Download citation
Download citation
link to html
The reaction of nickel(II) nitrate hexa­hydrate with the proton-transfer compound piperazinediium pyridine-2,6-dicarboxyl­ate, or (pipzH2)(pydc) (in which pipz is piperazine and pydcH2 is pyridine-2,6-dicarboxylic acid), in aqueous solution leads to the formation of the title compound, (pipzH2)[Ni(pydc)2]·4H2O or (C4H12N2)[Ni(C7H3NO4)2]·4H2O. The anion is a six-coordinate complex with a distorted octa­hedral geometry around NiII. The torsion angles show that the two (pydc)2– units are almost perpendicular to each other. Considerable π–π stacking inter­actions between two aromatic rings of (pydc)2–, with distances of 3.4686 (14) and 3.5034 (14) Å, are observed. Extensive inter­molecular O—H...O, N—H...O and C—H...O hydrogen bonding involving the (pydc)2– ligand, (pipzH2)2+ as counter-ion and uncoordinated water mol­ecules connect the various components into a supra­molecular structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807023367/bx2084sup1.cif
Contains datablocks I, New_Global_Publ_Block

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807023367/bx2084Isup2.hkl
Contains datablock I

CCDC reference: 650702

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.038
  • wR factor = 0.094
  • Data-to-parameter ratio = 16.1

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT707_ALERT_1_A D...A Calc 17.600(4), Rep 2.819(2), Dev.. 3695.25 Sigma O9 -O5 1.555 4.575 PLAT707_ALERT_1_A D...A Calc 19.411(4), Rep 2.828(2), Dev.. 4145.75 Sigma O9 -O2 1.555 2.554 PLAT707_ALERT_1_A D...A Calc 19.704(4), Rep 2.927(2), Dev.. 4194.25 Sigma O10 -O7 1.555 1.555 PLAT707_ALERT_1_A D...A Calc 10.920(3), Rep 2.846(3), Dev.. 2691.33 Sigma O10 -O9 1.555 1.555 PLAT707_ALERT_1_A D...A Calc 24.709(4), Rep 3.124(2), Dev.. 5396.25 Sigma O11 -O10 1.555 4.676 PLAT707_ALERT_1_A D...A Calc 23.228(4), Rep 3.457(3), Dev.. 4942.75 Sigma C16 -O10 1.555 4.676 PLAT726_ALERT_1_A H...A Calc 17.89000, Rep 1.87000 Dev... 16.02 Ang. H9B -O5 1.555 4.575 PLAT726_ALERT_1_A H...A Calc 20.29000, Rep 1.90000 Dev... 18.39 Ang. H9A -O2 1.555 2.554 PLAT726_ALERT_1_A H...A Calc 18.89000, Rep 1.99000 Dev... 16.90 Ang. H10A -O7 1.555 1.555 PLAT726_ALERT_1_A H...A Calc 11.08000, Rep 1.90000 Dev... 9.18 Ang. H10B -O9 1.555 1.555 PLAT726_ALERT_1_A H...A Calc 23.76000, Rep 2.37000 Dev... 21.39 Ang. H11A -O10 1.555 4.676 PLAT726_ALERT_1_A H...A Calc 23.18000, Rep 2.57000 Dev... 20.61 Ang. H16B -O10 1.555 4.676 PLAT728_ALERT_1_A D-H..A Calc 70.00, Rep 176.70 Dev... 106.70 Deg. O9 -H9B -O5 1.555 1.555 4.575 PLAT728_ALERT_1_A D-H..A Calc 21.00, Rep 165.60 Dev... 144.60 Deg. O9 -H9A -O2 1.555 1.555 2.554 PLAT728_ALERT_1_A D-H..A Calc 149.00, Rep 167.40 Dev... 18.40 Deg. O10 -H10A -O7 1.555 1.555 1.555 PLAT728_ALERT_1_A D-H..A Calc 78.00, Rep 172.70 Dev... 94.70 Deg. O10 -H10B -O9 1.555 1.555 1.555 PLAT728_ALERT_1_A D-H..A Calc 174.00, Rep 136.30 Dev... 37.70 Deg. O11 -H11A -O10 1.555 1.555 4.676 PLAT728_ALERT_1_A D-H..A Calc 92.00, Rep 149.00 Dev... 57.00 Deg. C16 -H16B -O10 1.555 1.555 4.676
Alert level C PLAT048_ALERT_1_C MoietyFormula Not Given ........................ ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT432_ALERT_2_C Short Inter X...Y Contact C12 .. C14 .. 3.16 Ang. PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 21 N2 -NI1 -N1 -C2 -114.20 0.60 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 26 N2 -NI1 -N1 -C6 60.60 0.60 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 31 N1 -NI1 -N2 -C9 11.20 0.70 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 36 N1 -NI1 -N2 -C13 -167.90 0.50 1.555 1.555 1.555 1.555
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni1 (2) 2.07
18 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 19 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The intermolecular binding forces in supramolecular systems may consist of ion pairing, hydrogen bonding, hydrophobic or hydrophilic, host guest, π-π stacking and donor-acceptor interactions. In order to develop new types of proton transfer compounds and hydrogen bonding systems, our research group has recently focused on one-pot synthesis of water soluble self-assembly systems that can function as suitable ligands in the synthesis of metal complexes.

Here, we report on the synthesis and X-ray crystal structure of the title compound, (I). The selected bond lengths, bond and torsion angles are given in Table 1 which are within normal ranges (Allen et al., 1987). Accordingto the crystal structure of (I), the NiII compound is composed of an anionic complex, [Ni(pydc)2]2–, piperazinediium as counter-ion, (pipzH2)2+, and four uncoordinated water molecules. Atoms N1 and N2 of the two (pydc)2– fragments occupy the axial positions, while atoms O1, O4, O5 and O8 form the equatorial plane. The N1—Ni1—N2 angle deviates slightly from linearity [172.66 (8)°]. Therefore, the coordination around NiII is distorted octahedral.

The O1—Ni1—O8 and O4—Ni1—O5 angles are equal to 87.00 (6) and 87.82 (6)°, respectively. On the other hand, O4—Ni1—O5—C8 and O5—Ni1—O4—C7 torsion angles are -92.26 (16)° and -84.08 (16)°, respectively indicating that two (pydc)2– units are almost perpendicular to each other (Table 1). Considerable π-π stacking interactions between two aromatic rings of (pydc)2–, with distances of 3.4686 (14) Å and 3.5034 (14) Å are observed (Fig. 2) (Aghabozorg, Aghajani & Sharif, 2006; Aghabozorg, Zabihi et al., 2006). In the crystal structure, the spaces between two layers of [Ni(pydc)2]2– fragments are filled with layers of (pipzH2)2+ cations and water molecules (Fig. 3). The most important features of the crystal structure of (I) is the presence of a large number of O—H···O, N—H···O and C—H···O hydrogen bonds, with D···A distances ranging from 2.696 (3) to 3.457 (3) Å between (pipzH2)2+ and [Ni(pydc)2]2– fragments and uncoordinated water molecules. (Table 2). Ion pairing and van der Waals interactions are also effective in the packing. These interactions result in the formation of a supramolecular structure (Fig. 4).

Related literature top

We have reported cases in which proton transfer from pyridine-2,6-dicarboxylic acid, pydcH2, and benzene-1,2,4,5-tetracarboxylic acid, btcH4, to piperazine, pipz, and 1,10-phenanthroline, phen, resulted in the formation of novel self-assembled (pipzH2)(pydc) (Aghabozorg, Ghadermazi, Manteghi & Nakhjavan, 2006) and (phenH)4(btcH3)2(btcH2) (Aghabozorg, Ghadermazi & Attar Gharamaleki, 2006) systems, respectively. The resulting compounds with some remaining sites as electron donors can coordinate to many metallic ions (Aghabozorg, Ghasemikhah, Ghadermazi et al., 2006; Aghabozorg, Ghasemikhah, Soleimannejad et al., 2006).

For related literature, see: Aghabozorg, Aghajani & Sharif (2006); Aghabozorg, Zabihi, Ghadermazi, Attar Gharamaleki & Sheshmani (2006); Allen et al. (1987).

Experimental top

The proton-transfer ion pair was prepared by a reaction between piperazine and pyridine-2,6-dicarboxylic acid. Starting with a 1:1 molar ratio of the reactants in THF, a puffy white precipitate was obtained. By recrystallization in an aqueous solution, pale-yellow crystals were obtained. A solution of Ni(NO3)2.6H2O (145 mg, 0.5 mmol) in water (20 ml) was added to an aqueous solution of (pipzH2)(pydc) (253 mg, 1.0 mmol) in water (20 ml) in a 1:2 molar ratio. Green crystals of (I) suitable for X-ray characterization were obtained after a few days at room temperature.

Refinement top

Hydrogen atoms were positioned geometrically and refined with a riding model (including torsional freedom for methyl groups), with C—H = 0.95–0.98 Å, and with U(H) constrained to be 1.2 (1.5 for methyl groups) times Ueq of the carrier atom.

Structure description top

The intermolecular binding forces in supramolecular systems may consist of ion pairing, hydrogen bonding, hydrophobic or hydrophilic, host guest, π-π stacking and donor-acceptor interactions. In order to develop new types of proton transfer compounds and hydrogen bonding systems, our research group has recently focused on one-pot synthesis of water soluble self-assembly systems that can function as suitable ligands in the synthesis of metal complexes.

Here, we report on the synthesis and X-ray crystal structure of the title compound, (I). The selected bond lengths, bond and torsion angles are given in Table 1 which are within normal ranges (Allen et al., 1987). Accordingto the crystal structure of (I), the NiII compound is composed of an anionic complex, [Ni(pydc)2]2–, piperazinediium as counter-ion, (pipzH2)2+, and four uncoordinated water molecules. Atoms N1 and N2 of the two (pydc)2– fragments occupy the axial positions, while atoms O1, O4, O5 and O8 form the equatorial plane. The N1—Ni1—N2 angle deviates slightly from linearity [172.66 (8)°]. Therefore, the coordination around NiII is distorted octahedral.

The O1—Ni1—O8 and O4—Ni1—O5 angles are equal to 87.00 (6) and 87.82 (6)°, respectively. On the other hand, O4—Ni1—O5—C8 and O5—Ni1—O4—C7 torsion angles are -92.26 (16)° and -84.08 (16)°, respectively indicating that two (pydc)2– units are almost perpendicular to each other (Table 1). Considerable π-π stacking interactions between two aromatic rings of (pydc)2–, with distances of 3.4686 (14) Å and 3.5034 (14) Å are observed (Fig. 2) (Aghabozorg, Aghajani & Sharif, 2006; Aghabozorg, Zabihi et al., 2006). In the crystal structure, the spaces between two layers of [Ni(pydc)2]2– fragments are filled with layers of (pipzH2)2+ cations and water molecules (Fig. 3). The most important features of the crystal structure of (I) is the presence of a large number of O—H···O, N—H···O and C—H···O hydrogen bonds, with D···A distances ranging from 2.696 (3) to 3.457 (3) Å between (pipzH2)2+ and [Ni(pydc)2]2– fragments and uncoordinated water molecules. (Table 2). Ion pairing and van der Waals interactions are also effective in the packing. These interactions result in the formation of a supramolecular structure (Fig. 4).

We have reported cases in which proton transfer from pyridine-2,6-dicarboxylic acid, pydcH2, and benzene-1,2,4,5-tetracarboxylic acid, btcH4, to piperazine, pipz, and 1,10-phenanthroline, phen, resulted in the formation of novel self-assembled (pipzH2)(pydc) (Aghabozorg, Ghadermazi, Manteghi & Nakhjavan, 2006) and (phenH)4(btcH3)2(btcH2) (Aghabozorg, Ghadermazi & Attar Gharamaleki, 2006) systems, respectively. The resulting compounds with some remaining sites as electron donors can coordinate to many metallic ions (Aghabozorg, Ghasemikhah, Ghadermazi et al., 2006; Aghabozorg, Ghasemikhah, Soleimannejad et al., 2006).

For related literature, see: Aghabozorg, Aghajani & Sharif (2006); Aghabozorg, Zabihi, Ghadermazi, Attar Gharamaleki & Sheshmani (2006); Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme and displacements. Ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. ππ stacking interactions between two aromatic rings of (I). The average distances between the planes are 3.4686 (14) Å [symmetry operation (-x, -y + 1, -z)] and 3.5034 (14) Å [symmetry operation (-x + 1, -y + 2, -z)], respectively.
[Figure 3] Fig. 3. The layered crystal-packing diagram of (I). The space between two layers of [Ni(pydc)2]2- fragments is filled with a layer of (pipzH2)2+ cations and water molecules.
[Figure 4] Fig. 4. The crystal packing of (I). Hydrogen bonds are shown as dashed lines.
Piperazinediium bis(pyridine-2,6-dicarboxylato)nickelate(II) tetrahydrate top
Crystal data top
(C4H12N2)[Ni(C7H3NO4)2]·4H2OF(000) = 1144
Mr = 549.14Dx = 1.636 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.9776 (11) ÅCell parameters from 6417 reflections
b = 13.2767 (19) Åθ = 2.5–27.0°
c = 21.054 (3) ŵ = 0.94 mm1
β = 90.502 (2)°T = 150 K
V = 2229.8 (5) Å3Block, green
Z = 40.18 × 0.15 × 0.07 mm
Data collection top
Bruker SMART area-detector
diffractometer
5111 independent reflections
Radiation source: fine-focus sealed tube3612 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 100 pixels mm-1θmax = 27.6°, θmin = 1.8°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 1717
Tmin = 0.849, Tmax = 0.937l = 2727
25180 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0467P)2]
where P = (Fo2 + 2Fc2)/3
5111 reflections(Δ/σ)max < 0.001
318 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
(C4H12N2)[Ni(C7H3NO4)2]·4H2OV = 2229.8 (5) Å3
Mr = 549.14Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.9776 (11) ŵ = 0.94 mm1
b = 13.2767 (19) ÅT = 150 K
c = 21.054 (3) Å0.18 × 0.15 × 0.07 mm
β = 90.502 (2)°
Data collection top
Bruker SMART area-detector
diffractometer
5111 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3612 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.937Rint = 0.054
25180 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.01Δρmax = 0.36 e Å3
5111 reflectionsΔρmin = 0.42 e Å3
318 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.23343 (4)0.75474 (2)0.007996 (14)0.01605 (10)
O10.40312 (19)0.70749 (12)0.06451 (8)0.0202 (4)
O20.4609 (2)0.57156 (12)0.12315 (8)0.0223 (4)
O30.0547 (2)0.61563 (12)0.14314 (8)0.0218 (4)
O40.0453 (2)0.73511 (11)0.07875 (8)0.0205 (4)
O50.4136 (2)0.76423 (12)0.08329 (8)0.0214 (4)
O60.5285 (2)0.87901 (13)0.14854 (8)0.0256 (4)
O70.0134 (2)0.95380 (13)0.11768 (8)0.0256 (4)
O80.07588 (19)0.80978 (12)0.06660 (8)0.0204 (4)
O90.0331 (2)0.11768 (14)0.32180 (9)0.0364 (5)
H9B0.04780.16860.35310.048 (9)*
H9A0.00060.06050.34560.077 (12)*
O100.7399 (2)0.44110 (14)0.71874 (9)0.0328 (5)
H10A0.66710.43770.68290.039*
H10B0.67140.41580.75180.039*
O110.0361 (2)0.43955 (13)0.21897 (8)0.0304 (4)
H11A0.02230.45920.25650.036*
H11B0.04040.49990.19470.036*
O120.1234 (2)0.26988 (13)0.16332 (9)0.0291 (4)
H12B0.05220.24480.13050.035*
H12A0.05420.32460.17580.035*
N10.2149 (2)0.60746 (14)0.01186 (9)0.0156 (4)
N20.2654 (2)0.90052 (14)0.01493 (9)0.0152 (4)
N30.4462 (2)0.27255 (15)0.20231 (9)0.0207 (5)
H3B0.47200.32260.17530.025*
H3A0.35300.24410.18600.025*
N40.7096 (2)0.27635 (14)0.29515 (9)0.0195 (5)
H4B0.80010.30240.31500.023*
H4A0.66360.22880.32000.023*
C10.3960 (3)0.61423 (18)0.07599 (11)0.0176 (5)
C20.3014 (3)0.55085 (17)0.02846 (11)0.0159 (5)
C30.3007 (3)0.44672 (18)0.02384 (11)0.0192 (5)
H30.36090.40620.05310.023*
C40.2093 (3)0.40361 (18)0.02486 (11)0.0200 (5)
H40.20710.33250.02950.024*
C50.1213 (3)0.46372 (17)0.06671 (11)0.0192 (5)
H50.05950.43450.10040.023*
C60.1251 (3)0.56680 (17)0.05859 (11)0.0167 (5)
C70.0316 (3)0.64473 (17)0.09696 (11)0.0176 (5)
C80.4416 (3)0.85382 (18)0.10199 (11)0.0184 (5)
C90.3618 (3)0.93598 (17)0.06175 (11)0.0164 (5)
C100.3872 (3)1.03821 (17)0.06906 (11)0.0182 (5)
H100.45501.06350.10280.022*
C110.3114 (3)1.10280 (18)0.02607 (12)0.0211 (5)
H110.32801.17340.02990.025*
C120.2111 (3)1.06511 (17)0.02263 (11)0.0185 (5)
H120.15901.10900.05250.022*
C130.1889 (3)0.96183 (17)0.02646 (11)0.0164 (5)
C140.0830 (3)0.90522 (18)0.07527 (11)0.0178 (5)
C150.5776 (3)0.19368 (18)0.20308 (12)0.0216 (5)
H15A0.59700.16970.15920.026*
H15B0.53930.13570.22880.026*
C160.4186 (3)0.31777 (19)0.26631 (11)0.0223 (5)
H16A0.37360.26610.29540.027*
H16B0.33570.37300.26300.027*
C170.5813 (3)0.35802 (18)0.29238 (12)0.0245 (6)
H17A0.62170.41340.26500.029*
H17B0.56350.38550.33550.029*
C180.7395 (3)0.23442 (18)0.23072 (12)0.0206 (5)
H18A0.82370.17980.23340.025*
H18B0.78410.28780.20270.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01895 (16)0.01449 (16)0.01470 (17)0.00075 (13)0.00121 (11)0.00007 (13)
O10.0234 (9)0.0173 (9)0.0199 (9)0.0017 (7)0.0036 (7)0.0006 (7)
O20.0268 (9)0.0224 (9)0.0176 (9)0.0025 (7)0.0040 (7)0.0021 (7)
O30.0284 (9)0.0205 (9)0.0164 (9)0.0003 (7)0.0051 (7)0.0011 (7)
O40.0263 (9)0.0180 (9)0.0173 (9)0.0015 (7)0.0032 (7)0.0002 (7)
O50.0274 (9)0.0177 (9)0.0190 (9)0.0029 (7)0.0055 (7)0.0010 (7)
O60.0270 (9)0.0275 (10)0.0221 (10)0.0057 (8)0.0125 (8)0.0034 (8)
O70.0295 (10)0.0274 (10)0.0197 (10)0.0041 (8)0.0115 (8)0.0067 (8)
O80.0229 (9)0.0189 (9)0.0192 (10)0.0030 (7)0.0063 (7)0.0005 (7)
O90.0616 (13)0.0251 (10)0.0226 (11)0.0076 (9)0.0043 (10)0.0009 (9)
O100.0251 (10)0.0455 (12)0.0277 (11)0.0005 (8)0.0042 (8)0.0036 (9)
O110.0461 (11)0.0246 (10)0.0204 (10)0.0028 (8)0.0056 (9)0.0027 (8)
O120.0230 (9)0.0279 (10)0.0363 (11)0.0005 (7)0.0109 (8)0.0049 (8)
N10.0179 (10)0.0162 (10)0.0125 (10)0.0002 (8)0.0020 (8)0.0006 (8)
N20.0145 (9)0.0184 (10)0.0126 (10)0.0002 (8)0.0014 (8)0.0009 (8)
N30.0185 (10)0.0279 (12)0.0157 (11)0.0053 (8)0.0028 (8)0.0014 (9)
N40.0199 (10)0.0206 (11)0.0178 (11)0.0060 (8)0.0058 (9)0.0004 (8)
C10.0147 (11)0.0203 (13)0.0179 (13)0.0004 (9)0.0025 (10)0.0014 (10)
C20.0134 (11)0.0186 (12)0.0156 (12)0.0010 (9)0.0018 (9)0.0023 (10)
C30.0171 (12)0.0212 (12)0.0193 (13)0.0016 (10)0.0011 (10)0.0041 (10)
C40.0216 (12)0.0161 (12)0.0222 (14)0.0019 (10)0.0024 (10)0.0025 (10)
C50.0223 (12)0.0196 (12)0.0157 (13)0.0010 (10)0.0006 (10)0.0031 (10)
C60.0158 (11)0.0210 (12)0.0132 (12)0.0004 (9)0.0023 (9)0.0009 (10)
C70.0198 (12)0.0180 (12)0.0151 (13)0.0005 (10)0.0031 (10)0.0018 (10)
C80.0167 (12)0.0224 (13)0.0161 (13)0.0019 (10)0.0001 (10)0.0005 (10)
C90.0150 (11)0.0202 (12)0.0141 (12)0.0024 (9)0.0002 (9)0.0019 (10)
C100.0179 (11)0.0189 (12)0.0179 (13)0.0011 (10)0.0038 (10)0.0041 (10)
C110.0207 (12)0.0159 (12)0.0266 (15)0.0006 (10)0.0019 (11)0.0027 (10)
C120.0177 (12)0.0196 (13)0.0183 (13)0.0016 (10)0.0000 (10)0.0049 (10)
C130.0160 (11)0.0207 (12)0.0125 (12)0.0010 (9)0.0016 (9)0.0020 (10)
C140.0157 (11)0.0239 (13)0.0138 (13)0.0011 (10)0.0011 (9)0.0008 (10)
C150.0244 (13)0.0207 (13)0.0199 (14)0.0019 (10)0.0003 (11)0.0021 (11)
C160.0232 (13)0.0267 (14)0.0169 (13)0.0012 (11)0.0013 (10)0.0003 (11)
C170.0310 (14)0.0219 (13)0.0205 (14)0.0026 (11)0.0012 (11)0.0036 (11)
C180.0192 (12)0.0227 (13)0.0198 (13)0.0002 (10)0.0001 (10)0.0002 (10)
Geometric parameters (Å, º) top
Ni1—N21.9575 (19)N4—C171.492 (3)
Ni1—N11.9626 (19)N4—H4B0.9000
Ni1—O82.1320 (16)N4—H4A0.9000
Ni1—O52.1340 (16)C1—C21.514 (3)
Ni1—O42.1400 (16)C2—C31.386 (3)
Ni1—O12.1429 (16)C3—C41.387 (3)
O1—C11.263 (3)C3—H30.9500
O2—C11.259 (3)C4—C51.385 (3)
O3—C71.257 (3)C4—H40.9500
O4—C71.265 (3)C5—C61.380 (3)
O5—C81.272 (3)C5—H50.9500
O6—C81.242 (3)C6—C71.513 (3)
O7—C141.230 (3)C8—C91.518 (3)
O8—C141.282 (3)C9—C101.381 (3)
O9—H9B0.9500C10—C111.382 (3)
O9—H9A0.9501C10—H100.9500
O10—H10A0.9501C11—C121.388 (3)
O10—H10B0.9499C11—H110.9500
O11—H11A0.9500C12—C131.385 (3)
O11—H11B0.9501C12—H120.9500
O12—H12B0.9500C13—C141.523 (3)
O12—H12A0.9499C15—C181.512 (3)
N1—C21.331 (3)C15—H15A0.9900
N1—C61.336 (3)C15—H15B0.9900
N2—C91.331 (3)C16—C171.503 (3)
N2—C131.336 (3)C16—H16A0.9900
N3—C151.481 (3)C16—H16B0.9900
N3—C161.493 (3)C17—H17A0.9900
N3—H3B0.9001C17—H17B0.9900
N3—H3A0.9000C18—H18A0.9900
N4—C181.487 (3)C18—H18B0.9900
N2—Ni1—N1172.66 (8)C6—C5—H5120.6
N2—Ni1—O877.97 (7)C4—C5—H5120.6
N1—Ni1—O8109.14 (7)N1—C6—C5120.3 (2)
N2—Ni1—O578.45 (7)N1—C6—C7112.8 (2)
N1—Ni1—O594.50 (7)C5—C6—C7126.9 (2)
O8—Ni1—O5156.31 (6)O3—C7—O4125.1 (2)
N2—Ni1—O499.22 (7)O3—C7—C6118.6 (2)
N1—Ni1—O478.25 (7)O4—C7—C6116.3 (2)
O8—Ni1—O498.16 (6)O6—C8—O5126.3 (2)
O5—Ni1—O487.82 (6)O6—C8—C9118.4 (2)
N2—Ni1—O1105.06 (7)O5—C8—C9115.3 (2)
N1—Ni1—O177.65 (7)N2—C9—C10120.9 (2)
O8—Ni1—O187.00 (6)N2—C9—C8113.3 (2)
O5—Ni1—O196.95 (6)C10—C9—C8125.7 (2)
O4—Ni1—O1155.72 (6)C9—C10—C11118.3 (2)
C1—O1—Ni1113.30 (14)C9—C10—H10120.9
C7—O4—Ni1112.92 (14)C11—C10—H10120.9
C8—O5—Ni1113.61 (14)C10—C11—C12120.4 (2)
C14—O8—Ni1114.66 (14)C10—C11—H11119.8
H9B—O9—H9A103.8C12—C11—H11119.8
H10A—O10—H10B102.3C13—C12—C11118.2 (2)
H11A—O11—H11B103.3C13—C12—H12120.9
H12B—O12—H12A97.1C11—C12—H12120.9
C2—N1—C6121.7 (2)N2—C13—C12120.5 (2)
C2—N1—Ni1119.77 (15)N2—C13—C14112.8 (2)
C6—N1—Ni1118.30 (15)C12—C13—C14126.7 (2)
C9—N2—C13121.7 (2)O7—C14—O8127.0 (2)
C9—N2—Ni1118.62 (15)O7—C14—C13118.4 (2)
C13—N2—Ni1119.71 (15)O8—C14—C13114.6 (2)
C15—N3—C16112.59 (18)N3—C15—C18110.69 (19)
C15—N3—H3B111.3N3—C15—H15A109.5
C16—N3—H3B108.0C18—C15—H15A109.5
C15—N3—H3A106.8N3—C15—H15B109.5
C16—N3—H3A112.7C18—C15—H15B109.5
H3B—N3—H3A105.2H15A—C15—H15B108.1
C18—N4—C17110.60 (18)N3—C16—C17109.8 (2)
C18—N4—H4B115.7N3—C16—H16A109.7
C17—N4—H4B106.6C17—C16—H16A109.7
C18—N4—H4A109.6N3—C16—H16B109.7
C17—N4—H4A104.4C17—C16—H16B109.7
H4B—N4—H4A109.2H16A—C16—H16B108.2
O2—C1—O1125.0 (2)N4—C17—C16110.2 (2)
O2—C1—C2118.8 (2)N4—C17—H17A109.6
O1—C1—C2116.1 (2)C16—C17—H17A109.6
N1—C2—C3121.1 (2)N4—C17—H17B109.6
N1—C2—C1111.8 (2)C16—C17—H17B109.6
C3—C2—C1127.1 (2)H17A—C17—H17B108.1
C2—C3—C4117.8 (2)N4—C18—C15109.97 (19)
C2—C3—H3121.1N4—C18—H18A109.7
C4—C3—H3121.1C15—C18—H18A109.7
C5—C4—C3120.4 (2)N4—C18—H18B109.7
C5—C4—H4119.8C15—C18—H18B109.7
C3—C4—H4119.8H18A—C18—H18B108.2
C6—C5—C4118.8 (2)
N2—Ni1—O1—C1178.68 (15)O1—C1—C2—C3167.5 (2)
N1—Ni1—O1—C18.35 (15)N1—C2—C3—C41.1 (3)
O8—Ni1—O1—C1101.99 (16)C1—C2—C3—C4177.8 (2)
O5—Ni1—O1—C1101.46 (16)C2—C3—C4—C50.5 (3)
O4—Ni1—O1—C11.3 (3)C3—C4—C5—C60.6 (3)
N2—Ni1—O4—C7162.01 (16)C2—N1—C6—C50.7 (3)
N1—Ni1—O4—C710.98 (16)Ni1—N1—C6—C5173.99 (17)
O8—Ni1—O4—C7118.95 (16)C2—N1—C6—C7177.69 (19)
O5—Ni1—O4—C784.08 (16)Ni1—N1—C6—C77.6 (2)
O1—Ni1—O4—C718.0 (3)C4—C5—C6—N11.3 (3)
N2—Ni1—O5—C87.61 (16)C4—C5—C6—C7176.9 (2)
N1—Ni1—O5—C8170.29 (16)Ni1—O4—C7—O3170.98 (18)
O8—Ni1—O5—C813.2 (3)Ni1—O4—C7—C610.2 (2)
O4—Ni1—O5—C892.26 (16)N1—C6—C7—O3178.59 (19)
O1—Ni1—O5—C8111.63 (16)C5—C6—C7—O33.1 (4)
N2—Ni1—O8—C144.62 (15)N1—C6—C7—O42.5 (3)
N1—Ni1—O8—C14177.30 (15)C5—C6—C7—O4175.8 (2)
O5—Ni1—O8—C141.0 (3)Ni1—O5—C8—O6172.99 (19)
O4—Ni1—O8—C14102.37 (16)Ni1—O5—C8—C98.2 (2)
O1—Ni1—O8—C14101.48 (16)C13—N2—C9—C100.4 (3)
N2—Ni1—N1—C2114.2 (6)Ni1—N2—C9—C10179.45 (17)
O8—Ni1—N1—C280.63 (17)C13—N2—C9—C8177.99 (19)
O5—Ni1—N1—C297.89 (17)Ni1—N2—C9—C82.9 (2)
O4—Ni1—N1—C2175.29 (18)O6—C8—C9—N2177.1 (2)
O1—Ni1—N1—C21.75 (16)O5—C8—C9—N23.9 (3)
N2—Ni1—N1—C660.6 (6)O6—C8—C9—C105.4 (3)
O8—Ni1—N1—C6104.56 (16)O5—C8—C9—C10173.5 (2)
O5—Ni1—N1—C676.92 (16)N2—C9—C10—C110.7 (3)
O4—Ni1—N1—C69.90 (16)C8—C9—C10—C11176.6 (2)
O1—Ni1—N1—C6173.06 (17)C9—C10—C11—C120.7 (3)
N1—Ni1—N2—C911.2 (7)C10—C11—C12—C130.3 (3)
O8—Ni1—N2—C9176.82 (17)C9—N2—C13—C121.5 (3)
O5—Ni1—N2—C95.48 (16)Ni1—N2—C13—C12179.48 (17)
O4—Ni1—N2—C980.37 (16)C9—N2—C13—C14179.07 (19)
O1—Ni1—N2—C999.65 (16)Ni1—N2—C13—C140.0 (2)
N1—Ni1—N2—C13167.9 (5)C11—C12—C13—N21.4 (3)
O8—Ni1—N2—C132.27 (16)C11—C12—C13—C14179.2 (2)
O5—Ni1—N2—C13175.44 (17)Ni1—O8—C14—O7174.76 (19)
O4—Ni1—N2—C1398.72 (16)Ni1—O8—C14—C135.8 (2)
O1—Ni1—N2—C1381.26 (17)N2—C13—C14—O7176.5 (2)
Ni1—O1—C1—O2167.25 (18)C12—C13—C14—O73.0 (3)
Ni1—O1—C1—C212.8 (2)N2—C13—C14—O84.1 (3)
C6—N1—C2—C30.5 (3)C12—C13—C14—O8176.5 (2)
Ni1—N1—C2—C3175.12 (16)C16—N3—C15—C1855.1 (3)
C6—N1—C2—C1178.59 (19)C15—N3—C16—C1755.5 (3)
Ni1—N1—C2—C14.0 (2)C18—N4—C17—C1659.7 (2)
O2—C1—C2—N1168.6 (2)N3—C16—C17—N457.0 (3)
O1—C1—C2—N111.5 (3)C17—N4—C18—C1558.5 (2)
O2—C1—C2—C312.4 (3)N3—C15—C18—N455.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9B···O5i0.951.872.819 (2)177
O9—H9A···O2ii0.951.902.828 (2)166
O10—H10A···O70.951.992.927 (2)167
O10—H10B···O90.951.902.846 (3)173
O11—H11A···O6iii0.952.302.903 (2)120
O11—H11A···O10iv0.952.373.124 (2)136
O11—H11B···O30.951.882.834 (2)177
O12—H12B···O8v0.951.832.781 (2)177
O12—H12A···O110.951.922.844 (2)164
N3—H3B···O2vi0.901.862.763 (3)176
N3—H3B···O1vi0.902.583.161 (3)123
N3—H3A···O120.901.922.696 (2)144
N4—H4B···O6vii0.901.862.754 (2)170
N4—H4A···O3iii0.901.902.792 (3)169
C15—H15A···O1vi0.992.583.204 (3)121
C16—H16B···O10iv0.992.573.457 (3)149
C17—H17B···O7iv0.992.393.184 (3)137
C18—H18B···O11viii0.992.503.270 (3)135
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+3/2, z+1/2; (v) x, y+1, z; (vi) x+1, y+1, z; (vii) x+3/2, y1/2, z+1/2; (viii) x+1, y, z.

Experimental details

Crystal data
Chemical formula(C4H12N2)[Ni(C7H3NO4)2]·4H2O
Mr549.14
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)7.9776 (11), 13.2767 (19), 21.054 (3)
β (°) 90.502 (2)
V3)2229.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.18 × 0.15 × 0.07
Data collection
DiffractometerBruker SMART area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.849, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
25180, 5111, 3612
Rint0.054
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.094, 1.01
No. of reflections5111
No. of parameters318
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.42

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
Ni1—N21.9575 (19)Ni1—O52.1340 (16)
Ni1—N11.9626 (19)Ni1—O42.1400 (16)
Ni1—O82.1320 (16)Ni1—O12.1429 (16)
N2—Ni1—N1172.66 (8)O8—Ni1—O187.00 (6)
O8—Ni1—O5156.31 (6)O4—Ni1—O1155.72 (6)
O5—Ni1—O487.82 (6)
O5—Ni1—O4—C784.08 (16)O4—Ni1—O5—C892.26 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9B···O5i0.951.872.819 (2)176.7
O9—H9A···O2ii0.951.902.828 (2)165.6
O10—H10A···O70.951.992.927 (2)167.4
O10—H10B···O90.951.902.846 (3)172.7
O11—H11A···O6iii0.952.302.903 (2)120.4
O11—H11A···O10iv0.952.373.124 (2)136.3
O11—H11B···O30.951.882.834 (2)176.9
O12—H12B···O8v0.951.832.781 (2)176.5
O12—H12A···O110.951.922.844 (2)163.6
N3—H3B···O2vi0.901.862.763 (3)175.8
N3—H3B···O1vi0.902.583.161 (3)123.3
N3—H3A···O120.901.922.696 (2)143.5
N4—H4B···O6vii0.901.862.754 (2)169.5
N4—H4A···O3iii0.901.902.792 (3)168.6
C15—H15A···O1vi0.992.583.204 (3)121
C16—H16B···O10iv0.992.573.457 (3)149
C17—H17B···O7iv0.992.393.184 (3)137
C18—H18B···O11viii0.992.503.270 (3)135
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+3/2, z+1/2; (v) x, y+1, z; (vi) x+1, y+1, z; (vii) x+3/2, y1/2, z+1/2; (viii) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds