.2 (3)N1—Cl1—K1—O2iv138.71 (15)
K1—O2—S1—C1140.88 (18)N1—Cl1—K1—O1i36.86 (15)
K1iii—O2—S1—K1123.9 (3)N1—Cl1—K1—O3135.9 (2)
K1—O2—S1—K1iii123.9 (3)N1—Cl1—K1—O1vi134.49 (15)
Cl1—N1—S1—O1175.0 (2)N1—Cl1—K1—O258.61 (15)
K1—N1—S1—O1110.29 (16)N1—Cl1—K1—O3iii45.55 (17)
Cl1—N1—S1—O257.4 (3)N1—Cl1—K1—O3v68.25 (15)
K1—N1—S1—O217.3 (2)N1—Cl1—K1—S135.31 (13)
Cl1—N1—S1—C160.6 (3)N1—Cl1—K1—K1v88.70 (13)
K1—N1—S1—C1135.32 (17)N1—Cl1—K1—S1iv121.32 (13)
Cl1—N1—S1—K174.7 (2)O1—S1—K1—O2iv133.79 (18)
Cl1—N1—S1—K1iii86.1 (3)O2—S1—K1—O2iv29.67 (14)
K1—N1—S1—K1iii11.4 (2)N1—S1—K1—O2iv129.09 (17)
C2—C1—S1—O1122.0 (4)C1—S1—K1—O2iv35.3 (3)
C6—C1—S1—O158.6 (4)K1iii—S1—K1—O2iv58.70 (9)
C2—C1—S1—O22.5 (4)O1—S1—K1—O1i21.3 (2)
C6—C1—S1—O2177.0 (4)O2—S1—K1—O1i125.4 (2)
C2—C1—S1—N1125.4 (4)N1—S1—K1—O1i75.80 (17)
C6—C1—S1—N154.1 (4)C1—S1—K1—O1i169.6 (2)
C2—C1—S1—K147.6 (5)K1iii—S1—K1—O1i96.41 (7)
C6—C1—S1—K1131.9 (3)O1—S1—K1—O326.7 (3)
C2—C1—S1—K1iii32.7 (4)O2—S1—K1—O377.4 (4)
C6—C1—S1—K1iii147.9 (4)N1—S1—K1—O3123.8 (3)
S1—N1—Cl1—K180.9 (2)C1—S1—K1—O3142.4 (4)
K1iv—O3—K1—O2iv16.83 (11)K1iii—S1—K1—O348.4 (3)
K1v—O3—K1—O2iv147.33 (11)O1—S1—K1—O1vi125.1 (2)
K1iv—O3—K1—O1i177.77 (13)O2—S1—K1—O1vi130.8 (2)
K1v—O3—K1—O1i51.73 (8)N1—S1—K1—O1vi28.01 (18)
K1iv—O3—K1—O1vi75.61 (12)C1—S1—K1—O1vi65.8 (3)
K1v—O3—K1—O1vi54.89 (9)K1iii—S1—K1—O1vi159.78 (10)
K1iv—O3—K1—O281.1 (2)O1—S1—K1—O2104.1 (3)
K1v—O3—K1—O2148.38 (19)N1—S1—K1—O2158.8 (2)
K1iv—O3—K1—O3iii104.84 (16)C1—S1—K1—O265.0 (3)
K1v—O3—K1—O3iii124.66 (8)K1iii—S1—K1—O229.03 (19)
K1iv—O3—K1—O3v130.50 (13)O1—S1—K1—O3iii49.11 (18)
K1v—O3—K1—O3v0.0O2—S1—K1—O3iii55.0 (2)
K1iv—O3—K1—N1146.7 (2)N1—S1—K1—O3iii146.23 (17)
K1v—O3—K1—N116.2 (3)C1—S1—K1—O3iii120.0 (2)
K1iv—O3—K1—Cl174.04 (19)K1iii—S1—K1—O3iii25.98 (7)
K1v—O3—K1—Cl156.46 (18)O1—S1—K1—O3v79.09 (17)
K1iv—O3—K1—S1127.9 (3)O2—S1—K1—O3v176.8 (2)
K1v—O3—K1—S1101.6 (3)N1—S1—K1—O3v18.03 (16)
K1iv—O3—K1—K1v130.50 (13)C1—S1—K1—O3v111.8 (2)
K1iv—O3—K1—S1iv33.07 (9)K1iii—S1—K1—O3v154.17 (7)
K1v—O3—K1—S1iv163.57 (7)O1—S1—K1—N197.1 (2)
S1—O2—K1—O2iv151.62 (13)O2—S1—K1—N1158.8 (2)
K1iii—O2—K1—O2iv69.51 (17)C1—S1—K1—N193.8 (3)
S1—O2—K1—O1i57.6 (2)K1iii—S1—K1—N1172.21 (16)
K1iii—O2—K1—O1i81.31 (12)O1—S1—K1—Cl1138.48 (17)
S1—O2—K1—O3146.03 (19)O2—S1—K1—Cl1117.4 (2)
K1iii—O2—K1—O37.2 (3)N1—S1—K1—Cl141.36 (15)
S1—O2—K1—O1vi69.3 (3)C1—S1—K1—Cl152.4 (2)
K1iii—O2—K1—O1vi151.81 (13)K1iii—S1—K1—Cl1146.43 (5)
S1—O2—K1—O3iii122.1 (2)O1—S1—K1—K1v64.54 (17)
K1iii—O2—K1—O3iii16.78 (11)O2—S1—K1—K1v168.7 (2)
S1—O2—K1—O3v3.2 (2)N1—S1—K1—K1v32.58 (16)
K1iii—O2—K1—O3v142.05 (10)C1—S1—K1—K1v126.4 (2)
S1—O2—K1—N112.44 (15)K1iii—S1—K1—K1v139.63 (4)
K1iii—O2—K1—N1151.31 (18)O1—S1—K1—S1iv119.89 (16)
S1—O2—K1—Cl147.91 (15)O2—S1—K1—S1iv15.8 (2)
K1iii—O2—K1—Cl1173.22 (14)N1—S1—K1—S1iv142.99 (15)
K1iii—O2—K1—S1138.9 (3)C1—S1—K1—S1iv49.2 (2)
S1—O2—K1—K1v16.4 (3)K1iii—S1—K1—S1iv44.80 (4)
K1iii—O2—K1—K1v122.42 (10)
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x, y+1, z; (iii) −x+3/2, y+1/2, z; (iv) −x+3/2, y−1/2, z; (v) −x+2, −y, −z+1; (vi) x, y−1, z.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O3—H31O···N1vii0.85 (1)2.17 (3)2.948 (5)152 (5)
O3—H32O···N1v0.85 (1)2.21 (3)3.007 (5)156 (5)
Symmetry codes: (vii) x−1/2, −y+1/2, −z+1; (v) −x+2, −y, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O3—H31O···N1i0.85 (1)2.17 (3)2.948 (5)152 (5)
O3—H32O···N1ii0.85 (1)2.21 (3)3.007 (5)156 (5)
Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) −x+2, −y, −z+1.
Acknowledgements top

BTG gratefully thanks the Alexander von Humboldt Foundation, Bonn, Germany for extensions of his research fellowship. JK thanks the Grant Agency of the Slovak Republic (grant No. 1/2449/05).

references
References top

George, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208–1209.

Gowda, B. T., Damodara, N. & Jyothi, K. (2005). Int. J. Chem. Kinet. 37, 572–582.

Gowda, B. T., D'Souza, J. D. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 220–224.

Gowda, B. T., Jyothi, K., Foro, S., Kozisek, J. & Fuess, H. (2007). Acta Cryst. E63. In the Press (bt2356).

Gowda, B. T., Kozisek, J., Tokarcik, M. T. & Fuess, H. (2007). Acta Cryst. E63. In the Press (dn2171).

Gowda, B. T., Savitha, M. B., Kozisek, J., Tokarcik, M. T. & Fuess, H. (2007). Acta Cryst. E63. In the Press (bt2359).

Gowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848–864.

Gowda, B. T., Srilatha, , Foro, S., Kozisek, J. & Fuess, H. (2007). Z. Naturforsch.Teil A, 62, In the Press.

Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.

Nonius (1996). CAD-4-PC. Nonius Diffractometer control software. Enraf-Nonius, Delft, The Netherlands.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Olmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057–4058.

Sheldrick, G. M. (1997). SHELXS97 & SHELXL97 . University of Göttingen, Germany.

Spek, A. L. (2003). PLATON. J. Appl. Cryst. 36, 7–13.

Stoe & Cie (1996). Stoe-X-RED. Data reduction program. Stoe & Cie GmbH, Darmstadt, Germany.