Download citation
Download citation
link to html
In the title complex, [Ni(C6H2O3S)2(H2O)4], the NiII atom is octa­hedrally coordinated by two 4-amino­benzene­sulfonate N atoms and four water mol­ecules. The mol­ecular complex is centrosymmetic, with the NiII ion located on an inversion centre.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807025512/bv2057sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807025512/bv2057Isup2.hkl
Contains datablock I

CCDC reference: 650580

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.030
  • wR factor = 0.091
  • Data-to-parameter ratio = 14.3

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.735 1.000 Tmin(prime) and Tmax expected: 0.772 0.893 RR(prime) = 0.850 Please check that your absorption correction is appropriate. PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.85 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.89 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT480_ALERT_4_C Long H...A H-Bond Reported H4A .. S1 .. 2.96 Ang. PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 5 N1 -NI1 -N1 -C4 1.00 0.00 5.657 1.555 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.91(3), Rep 0.905(10) ...... 3.00 su-Ra N1 -H1B 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.90(3), Rep 0.898(10) ...... 3.00 su-Ra O4 -H4B 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.91(3), Rep 0.905(10) ...... 3.00 su-Ra N1 -H1B 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.90(3), Rep 0.898(10) ...... 3.00 su-Ra O4 -H4B 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.90(3), Rep 0.898(10) ...... 3.00 su-Ra O4 -H4B 1.555 1.555 PLAT736_ALERT_1_C H...A Calc 2.21(3), Rep 2.209(13) ...... 2.31 su-Ra H1B -O3 1.555 7.647 PLAT736_ALERT_1_C H...A Calc 1.90(4), Rep 1.896(14) ...... 2.86 su-Ra H4B -O1 1.555 8.445
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.893 Tmax scaled 0.893 Tmin scaled 0.656 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 9
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 13 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 8 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The 4-aminobenzenesulfonic acid can bind to transition metals through the amino as well as the carboxylate ends. Crystal structures of metal and 4-aminobenzenesulfonic acid that have been reported include, for example, (C12H16CdN2O8S2)n (Zhou, et al.,2004), [Cu(H2NC6H4SO3)2(H2O)2].2H2O and [Mn(H2NC6H4SO3)2(H2O)2] (Gunderman et al., 1996). In two other derivatives, the isostructural compounds [M(H2NC6H4SO3)2(H2O)2].2H2O (M=Co, Zn; Shakeri & Haussuhl, 1992a; Shakeri & Haussuhl, 1992b), both ends engage in coordination.

The reaction of the sulfanilic anion with nickel(II) gives the title compound, in which the anion coordinates through the amine group. There are extensive hydrogen bonds (N—H···O, O—H···O) in the title compound. The sulfonic O atoms are linked to the coordinated water molecules and 4-aminobenzenesulfonic acid N atoms by H bonds. The complex attains a three-dimensional supramolecular by hydrogen bonds (Fig.2).

Related literature top

For related literature, see: Gunderman et al. (1996); Shakeri & Haussuhl (1992a, 1992b); Zhou et al. (2004).

Experimental top

A mixture of nickel(II) chloride hexahydrate (0.24 g, 1 mmol), sodium hydroxide (0.08 g, 2 mmol), sulfanilic acid (0.17 g, 1 mmol) and water (17 mmol) was placed in a Teflon-lined stainless-steel bomb. The bomb was heated at 343 K for 72 h. Red crystals suitable for single-crystal X-ray analysis were isolated from the cool solution in about 50% yield.

Refinement top

H atoms attached to C atoms were placed in calculated positions and treated using a riding-model approximation (C—H = 0.95 for benzene ring H atoms with Uiso(H) = 1.2Ueq(C)). The H atoms bonded to O atoms were visible in the difference Fourier map and were included in the refinement with O—H distance restraint of 0.90, and with Uiso(H) = 1.5Ueq(O). The amine protons were refined isotropically.

Structure description top

The 4-aminobenzenesulfonic acid can bind to transition metals through the amino as well as the carboxylate ends. Crystal structures of metal and 4-aminobenzenesulfonic acid that have been reported include, for example, (C12H16CdN2O8S2)n (Zhou, et al.,2004), [Cu(H2NC6H4SO3)2(H2O)2].2H2O and [Mn(H2NC6H4SO3)2(H2O)2] (Gunderman et al., 1996). In two other derivatives, the isostructural compounds [M(H2NC6H4SO3)2(H2O)2].2H2O (M=Co, Zn; Shakeri & Haussuhl, 1992a; Shakeri & Haussuhl, 1992b), both ends engage in coordination.

The reaction of the sulfanilic anion with nickel(II) gives the title compound, in which the anion coordinates through the amine group. There are extensive hydrogen bonds (N—H···O, O—H···O) in the title compound. The sulfonic O atoms are linked to the coordinated water molecules and 4-aminobenzenesulfonic acid N atoms by H bonds. The complex attains a three-dimensional supramolecular by hydrogen bonds (Fig.2).

For related literature, see: Gunderman et al. (1996); Shakeri & Haussuhl (1992a, 1992b); Zhou et al. (2004).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound with atoms drawn as 30% probability ellipsoids (H atoms are not labled).
[Figure 2] Fig. 2. The three-dimensional net work structure formed by the hydrogen bonds(all H atoms were omitted for clarity).
Bis(4-aminobenzenesulfonato-κN)tetraaquanickel(II) top
Crystal data top
[Ni(C6H2O3S)2(H2O)4]F(000) = 984
Mr = 475.13Dx = 1.809 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.800 (11) ÅCell parameters from 2071 reflections
b = 6.450 (3) Åθ = 2.0–27.5°
c = 13.566 (7) ŵ = 1.41 mm1
β = 106.593 (9)°T = 293 K
V = 1744.1 (15) Å3Prism, green
Z = 40.18 × 0.12 × 0.08 mm
Data collection top
Bruker SMART
diffractometer
1997 independent reflections
Radiation source: fine-focus sealed tube1722 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 2.0°
CCD_Profile_fitting scansh = 2626
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 78
Tmin = 0.735, Tmax = 1.000l = 1717
6482 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0314P)2 + 10.4033P]
where P = (Fo2 + 2Fc2)/3
1997 reflections(Δ/σ)max = 0.030
140 parametersΔρmax = 0.44 e Å3
9 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Ni(C6H2O3S)2(H2O)4]V = 1744.1 (15) Å3
Mr = 475.13Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.800 (11) ŵ = 1.41 mm1
b = 6.450 (3) ÅT = 293 K
c = 13.566 (7) Å0.18 × 0.12 × 0.08 mm
β = 106.593 (9)°
Data collection top
Bruker SMART
diffractometer
1997 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1722 reflections with I > 2σ(I)
Tmin = 0.735, Tmax = 1.000Rint = 0.027
6482 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0309 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0314P)2 + 10.4033P]
where P = (Fo2 + 2Fc2)/3
1997 reflectionsΔρmax = 0.44 e Å3
140 parametersΔρmin = 0.49 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00001.00000.01645 (14)
S10.87523 (3)0.09331 (11)1.20823 (6)0.01997 (17)
N10.59233 (12)0.0734 (4)0.96894 (19)0.0206 (5)
H1A0.5919 (18)0.2081 (18)0.951 (2)0.029 (9)*
H1B0.596 (2)0.010 (4)0.917 (2)0.057 (14)*
C10.78851 (14)0.0450 (5)1.1547 (2)0.0192 (6)
C20.74470 (15)0.2073 (5)1.1195 (3)0.0278 (7)
H2A0.75930.34631.13450.033*
C30.67935 (15)0.1665 (5)1.0622 (2)0.0257 (7)
H3A0.64900.27801.03860.031*
C40.65795 (13)0.0354 (4)1.0390 (2)0.0186 (6)
C50.70049 (15)0.1979 (5)1.0810 (2)0.0258 (6)
H5C0.68480.33671.07030.031*
C60.76580 (15)0.1582 (5)1.1385 (2)0.0256 (7)
H6A0.79510.26971.16690.031*
O10.89542 (11)0.0018 (4)1.31048 (17)0.0283 (5)
O20.90761 (11)0.0044 (4)1.13772 (19)0.0306 (5)
O30.88359 (11)0.3179 (3)1.21135 (17)0.0277 (5)
O40.50276 (11)0.2964 (3)0.94394 (17)0.0264 (5)
H4A0.53720.31040.92410.040*
H4B0.4639 (7)0.353 (7)0.907 (3)0.064 (15)*
O50.45678 (11)0.1030 (3)0.85214 (16)0.0251 (5)
H5A0.43600.00500.81600.038*
H5B0.4369 (15)0.2296 (19)0.841 (3)0.058 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0141 (2)0.0153 (2)0.0175 (3)0.0006 (2)0.00051 (18)0.0002 (2)
S10.0164 (3)0.0181 (3)0.0224 (4)0.0030 (3)0.0008 (3)0.0010 (3)
N10.0171 (11)0.0202 (12)0.0223 (12)0.0002 (10)0.0021 (10)0.0019 (10)
C10.0148 (12)0.0233 (15)0.0171 (13)0.0014 (11)0.0008 (10)0.0003 (11)
C20.0247 (15)0.0174 (14)0.0364 (18)0.0034 (12)0.0011 (13)0.0044 (13)
C30.0202 (14)0.0199 (14)0.0330 (17)0.0040 (12)0.0011 (12)0.0011 (13)
C40.0145 (12)0.0223 (15)0.0191 (13)0.0021 (11)0.0049 (10)0.0010 (11)
C50.0222 (14)0.0191 (14)0.0332 (17)0.0048 (12)0.0033 (12)0.0016 (13)
C60.0203 (14)0.0199 (14)0.0324 (17)0.0018 (12)0.0009 (12)0.0050 (13)
O10.0256 (11)0.0279 (12)0.0257 (11)0.0014 (10)0.0018 (9)0.0051 (10)
O20.0240 (11)0.0306 (12)0.0392 (13)0.0041 (10)0.0125 (10)0.0084 (11)
O30.0289 (11)0.0194 (11)0.0292 (12)0.0073 (9)0.0005 (9)0.0005 (9)
O40.0239 (10)0.0200 (11)0.0341 (12)0.0023 (9)0.0065 (9)0.0085 (9)
O50.0285 (11)0.0200 (11)0.0209 (11)0.0016 (9)0.0025 (9)0.0004 (9)
Geometric parameters (Å, º) top
Ni1—O52.060 (2)C1—C61.389 (4)
Ni1—O5i2.060 (2)C2—C31.385 (4)
Ni1—O42.064 (2)C2—H2A0.9500
Ni1—O4i2.064 (2)C3—C41.384 (4)
Ni1—N1i2.133 (3)C3—H3A0.9500
Ni1—N12.133 (3)C4—C51.385 (4)
S1—O31.458 (2)C5—C61.384 (4)
S1—O21.461 (2)C5—H5C0.9500
S1—O11.464 (2)C6—H6A0.9500
S1—C11.769 (3)O4—H4A0.8400
N1—C41.444 (4)O4—H4B0.898 (10)
N1—H1A0.900 (10)O5—H5A0.8400
N1—H1B0.905 (10)O5—H5B0.908 (10)
C1—C21.381 (4)
O5—Ni1—O5i180.000 (1)H1A—N1—H1B111.5 (16)
O5—Ni1—O489.45 (9)C2—C1—C6120.0 (3)
O5i—Ni1—O490.55 (9)C2—C1—S1120.2 (2)
O5—Ni1—O4i90.55 (9)C6—C1—S1119.5 (2)
O5i—Ni1—O4i89.45 (9)C1—C2—C3119.7 (3)
O4—Ni1—O4i180.0C1—C2—H2A120.1
O5—Ni1—N1i95.55 (9)C3—C2—H2A120.1
O5i—Ni1—N1i84.45 (9)C4—C3—C2120.5 (3)
O4—Ni1—N1i89.34 (10)C4—C3—H3A119.8
O4i—Ni1—N1i90.66 (10)C2—C3—H3A119.8
O5—Ni1—N184.45 (9)C3—C4—C5119.5 (3)
O5i—Ni1—N195.55 (9)C3—C4—N1119.4 (3)
O4—Ni1—N190.66 (10)C5—C4—N1121.0 (3)
O4i—Ni1—N189.34 (10)C6—C5—C4120.1 (3)
N1i—Ni1—N1180.000 (1)C6—C5—H5C120.0
O3—S1—O2111.96 (14)C4—C5—H5C120.0
O3—S1—O1112.91 (14)C5—C6—C1119.9 (3)
O2—S1—O1112.23 (15)C5—C6—H6A120.0
O3—S1—C1106.63 (14)C1—C6—H6A120.0
O2—S1—C1105.20 (14)Ni1—O4—H4A109.5
O1—S1—C1107.33 (13)Ni1—O4—H4B118 (2)
C4—N1—Ni1124.58 (19)H4A—O4—H4B119.4
C4—N1—H1A106 (2)Ni1—O5—H5A109.5
Ni1—N1—H1A109 (2)Ni1—O5—H5B120 (2)
C4—N1—H1B98 (3)H5A—O5—H5B116.5
Ni1—N1—H1B107 (3)
O5—Ni1—N1—C4176.5 (2)S1—C1—C2—C3169.0 (3)
O5i—Ni1—N1—C43.5 (2)C1—C2—C3—C40.8 (5)
O4—Ni1—N1—C487.1 (2)C2—C3—C4—C55.7 (5)
O4i—Ni1—N1—C492.9 (2)C2—C3—C4—N1172.5 (3)
N1i—Ni1—N1—C411 (100)Ni1—N1—C4—C366.7 (4)
O3—S1—C1—C24.2 (3)Ni1—N1—C4—C5115.1 (3)
O2—S1—C1—C2114.9 (3)C3—C4—C5—C65.5 (5)
O1—S1—C1—C2125.4 (3)N1—C4—C5—C6172.7 (3)
O3—S1—C1—C6177.5 (2)C4—C5—C6—C10.4 (5)
O2—S1—C1—C658.4 (3)C2—C1—C6—C54.5 (5)
O1—S1—C1—C661.3 (3)S1—C1—C6—C5168.8 (2)
C6—C1—C2—C34.3 (5)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2ii0.90 (1)2.22 (2)3.084 (4)162 (3)
N1—H1B···O3iii0.91 (1)2.21 (1)3.106 (4)171 (4)
O4—H4A···S1iii0.842.963.768 (3)161
O4—H4B···O1iv0.90 (1)1.90 (1)2.777 (3)166 (2)
O4—H4B···S1iv0.90 (1)2.82 (3)3.595 (3)145 (3)
O5—H5A···O3iv0.841.942.773 (3)169
O5—H5B···O1v0.91 (1)1.93 (1)2.834 (3)177 (4)
Symmetry codes: (ii) x+3/2, y+1/2, z+2; (iii) x+3/2, y1/2, z+2; (iv) x1/2, y1/2, z1/2; (v) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(C6H2O3S)2(H2O)4]
Mr475.13
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)20.800 (11), 6.450 (3), 13.566 (7)
β (°) 106.593 (9)
V3)1744.1 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.41
Crystal size (mm)0.18 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.735, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6482, 1997, 1722
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.091, 1.00
No. of reflections1997
No. of parameters140
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0314P)2 + 10.4033P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.44, 0.49

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1999), SHELXTL.

Selected geometric parameters (Å, º) top
Ni1—O52.060 (2)Ni1—O4i2.064 (2)
Ni1—O5i2.060 (2)Ni1—N1i2.133 (3)
Ni1—O42.064 (2)Ni1—N12.133 (3)
O5—Ni1—O5i180.000 (1)O5i—Ni1—N195.55 (9)
O5—Ni1—O489.45 (9)O4—Ni1—N190.66 (10)
O5i—Ni1—O490.55 (9)O4i—Ni1—N189.34 (10)
O5—Ni1—O4i90.55 (9)N1i—Ni1—N1180.000 (1)
O5i—Ni1—O4i89.45 (9)C4—N1—Ni1124.58 (19)
O4—Ni1—O4i180.0Ni1—O4—H4A109.5
O5—Ni1—N1i95.55 (9)Ni1—O4—H4B118 (2)
O5i—Ni1—N1i84.45 (9)H4A—O4—H4B119.4
O4—Ni1—N1i89.34 (10)Ni1—O5—H5A109.5
O4i—Ni1—N1i90.66 (10)Ni1—O5—H5B120 (2)
O5—Ni1—N184.45 (9)H5A—O5—H5B116.5
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2ii0.900 (10)2.215 (15)3.084 (4)162 (3)
N1—H1B···O3iii0.905 (10)2.209 (13)3.106 (4)171 (4)
O4—H4A···S1iii0.842.963.768 (3)160.9
O4—H4B···O1iv0.898 (10)1.896 (14)2.777 (3)166 (2)
O4—H4B···S1iv0.898 (10)2.82 (3)3.595 (3)145 (3)
O5—H5A···O3iv0.841.942.773 (3)168.9
O5—H5B···O1v0.908 (10)1.927 (11)2.834 (3)177 (4)
Symmetry codes: (ii) x+3/2, y+1/2, z+2; (iii) x+3/2, y1/2, z+2; (iv) x1/2, y1/2, z1/2; (v) x1/2, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds