supplementary materials


Acta Cryst. (2007). E63, m1689    [ doi:10.1107/S1600536807021046 ]

([mu]-trans-1,2-Di-4-pyridylethylene-[kappa]2N:N')bis[(bipyridine-[kappa]2N,N')(triphenylphosphine-[kappa]P)copper(I)] bis(tetrafluoroborate)

J.-S. Chen, P.-H. Liu and W.-F. Fu

Abstract top

In the centrosymmetric dinuclear cation of the title complex, [Cu2(C10H8N2)2(C12H10N2)(C18H15P)2](BF4)2, each Cu atom is coordinated by two N atoms from a 2,2-bipyridine ligand and a P atom from a triphenylphosphine ligand, and the two N2PCu+ fragments are bridged by a trans-1,2-di-4-pyridylethylene ligand, resulting in a distorted tetrahedral coordination geometry. Two F atoms are disordered over two sites each, with almost equal occupancies.

Comment top

It is well documented in the literature that copper(I) complexes with diimine ligands exhibit low energy metal-to-ligand charge-transfer (MLCT) transition (Horváth et al., 1994; McMillin et al., 1998; Scaltrito et al., 2000). Specially, dinuclear polypyridine copper(I) complexes with unexpected stablity diplay potential applicance in photocatalysts and multi-electron storage systems. Electron transfer between two copper(I) centers is influenced by the acceptor and donor properties of the coordination sites, as well as the length and rigidity of the spacers. Previously, we reported two copper(I) complexes with 4,4'-bipyridine ligand as a bridge (Chen et al., 2007; Wang et al., 2007). We report here the title complex, (I).

The structure of the trans-[Cu2(C12H10N2) (C10H8N2)2(C18H15P)2]2+ cation is shown in Fig. 1, and selected bond lengths and angles are dipicted in Table 1. The cation is centrosymmetric with the center of symmetry at the mid-point of the C=C bond. Each Cu atom has a distorted tetrahedral geometry. The mean Cu—N distance of 2.049 (2) Å and Cu—P bond length of 2.1877 (9) Å are consistent with those in the case of [Cu2(2,2'-bipyridine)2(PPh3)2 (4,4'-bipyridine)]2+(PPh3 = triphenylphosphine). All bond angles are similar with its analogues, also (Chen et al., 2007; Wang et al., 2007).

Related literature top

For related literature, see: Chen et al. (2007); Horváth (1994); Kubas et al. (1990); McMillin & McNett (1998); Scaltrito et al. (2000); Wang et al. (2007).

Experimental top

Triphenylphosphine, 2,2'-bipyridine and trans-1,2-di-4-pyridylethylene were obtained commercially. [Cu(CH3CN)4]BF4 was prepared according to a published method (Kubas et al., 1990). Solvents were distilled using standard techniques and saturated with dinitrogen before use. All reactions were performed under a nitrogen atmosphere.

Trans-1,2-di-4-pyridylethylene (18.2 mg, 0.10 mmol) and [Cu(CH3CN)4]BF4 (63.0 mg, 0.20 mmol) in CH2Cl2 (30 ml) was stirred at room temperature for 2 h, then 2,2'-bipyridine (21.2 mg, 0.20 mmol) was added to above red solution. And after another 4 h, triphenylphosphine (52.4 mg, 0.2 mmol) in CH2Cl2 (20 ml) was added dropwise. Recrystallization by slow diffusion of diethyl ether into the resulting solution gave orange crystals suitable for X-ray diffraction (yield 84.5 mg, 64%).

Refinement top

All H atoms were placed in calculated positions, The H atoms were then constrained to an ideal geometry with C—H distances of 0.93 Å, Uiso(H) = 1.2Ueq(C). The fluorine atoms F3 and F4 were disordered over two sites, with site occupancy factors being refined to 0.53 (2) and 0.47 (2).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of the cation of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted. [symmetry code: (A) -x + 1, -y, -z + 1.]
(µ-trans-1,2-Di-4-pyridylethylene-κ2N:N')bis[(bipyridine- κ2N,N')(triphenylphosphine-κP)copper(I)] bis(tetrafluoroborate) top
Crystal data top
[Cu2(C10H8N2)2(C12H10N2)(C18H15P)2](BF4)2F(000) = 1352
Mr = 1319.83Dx = 1.403 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4281 reflections
a = 9.9800 (17) Åθ = 2.4–23.9°
b = 15.420 (3) ŵ = 0.80 mm1
c = 20.461 (4) ÅT = 298 K
β = 97.021 (3)°Block, orange
V = 3125.1 (9) Å30.43 × 0.33 × 0.28 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
7853 independent reflections
Radiation source: fine-focus sealed tube5153 reflections with I > 2σ(I)
graphiteRint = 0.039
φ and ω scansθmax = 28.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1211
Tmin = 0.724, Tmax = 0.807k = 2019
18965 measured reflectionsl = 2426
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.08P)2 + 0.3449P]
where P = (Fo2 + 2Fc2)/3
7853 reflections(Δ/σ)max < 0.001
417 parametersΔρmax = 0.58 e Å3
24 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cu2(C10H8N2)2(C12H10N2)(C18H15P)2](BF4)2V = 3125.1 (9) Å3
Mr = 1319.83Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.9800 (17) ŵ = 0.80 mm1
b = 15.420 (3) ÅT = 298 K
c = 20.461 (4) Å0.43 × 0.33 × 0.28 mm
β = 97.021 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7853 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5153 reflections with I > 2σ(I)
Tmin = 0.724, Tmax = 0.807Rint = 0.039
18965 measured reflectionsθmax = 28.5°
Refinement top
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.151Δρmax = 0.58 e Å3
S = 1.02Δρmin = 0.30 e Å3
7853 reflectionsAbsolute structure: ?
417 parametersFlack parameter: ?
24 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.42023 (3)0.38370 (2)0.344472 (16)0.04103 (13)
B10.9491 (4)0.2631 (3)0.4471 (2)0.0644 (11)
F11.0554 (3)0.2971 (3)0.48247 (17)0.1462 (14)
F20.8749 (4)0.3173 (3)0.4106 (3)0.204 (2)
F30.8605 (10)0.2406 (11)0.4895 (5)0.111 (3)0.53 (2)
F41.0069 (8)0.1932 (6)0.4234 (10)0.120 (4)0.53 (2)
F3'0.8805 (14)0.1996 (11)0.4747 (8)0.116 (4)0.47 (2)
F4'0.9873 (12)0.2275 (13)0.3889 (7)0.121 (5)0.47 (2)
N10.2699 (2)0.46424 (17)0.36860 (12)0.0478 (6)
N20.5345 (2)0.47842 (16)0.39456 (11)0.0447 (6)
N30.4329 (2)0.27321 (15)0.40019 (12)0.0441 (6)
P10.41005 (8)0.33931 (5)0.24243 (4)0.04054 (19)
C10.1367 (3)0.4520 (3)0.35548 (18)0.0652 (9)
H10.10560.39980.33660.078*
C20.0443 (4)0.5131 (4)0.3686 (2)0.0876 (13)
H20.04770.50290.35840.105*
C30.0895 (5)0.5886 (4)0.3969 (3)0.1018 (16)
H30.02850.63090.40680.122*
C40.2254 (5)0.6024 (3)0.4110 (2)0.0830 (13)
H40.25750.65430.43020.100*
C50.3149 (3)0.5387 (2)0.39656 (15)0.0491 (7)
C60.4622 (3)0.5462 (2)0.41245 (14)0.0492 (7)
C70.5263 (5)0.6166 (2)0.4450 (2)0.0747 (11)
H70.47570.66370.45620.090*
C80.6619 (5)0.6170 (3)0.4604 (2)0.0888 (15)
H80.70480.66460.48160.107*
C90.7351 (4)0.5474 (3)0.44471 (19)0.0795 (13)
H90.82810.54570.45640.095*
C100.6687 (3)0.4794 (3)0.41107 (17)0.0623 (9)
H100.71900.43230.39940.075*
C110.3221 (3)0.2292 (2)0.40972 (16)0.0519 (8)
H110.23870.25450.39640.062*
C120.3244 (3)0.1487 (2)0.43810 (17)0.0550 (8)
H120.24370.12110.44350.066*
C130.4454 (3)0.10855 (19)0.45863 (15)0.0474 (7)
C140.5616 (3)0.1536 (2)0.44819 (15)0.0514 (8)
H140.64620.12910.46030.062*
C150.5508 (3)0.2342 (2)0.41999 (15)0.0492 (7)
H150.62990.26360.41420.059*
C160.4468 (3)0.0232 (2)0.48979 (16)0.0530 (8)
H160.36350.00060.49570.064*
C170.3409 (3)0.22928 (19)0.23978 (14)0.0460 (7)
C180.2070 (4)0.2191 (2)0.24903 (19)0.0646 (9)
H180.15190.26780.24860.077*
C190.1535 (4)0.1386 (3)0.2589 (2)0.0800 (12)
H190.06320.13290.26530.096*
C200.2350 (5)0.0670 (3)0.2593 (2)0.0811 (12)
H200.20010.01240.26660.097*
C210.3662 (4)0.0750 (2)0.2490 (2)0.0769 (11)
H210.42000.02580.24830.092*
C220.4205 (4)0.1564 (2)0.23954 (18)0.0606 (9)
H220.51070.16160.23300.073*
C230.2975 (3)0.3979 (2)0.18074 (15)0.0475 (7)
C240.2294 (4)0.3593 (3)0.12521 (16)0.0617 (9)
H240.24360.30100.11680.074*
C250.1402 (4)0.4072 (4)0.08217 (19)0.0792 (12)
H250.09360.38060.04540.095*
C260.1208 (4)0.4925 (4)0.0935 (2)0.0875 (14)
H260.06200.52450.06400.105*
C270.1871 (4)0.5319 (3)0.1479 (2)0.0807 (12)
H270.17320.59050.15540.097*
C280.2744 (3)0.4847 (2)0.19161 (17)0.0600 (9)
H280.31830.51160.22890.072*
C290.5715 (3)0.33021 (18)0.20944 (14)0.0445 (7)
C300.6839 (3)0.3112 (2)0.25418 (17)0.0606 (9)
H300.67380.30290.29830.073*
C310.8103 (4)0.3045 (3)0.2338 (2)0.0727 (11)
H310.88440.29040.26410.087*
C320.8271 (4)0.3185 (3)0.1696 (2)0.0765 (11)
H320.91240.31490.15590.092*
C330.7172 (4)0.3377 (3)0.1256 (2)0.0833 (13)
H330.72800.34660.08160.100*
C340.5904 (4)0.3441 (3)0.14528 (17)0.0631 (9)
H340.51690.35800.11460.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0438 (2)0.0354 (2)0.0437 (2)0.00140 (14)0.00421 (15)0.00142 (15)
B10.042 (2)0.061 (3)0.088 (3)0.0003 (19)0.001 (2)0.008 (2)
F10.0811 (19)0.203 (4)0.153 (3)0.052 (2)0.0074 (18)0.076 (3)
F20.131 (3)0.188 (4)0.287 (6)0.042 (3)0.001 (3)0.116 (4)
F30.085 (4)0.148 (8)0.108 (5)0.037 (5)0.037 (3)0.014 (5)
F40.102 (4)0.099 (5)0.158 (9)0.021 (4)0.012 (5)0.022 (5)
F3'0.101 (6)0.120 (7)0.123 (7)0.036 (5)0.000 (5)0.027 (6)
F4'0.111 (6)0.152 (9)0.097 (6)0.023 (5)0.009 (4)0.037 (6)
N10.0456 (14)0.0488 (15)0.0494 (15)0.0084 (11)0.0072 (11)0.0006 (12)
N20.0445 (14)0.0452 (14)0.0441 (13)0.0061 (11)0.0038 (11)0.0007 (11)
N30.0481 (14)0.0412 (13)0.0424 (13)0.0004 (11)0.0037 (11)0.0065 (11)
P10.0428 (4)0.0375 (4)0.0406 (4)0.0047 (3)0.0022 (3)0.0004 (3)
C10.049 (2)0.074 (2)0.072 (2)0.0068 (17)0.0040 (17)0.0035 (19)
C20.052 (2)0.104 (4)0.108 (3)0.023 (2)0.015 (2)0.002 (3)
C30.086 (3)0.088 (3)0.136 (4)0.044 (3)0.033 (3)0.001 (3)
C40.089 (3)0.058 (2)0.107 (3)0.018 (2)0.030 (3)0.008 (2)
C50.062 (2)0.0404 (16)0.0470 (17)0.0069 (14)0.0159 (15)0.0042 (13)
C60.066 (2)0.0432 (17)0.0399 (16)0.0055 (15)0.0138 (14)0.0008 (13)
C70.094 (3)0.062 (2)0.071 (3)0.018 (2)0.022 (2)0.024 (2)
C80.106 (4)0.097 (4)0.066 (3)0.049 (3)0.018 (2)0.033 (2)
C90.062 (2)0.114 (4)0.062 (2)0.036 (2)0.0053 (19)0.013 (2)
C100.053 (2)0.072 (2)0.062 (2)0.0132 (17)0.0058 (16)0.0056 (18)
C110.0486 (18)0.0519 (19)0.0562 (19)0.0079 (14)0.0105 (14)0.0100 (15)
C120.0480 (18)0.0500 (18)0.068 (2)0.0027 (15)0.0107 (15)0.0139 (16)
C130.0574 (19)0.0422 (17)0.0428 (16)0.0011 (14)0.0073 (14)0.0035 (13)
C140.0490 (18)0.0522 (18)0.0522 (18)0.0082 (15)0.0024 (14)0.0124 (15)
C150.0482 (18)0.0495 (18)0.0486 (17)0.0053 (14)0.0008 (14)0.0083 (14)
C160.0541 (19)0.0506 (19)0.0547 (18)0.0001 (14)0.0085 (15)0.0102 (15)
C170.0538 (18)0.0405 (16)0.0426 (16)0.0011 (13)0.0016 (13)0.0049 (13)
C180.055 (2)0.049 (2)0.091 (3)0.0012 (16)0.0105 (18)0.0096 (19)
C190.070 (3)0.066 (3)0.104 (3)0.023 (2)0.013 (2)0.011 (2)
C200.107 (4)0.046 (2)0.088 (3)0.023 (2)0.003 (2)0.006 (2)
C210.087 (3)0.0392 (19)0.102 (3)0.0015 (19)0.004 (2)0.008 (2)
C220.064 (2)0.0415 (18)0.076 (2)0.0038 (16)0.0073 (18)0.0062 (17)
C230.0440 (17)0.0535 (19)0.0450 (16)0.0063 (13)0.0050 (13)0.0041 (14)
C240.059 (2)0.073 (2)0.0508 (19)0.0030 (18)0.0007 (16)0.0007 (17)
C250.063 (2)0.118 (4)0.052 (2)0.000 (2)0.0101 (18)0.011 (2)
C260.067 (3)0.116 (4)0.076 (3)0.021 (3)0.004 (2)0.037 (3)
C270.083 (3)0.073 (3)0.084 (3)0.027 (2)0.003 (2)0.022 (2)
C280.060 (2)0.056 (2)0.063 (2)0.0106 (16)0.0005 (16)0.0099 (17)
C290.0479 (17)0.0405 (16)0.0460 (17)0.0027 (13)0.0092 (13)0.0012 (13)
C300.054 (2)0.077 (2)0.0510 (19)0.0099 (18)0.0080 (15)0.0054 (17)
C310.049 (2)0.094 (3)0.074 (3)0.0117 (19)0.0036 (18)0.001 (2)
C320.058 (2)0.088 (3)0.089 (3)0.008 (2)0.031 (2)0.006 (2)
C330.078 (3)0.110 (4)0.066 (3)0.014 (3)0.029 (2)0.016 (2)
C340.063 (2)0.076 (3)0.052 (2)0.0132 (18)0.0105 (16)0.0103 (17)
Geometric parameters (Å, °) top
Cu1—N32.045 (2)C13—C141.391 (4)
Cu1—N22.049 (2)C13—C161.462 (4)
Cu1—N12.054 (2)C14—C151.369 (4)
Cu1—P12.1877 (9)C14—H140.9300
B1—F21.292 (5)C15—H150.9300
B1—F11.318 (5)C16—C16i1.305 (6)
B1—F41.340 (8)C16—H160.9300
B1—F3'1.356 (11)C17—C221.377 (4)
B1—F31.358 (10)C17—C181.381 (5)
B1—F4'1.405 (9)C18—C191.376 (5)
N1—C51.336 (4)C18—H180.9300
N1—C11.337 (4)C19—C201.372 (6)
N2—C101.341 (4)C19—H190.9300
N2—C61.346 (4)C20—C211.356 (6)
N3—C111.332 (4)C20—H200.9300
N3—C151.339 (4)C21—C221.391 (5)
P1—C231.824 (3)C21—H210.9300
P1—C291.827 (3)C22—H220.9300
P1—C171.830 (3)C23—C281.380 (4)
C1—C21.368 (5)C23—C241.385 (5)
C1—H10.9300C24—C251.386 (5)
C2—C31.353 (7)C24—H240.9300
C2—H20.9300C25—C261.353 (6)
C3—C41.369 (7)C25—H250.9300
C3—H30.9300C26—C271.366 (6)
C4—C51.383 (5)C26—H260.9300
C4—H40.9300C27—C281.378 (5)
C5—C61.471 (5)C27—H270.9300
C6—C71.388 (5)C28—H280.9300
C7—C81.352 (6)C29—C341.366 (4)
C7—H70.9300C29—C301.390 (4)
C8—C91.358 (6)C30—C311.380 (5)
C8—H80.9300C30—H300.9300
C9—C101.379 (5)C31—C321.362 (5)
C9—H90.9300C31—H310.9300
C10—H100.9300C32—C331.365 (6)
C11—C121.369 (4)C32—H320.9300
C11—H110.9300C33—C341.378 (5)
C12—C131.376 (4)C33—H330.9300
C12—H120.9300C34—H340.9300
N3—Cu1—N2108.80 (10)C11—C12—C13120.4 (3)
N3—Cu1—N1111.53 (10)C11—C12—H12119.8
N2—Cu1—N180.03 (10)C13—C12—H12119.8
N3—Cu1—P1105.30 (7)C12—C13—C14116.4 (3)
N2—Cu1—P1131.18 (7)C12—C13—C16120.0 (3)
N1—Cu1—P1117.94 (7)C14—C13—C16123.5 (3)
F2—B1—F1115.2 (5)C15—C14—C13119.6 (3)
F2—B1—F4123.7 (9)C15—C14—H14120.2
F1—B1—F499.5 (6)C13—C14—H14120.2
F2—B1—F3'115.1 (7)N3—C15—C14123.8 (3)
F1—B1—F3'118.1 (7)N3—C15—H15118.1
F4—B1—F3'80.3 (7)C14—C15—H15118.1
F2—B1—F399.3 (7)C16i—C16—C13126.6 (4)
F1—B1—F3107.1 (6)C16i—C16—H16116.7
F4—B1—F3111.6 (6)C13—C16—H16116.7
F3'—B1—F331.6 (6)C22—C17—C18118.5 (3)
F2—B1—F4'87.7 (10)C22—C17—P1122.8 (3)
F1—B1—F4'109.7 (5)C18—C17—P1118.0 (2)
F4—B1—F4'37.5 (4)C19—C18—C17121.5 (4)
F3'—B1—F4'105.9 (7)C19—C18—H18119.3
F3—B1—F4'135.0 (6)C17—C18—H18119.3
C5—N1—C1118.7 (3)C20—C19—C18119.1 (4)
C5—N1—Cu1114.0 (2)C20—C19—H19120.5
C1—N1—Cu1127.1 (2)C18—C19—H19120.5
C10—N2—C6118.4 (3)C21—C20—C19120.6 (4)
C10—N2—Cu1127.7 (2)C21—C20—H20119.7
C6—N2—Cu1113.9 (2)C19—C20—H20119.7
C11—N3—C15116.2 (3)C20—C21—C22120.2 (4)
C11—N3—Cu1120.7 (2)C20—C21—H21119.9
C15—N3—Cu1122.3 (2)C22—C21—H21119.9
C23—P1—C29106.18 (14)C17—C22—C21120.1 (3)
C23—P1—C17103.95 (14)C17—C22—H22119.9
C29—P1—C17105.34 (14)C21—C22—H22119.9
C23—P1—Cu1117.28 (10)C28—C23—C24118.3 (3)
C29—P1—Cu1115.88 (10)C28—C23—P1118.0 (2)
C17—P1—Cu1106.96 (10)C24—C23—P1123.6 (3)
N1—C1—C2122.7 (4)C23—C24—C25120.3 (4)
N1—C1—H1118.6C23—C24—H24119.9
C2—C1—H1118.6C25—C24—H24119.9
C3—C2—C1118.7 (4)C26—C25—C24120.2 (4)
C3—C2—H2120.7C26—C25—H25119.9
C1—C2—H2120.7C24—C25—H25119.9
C2—C3—C4119.6 (4)C25—C26—C27120.4 (4)
C2—C3—H3120.2C25—C26—H26119.8
C4—C3—H3120.2C27—C26—H26119.8
C3—C4—C5119.6 (4)C26—C27—C28119.9 (4)
C3—C4—H4120.2C26—C27—H27120.0
C5—C4—H4120.2C28—C27—H27120.0
N1—C5—C4120.7 (3)C27—C28—C23120.8 (4)
N1—C5—C6115.8 (3)C27—C28—H28119.6
C4—C5—C6123.4 (3)C23—C28—H28119.6
N2—C6—C7120.4 (3)C34—C29—C30118.1 (3)
N2—C6—C5115.7 (3)C34—C29—P1125.1 (2)
C7—C6—C5123.8 (3)C30—C29—P1116.8 (2)
C8—C7—C6120.3 (4)C31—C30—C29120.8 (3)
C8—C7—H7119.8C31—C30—H30119.6
C6—C7—H7119.8C29—C30—H30119.6
C7—C8—C9119.6 (4)C32—C31—C30120.3 (3)
C7—C8—H8120.2C32—C31—H31119.9
C9—C8—H8120.2C30—C31—H31119.9
C8—C9—C10118.6 (4)C31—C32—C33119.2 (4)
C8—C9—H9120.7C31—C32—H32120.4
C10—C9—H9120.7C33—C32—H32120.4
N2—C10—C9122.5 (4)C32—C33—C34121.0 (4)
N2—C10—H10118.7C32—C33—H33119.5
C9—C10—H10118.7C34—C33—H33119.5
N3—C11—C12123.6 (3)C29—C34—C33120.7 (3)
N3—C11—H11118.2C29—C34—H34119.7
C12—C11—H11118.2C33—C34—H34119.7
Symmetry codes: (i) −x+1, −y, −z+1.
Table 1
Selected geometric parameters (Å, °)
top
Cu1—N32.045 (2)Cu1—N12.054 (2)
N3—Cu1—N2108.80 (10)N3—Cu1—P1105.30 (7)
N3—Cu1—N1111.53 (10)N2—Cu1—P1131.18 (7)
N2—Cu1—N180.03 (10)N1—Cu1—P1117.94 (7)
Acknowledgements top

This work was supported by the National Natural Science Foundation of China (grant Nos. 20671094 and 20471066). We are grateful to the State Key Project (grant No. 2005CCA06800) for financial support. We thank the Foundation (grant No. 50418010) for an NSFC/RGC Joint Research award.

references
References top

Bruker (2000). SMART, SAINT , SHELXTL, SADABS, XPREP and XP. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, J.-H., Song, L.-Q., Wang, D.-H., Zhang, J.-F. & Fu, W.-F. (2007). Acta Cryst. E63, m34–m35.

Horváth, O. (1994). Coord. Chem. Rev. 135/136, 303–324. [Cited in Comment section as et al. - should there be additional authors?]

Kubas, G. J., Monzyk, B. & Crumbliss, A. L. (1990). Inorg. Synth. 28, 68–72.

McMillin, D. R. & McNett, K. M. (1998). Chem. Rev. 98, 1201–1220.

Scaltrito, D. V., Thompson, D. W., O'Callaghan, J. A. & Meyer, G. J. (2000). Coord. Chem. Rev. 208, 243–266.

Wang, D.-H., Song, L.-Q., Chen, J.-H., Chen, Y. & Fu, W.-F. (2007). Acta Cryst. E63, m474–m476.