Download citation
Download citation
link to html
In the title complex, [Cu(C14H11NO3)(C12H8N2)]·CH3OH, with a tridentate Schiff base ligand derived from the condensation of o-vanillin and 2-hydroxy­aniline, the CuII ion is five-coordinated by three N atoms [Cu—N = 1.950 (2)–2.333 (3) Å] and two O atoms [Cu—O = 1.926 (2) and 1.949 (2) Å] in a distorted square-pyramidal configuration. The mean planes of the tridentate Schiff base and 1,10-phenanthroline (phen) ligands make a dihedral angle of 88.39 (5)°. Two neighbouring complexes related by a centre of symmetry are paired by a significant π–π inter­action, with a short distance of 3.396 (4) Å between the centroids of the outer rings of the phen ligands. The crystal packing is further stabilized by inter­molecular O—H...O and C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807020867/cv2231sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807020867/cv2231Isup2.hkl
Contains datablock I

CCDC reference: 650530

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • Disorder in solvent or counterion
  • R factor = 0.040
  • wR factor = 0.096
  • Data-to-parameter ratio = 12.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.98 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 300 Ang. PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 300 Deg. PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 50.00 Perc. PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 3 N2 -CU1 -N1 -C1 166.80 0.60 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 7 N2 -CU1 -N1 -C9 -12.00 0.70 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 11 N1 -CU1 -N2 -C15 -75.00 0.70 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 15 N1 -CU1 -N2 -C19 97.90 0.70 1.555 1.555 1.555 1.555
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 16
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Schiff bases still play an important role as ligands in metal coordination chemistry since their discovery [Yamada, S. (1966) Coord. Chem. Rew. 1, 415–437]. Considerable efforts have been devotedd to copper(II) complexes of tridentate Schiff base ligands of N-alkylidene or N-arylidene alkanato type due to their structural richness and a potential model for a number of important biological systems. We report here the synthesis and crystal structure of the title compound, (I), a new copper(II) complex with a tridentate Schiff base ligand derived from the condensation of o-vanillin and 2-Hydroxyaniline, and with phenanthroline.

The CuII atom is five-coordinataed in a seriously distorted square-pyramidal geometry (Fig.1), in which O1, O3, N1, and N2 locate in equatorial plane, and N3 in the apical position, and the CuII atom lies 0.1205 (12) Å above the equatorial plane. The bond distances of Cu—N2, Cu—N3 from neutral ligand phenanthroline are somewhat longer than those of Cu—N1, Cu—O1 and Cu—O2 from Schiff base anion(Table 1), similar to that reported previously (Elena et al., 1995). The apical Cu—N3 bond deviates greatly from the right position to close the Cu—N2 bond (N3—Cu1—N2 is 76.37 (9)°). The tridentate Schiff base ligand coordinated to copper atom to form two chelated rings (Cu1/O3/C9—C10/N1 and Cu1/N1/C1—C3/O1) and the two rings has dihedral angle 4.48 (34)° and 2.92 (13)° to the equatorial plane, respectively. The phenanthroline ligand almost perpendicular to the Schiff base chelating plane (dihedral angle 87.96 (7)°). As shown in Fig. 2, the ligands of 1,10-phenanthroline moiety related by centers of symmetry have a centroid-centroid separation of 3.396 (4)Å (perpendicular distance 3.282 (4) Å) for rings formed by C15—C19/N2 atoms and the slip angle is 14.89 (50)°, indicating a significant π-π interaction [Tong, M. L., Lee, H. K., Chen, X. M., Huang, R. B., Mak, T. M.C. (1999) J. Chem. Soc. Dalton. Trans. 39, 3657–3659]. The intermolecular hydrogen bond distances and bond angles were listed in table 2.

Related literature top

For related literature, see: Elena et al. (1995).

Experimental top

2-Hydroxyaniline(1 mmol, 109.12 mg) and potassium hydroxide (1 mmol, 56.1 mg) were dissolved in hot methanol (10 ml) and added dropwise to a methanol solution of o-vanillin (1 mmol, 152.2 mg). The mixture was then stirred at 323 K for 2 h. Subsequently, an aqueous solution(2 ml) of cupric acetate monohydrate(1 mmol, 199.7 mg) was added dropwise and stirred for 2 h. An methanol solution (5 ml) of phenanthroline(1 mmol, 198.2 mg) was added dropwise and stirred for 4 h. The solution was held at room temperature for ten days, whereupon green blocky crystals suitable for X-ray diffraction analysis were obtained.

Refinement top

Difference Fourier maps revealed that the methanol molecule is disordered between two positions. The subsequent refinement of their occupancies gave the values of 0.566 (4) and 0.434 (4), respectively. All H atoms were placed in geometrically calculated positions (O—H = 0.82 Å, C—H = 0.93 - 0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2–1.5Ueq(parent atom).

Structure description top

Schiff bases still play an important role as ligands in metal coordination chemistry since their discovery [Yamada, S. (1966) Coord. Chem. Rew. 1, 415–437]. Considerable efforts have been devotedd to copper(II) complexes of tridentate Schiff base ligands of N-alkylidene or N-arylidene alkanato type due to their structural richness and a potential model for a number of important biological systems. We report here the synthesis and crystal structure of the title compound, (I), a new copper(II) complex with a tridentate Schiff base ligand derived from the condensation of o-vanillin and 2-Hydroxyaniline, and with phenanthroline.

The CuII atom is five-coordinataed in a seriously distorted square-pyramidal geometry (Fig.1), in which O1, O3, N1, and N2 locate in equatorial plane, and N3 in the apical position, and the CuII atom lies 0.1205 (12) Å above the equatorial plane. The bond distances of Cu—N2, Cu—N3 from neutral ligand phenanthroline are somewhat longer than those of Cu—N1, Cu—O1 and Cu—O2 from Schiff base anion(Table 1), similar to that reported previously (Elena et al., 1995). The apical Cu—N3 bond deviates greatly from the right position to close the Cu—N2 bond (N3—Cu1—N2 is 76.37 (9)°). The tridentate Schiff base ligand coordinated to copper atom to form two chelated rings (Cu1/O3/C9—C10/N1 and Cu1/N1/C1—C3/O1) and the two rings has dihedral angle 4.48 (34)° and 2.92 (13)° to the equatorial plane, respectively. The phenanthroline ligand almost perpendicular to the Schiff base chelating plane (dihedral angle 87.96 (7)°). As shown in Fig. 2, the ligands of 1,10-phenanthroline moiety related by centers of symmetry have a centroid-centroid separation of 3.396 (4)Å (perpendicular distance 3.282 (4) Å) for rings formed by C15—C19/N2 atoms and the slip angle is 14.89 (50)°, indicating a significant π-π interaction [Tong, M. L., Lee, H. K., Chen, X. M., Huang, R. B., Mak, T. M.C. (1999) J. Chem. Soc. Dalton. Trans. 39, 3657–3659]. The intermolecular hydrogen bond distances and bond angles were listed in table 2.

For related literature, see: Elena et al. (1995).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Packing diagram of the title compound.
[2-(3-Methoxy-2-oxidobenzylideneamino)phenolato-κ3O,N,O'](1,10- phenanthroline-κ2N,N')copper(II) methanol solvate top
Crystal data top
[Cu(C14H11NO3)(C12H8N2)]·CH4OZ = 2
Mr = 517.02F(000) = 534
Triclinic, P1Dx = 1.482 Mg m3
a = 9.905 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.335 (3) ÅCell parameters from 2789 reflections
c = 12.094 (3) Åθ = 2.3–27.6°
α = 82.701 (3)°µ = 0.98 mm1
β = 70.742 (3)°T = 298 K
γ = 89.236 (3)°Block, blue
V = 1158.8 (6) Å30.21 × 0.18 × 0.07 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
4012 independent reflections
Radiation source: fine-focus sealed tube3134 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SABADS; Sheldrick, 1996)
h = 118
Tmin = 0.820, Tmax = 0.934k = 1112
5996 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.4525P]
where P = (Fo2 + 2Fc2)/3
4012 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.48 e Å3
16 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cu(C14H11NO3)(C12H8N2)]·CH4Oγ = 89.236 (3)°
Mr = 517.02V = 1158.8 (6) Å3
Triclinic, P1Z = 2
a = 9.905 (3) ÅMo Kα radiation
b = 10.335 (3) ŵ = 0.98 mm1
c = 12.094 (3) ÅT = 298 K
α = 82.701 (3)°0.21 × 0.18 × 0.07 mm
β = 70.742 (3)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4012 independent reflections
Absorption correction: multi-scan
(SABADS; Sheldrick, 1996)
3134 reflections with I > 2σ(I)
Tmin = 0.820, Tmax = 0.934Rint = 0.018
5996 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04016 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.03Δρmax = 0.48 e Å3
4012 reflectionsΔρmin = 0.47 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.06105 (4)0.81675 (4)0.73686 (3)0.03642 (14)
N10.0446 (2)0.7433 (2)0.5923 (2)0.0349 (6)
N20.1087 (3)0.8788 (2)0.8987 (2)0.0346 (6)
N30.0767 (3)0.6863 (2)0.8276 (2)0.0416 (6)
O10.0849 (2)0.9503 (2)0.65842 (16)0.0433 (5)
O20.2853 (3)1.1329 (2)0.5911 (2)0.0594 (7)
O30.2347 (2)0.7071 (2)0.80315 (17)0.0447 (5)
O40.5173 (6)0.8061 (5)0.0646 (4)0.0833 (13)0.566 (4)
H40.57850.76480.10870.125*0.566 (4)
O4'0.5881 (8)0.6913 (7)0.0324 (5)0.0833 (13)0.434 (4)
H4'0.64690.68990.03350.125*0.434 (4)
C10.0500 (3)0.7797 (3)0.4913 (3)0.0395 (7)
H10.04730.73680.42890.047*
C20.1585 (3)0.8789 (3)0.4651 (2)0.0353 (7)
C30.1689 (3)0.9587 (3)0.5493 (2)0.0359 (7)
C40.2815 (3)1.0569 (3)0.5073 (3)0.0406 (7)
C50.3739 (3)1.0715 (3)0.3943 (3)0.0482 (8)
H50.44561.13630.37030.058*
C60.3617 (4)0.9898 (3)0.3138 (3)0.0531 (9)
H60.42530.99980.23690.064*
C70.2572 (3)0.8969 (3)0.3489 (3)0.0473 (8)
H70.24960.84290.29520.057*
C80.4035 (4)1.2217 (4)0.5636 (3)0.0674 (11)
H8A0.49091.17520.54080.101*
H8B0.39711.26330.63170.101*
H8C0.40241.28660.49970.101*
C90.1522 (3)0.6459 (3)0.6113 (3)0.0358 (7)
C100.2511 (3)0.6329 (3)0.7263 (3)0.0391 (7)
C110.3634 (4)0.5416 (3)0.7559 (3)0.0535 (9)
H110.43130.53280.83110.064*
C120.3746 (4)0.4638 (3)0.6740 (3)0.0601 (10)
H120.44950.40240.69500.072*
C130.2762 (4)0.4765 (3)0.5618 (3)0.0561 (9)
H130.28460.42360.50750.067*
C140.1655 (4)0.5674 (3)0.5301 (3)0.0467 (8)
H140.09930.57630.45410.056*
C150.2009 (3)0.9712 (3)0.9343 (3)0.0411 (8)
H150.24011.01520.88070.049*
C160.2419 (3)1.0055 (3)1.0479 (3)0.0454 (8)
H160.30661.07151.06900.054*
C170.1867 (3)0.9419 (3)1.1279 (3)0.0456 (8)
H170.21220.96461.20390.055*
C180.0906 (3)0.8415 (3)1.0944 (3)0.0402 (7)
C190.0542 (3)0.8127 (3)0.9781 (2)0.0335 (7)
C200.0459 (3)0.7120 (3)0.9396 (3)0.0371 (7)
C210.1055 (3)0.6438 (3)1.0203 (3)0.0438 (8)
C220.2003 (4)0.5448 (4)0.9792 (3)0.0552 (9)
H220.24150.49621.02930.066*
C230.2313 (4)0.5208 (4)0.8663 (3)0.0601 (10)
H230.29500.45630.83800.072*
C240.1679 (4)0.5926 (3)0.7929 (3)0.0519 (9)
H240.19040.57410.71560.062*
C250.0268 (4)0.7709 (3)1.1735 (3)0.0492 (9)
H250.05000.79061.25040.059*
C260.0663 (4)0.6767 (4)1.1375 (3)0.0537 (9)
H260.10600.63181.19040.064*
C270.4951 (14)0.7539 (17)0.0535 (10)0.071 (3)0.566 (4)
H27A0.58280.76000.07020.106*0.566 (4)
H27B0.46400.66410.06570.106*0.566 (4)
H27C0.42310.80210.10510.106*0.566 (4)
C27'0.4749 (19)0.763 (2)0.0235 (16)0.071 (3)0.434 (4)
H27D0.39240.73840.09170.106*0.434 (4)
H27E0.45500.74810.04640.106*0.434 (4)
H27F0.49760.85430.01890.106*0.434 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0389 (2)0.0426 (2)0.0274 (2)0.00479 (16)0.00977 (15)0.00596 (15)
N10.0341 (14)0.0396 (15)0.0318 (13)0.0005 (11)0.0120 (11)0.0050 (11)
N20.0365 (14)0.0348 (14)0.0334 (13)0.0032 (12)0.0124 (11)0.0045 (11)
N30.0432 (15)0.0452 (16)0.0351 (14)0.0008 (13)0.0100 (12)0.0088 (12)
O10.0475 (13)0.0502 (13)0.0290 (11)0.0100 (11)0.0069 (10)0.0080 (9)
O20.0668 (16)0.0581 (15)0.0511 (14)0.0235 (13)0.0146 (12)0.0098 (12)
O30.0424 (12)0.0521 (14)0.0361 (12)0.0118 (10)0.0054 (10)0.0125 (10)
O40.071 (3)0.095 (3)0.061 (3)0.031 (2)0.000 (2)0.012 (2)
O4'0.071 (3)0.095 (3)0.061 (3)0.031 (2)0.000 (2)0.012 (2)
C10.0439 (18)0.0439 (19)0.0333 (17)0.0040 (15)0.0154 (15)0.0077 (14)
C20.0377 (16)0.0393 (18)0.0281 (15)0.0018 (14)0.0113 (13)0.0001 (13)
C30.0363 (17)0.0404 (18)0.0316 (16)0.0018 (14)0.0141 (14)0.0004 (13)
C40.0427 (18)0.0424 (19)0.0383 (17)0.0005 (15)0.0165 (15)0.0025 (14)
C50.0424 (19)0.050 (2)0.0457 (19)0.0093 (16)0.0114 (16)0.0078 (16)
C60.051 (2)0.067 (2)0.0314 (17)0.0069 (18)0.0030 (15)0.0005 (16)
C70.049 (2)0.059 (2)0.0321 (17)0.0061 (17)0.0113 (15)0.0047 (15)
C80.065 (3)0.060 (3)0.080 (3)0.019 (2)0.027 (2)0.009 (2)
C90.0352 (16)0.0359 (17)0.0388 (16)0.0027 (13)0.0156 (13)0.0054 (13)
C100.0364 (17)0.0404 (18)0.0414 (17)0.0006 (14)0.0144 (14)0.0049 (14)
C110.046 (2)0.056 (2)0.053 (2)0.0122 (17)0.0077 (16)0.0098 (17)
C120.056 (2)0.053 (2)0.071 (3)0.0169 (18)0.020 (2)0.0122 (19)
C130.062 (2)0.053 (2)0.060 (2)0.0067 (18)0.0230 (19)0.0223 (18)
C140.049 (2)0.048 (2)0.0442 (18)0.0016 (16)0.0146 (16)0.0132 (15)
C150.0434 (19)0.0426 (19)0.0400 (17)0.0030 (16)0.0182 (15)0.0026 (14)
C160.048 (2)0.0427 (19)0.0454 (19)0.0051 (16)0.0133 (16)0.0131 (15)
C170.053 (2)0.050 (2)0.0331 (17)0.0025 (17)0.0111 (15)0.0115 (15)
C180.0444 (18)0.0441 (19)0.0340 (16)0.0045 (15)0.0153 (14)0.0055 (14)
C190.0333 (16)0.0381 (17)0.0303 (15)0.0062 (13)0.0129 (13)0.0015 (13)
C200.0345 (17)0.0398 (18)0.0368 (17)0.0032 (14)0.0123 (14)0.0028 (14)
C210.0383 (18)0.049 (2)0.0465 (19)0.0011 (16)0.0181 (15)0.0021 (15)
C220.047 (2)0.061 (2)0.063 (2)0.0084 (18)0.0269 (18)0.0029 (19)
C230.048 (2)0.061 (2)0.070 (3)0.0153 (19)0.0162 (19)0.017 (2)
C240.051 (2)0.060 (2)0.0423 (19)0.0034 (19)0.0092 (17)0.0137 (17)
C250.058 (2)0.060 (2)0.0344 (17)0.0011 (19)0.0217 (16)0.0050 (16)
C260.060 (2)0.066 (2)0.0429 (19)0.002 (2)0.0297 (18)0.0011 (17)
C270.051 (4)0.087 (4)0.065 (6)0.004 (4)0.017 (4)0.011 (5)
C27'0.051 (4)0.087 (4)0.065 (6)0.004 (4)0.017 (4)0.011 (5)
Geometric parameters (Å, º) top
Cu1—O11.926 (2)C10—C111.391 (4)
Cu1—O31.949 (2)C11—C121.385 (4)
Cu1—N11.950 (2)C11—H110.9300
Cu1—N22.041 (2)C12—C131.376 (5)
Cu1—N32.333 (3)C12—H120.9300
N1—C11.284 (4)C13—C141.375 (4)
N1—C91.419 (3)C13—H130.9300
N2—C151.324 (4)C14—H140.9300
N2—C191.359 (4)C15—C161.389 (4)
N3—C241.327 (4)C15—H150.9300
N3—C201.347 (4)C16—C171.359 (4)
O1—C31.300 (3)C16—H160.9300
O2—C41.369 (3)C17—C181.404 (4)
O2—C81.421 (4)C17—H170.9300
O3—C101.328 (3)C18—C191.402 (4)
O4—C271.407 (11)C18—C251.434 (4)
O4—H40.8200C19—C201.440 (4)
O4'—C27'1.364 (15)C20—C211.412 (4)
O4'—H4'0.8200C21—C221.404 (5)
C1—C21.425 (4)C21—C261.425 (4)
C1—H10.9300C22—C231.352 (5)
C2—C71.413 (4)C22—H220.9300
C2—C31.418 (4)C23—C241.386 (5)
C3—C41.434 (4)C23—H230.9300
C4—C51.361 (4)C24—H240.9300
C5—C61.401 (4)C25—C261.345 (5)
C5—H50.9300C25—H250.9300
C6—C71.344 (4)C26—H260.9300
C6—H60.9300C27—H27A0.9600
C7—H70.9300C27—H27B0.9600
C8—H8A0.9600C27—H27C0.9600
C8—H8B0.9600C27'—H27D0.9600
C8—H8C0.9600C27'—H27E0.9600
C9—C141.390 (4)C27'—H27F0.9600
C9—C101.403 (4)
O1—Cu1—O3167.67 (9)C10—C11—H11119.8
O1—Cu1—N194.04 (9)C13—C12—C11120.7 (3)
O3—Cu1—N183.92 (9)C13—C12—H12119.6
O1—Cu1—N294.42 (8)C11—C12—H12119.6
O3—Cu1—N287.19 (9)C14—C13—C12119.9 (3)
N1—Cu1—N2171.06 (9)C14—C13—H13120.0
O1—Cu1—N396.12 (9)C12—C13—H13120.0
O3—Cu1—N396.14 (9)C13—C14—C9120.1 (3)
N1—Cu1—N3105.59 (9)C13—C14—H14119.9
N2—Cu1—N376.37 (9)C9—C14—H14119.9
C1—N1—C9123.6 (2)N2—C15—C16123.2 (3)
C1—N1—Cu1124.6 (2)N2—C15—H15118.4
C9—N1—Cu1111.79 (18)C16—C15—H15118.4
C15—N2—C19118.2 (3)C17—C16—C15119.4 (3)
C15—N2—Cu1123.4 (2)C17—C16—H16120.3
C19—N2—Cu1118.0 (2)C15—C16—H16120.3
C24—N3—C20117.6 (3)C16—C17—C18119.3 (3)
C24—N3—Cu1133.2 (2)C16—C17—H17120.4
C20—N3—Cu1109.1 (2)C18—C17—H17120.4
C3—O1—Cu1125.68 (18)C19—C18—C17118.0 (3)
C4—O2—C8117.9 (3)C19—C18—C25119.5 (3)
C10—O3—Cu1111.84 (18)C17—C18—C25122.5 (3)
C27'—O4'—H4'109.5N2—C19—C18121.9 (3)
N1—C1—C2126.6 (3)N2—C19—C20118.3 (2)
N1—C1—H1116.7C18—C19—C20119.8 (3)
C2—C1—H1116.7N3—C20—C21123.0 (3)
C7—C2—C3120.2 (3)N3—C20—C19117.9 (3)
C7—C2—C1116.9 (3)C21—C20—C19119.1 (3)
C3—C2—C1122.9 (3)C22—C21—C20116.9 (3)
O1—C3—C2125.4 (3)C22—C21—C26123.7 (3)
O1—C3—C4118.8 (3)C20—C21—C26119.4 (3)
C2—C3—C4115.8 (3)C23—C22—C21119.4 (3)
C5—C4—O2124.3 (3)C23—C22—H22120.3
C5—C4—C3122.2 (3)C21—C22—H22120.3
O2—C4—C3113.5 (3)C22—C23—C24119.9 (3)
C4—C5—C6120.6 (3)C22—C23—H23120.1
C4—C5—H5119.7C24—C23—H23120.1
C6—C5—H5119.7N3—C24—C23123.1 (3)
C7—C6—C5119.4 (3)N3—C24—H24118.5
C7—C6—H6120.3C23—C24—H24118.5
C5—C6—H6120.3C26—C25—C18120.6 (3)
C6—C7—C2121.9 (3)C26—C25—H25119.7
C6—C7—H7119.0C18—C25—H25119.7
C2—C7—H7119.0C25—C26—C21121.6 (3)
O2—C8—H8A109.5C25—C26—H26119.2
O2—C8—H8B109.5C21—C26—H26119.2
H8A—C8—H8B109.5O4—C27—H27A109.5
O2—C8—H8C109.5O4—C27—H27B109.5
H8A—C8—H8C109.5H27A—C27—H27B109.5
H8B—C8—H8C109.5O4—C27—H27C109.5
C14—C9—C10120.4 (3)H27A—C27—H27C109.5
C14—C9—N1126.9 (3)H27B—C27—H27C109.5
C10—C9—N1112.7 (2)O4'—C27'—H27D109.5
O3—C10—C11122.2 (3)O4'—C27'—H27E109.5
O3—C10—C9119.4 (3)H27D—C27'—H27E109.5
C11—C10—C9118.4 (3)O4'—C27'—H27F109.5
C12—C11—C10120.4 (3)H27D—C27'—H27F109.5
C12—C11—H11119.8H27E—C27'—H27F109.5
O1—Cu1—N1—C15.8 (3)C1—N1—C9—C146.3 (5)
O3—Cu1—N1—C1173.6 (3)Cu1—N1—C9—C14174.9 (3)
N2—Cu1—N1—C1166.8 (6)C1—N1—C9—C10174.0 (3)
N3—Cu1—N1—C191.7 (3)Cu1—N1—C9—C104.8 (3)
O1—Cu1—N1—C9172.97 (19)Cu1—O3—C10—C11176.6 (3)
O3—Cu1—N1—C95.18 (19)Cu1—O3—C10—C93.3 (3)
N2—Cu1—N1—C912.0 (7)C14—C9—C10—O3178.7 (3)
N3—Cu1—N1—C989.52 (19)N1—C9—C10—O31.0 (4)
O1—Cu1—N2—C1586.0 (2)C14—C9—C10—C111.2 (5)
O3—Cu1—N2—C1581.8 (2)N1—C9—C10—C11179.1 (3)
N1—Cu1—N2—C1575.0 (7)O3—C10—C11—C12178.4 (3)
N3—Cu1—N2—C15178.8 (2)C9—C10—C11—C121.4 (5)
O1—Cu1—N2—C19101.1 (2)C10—C11—C12—C130.8 (6)
O3—Cu1—N2—C1991.2 (2)C11—C12—C13—C140.1 (6)
N1—Cu1—N2—C1997.9 (7)C12—C13—C14—C90.4 (5)
N3—Cu1—N2—C195.86 (19)C10—C9—C14—C130.2 (5)
O1—Cu1—N3—C2486.5 (3)N1—C9—C14—C13179.9 (3)
O3—Cu1—N3—C2494.8 (3)C19—N2—C15—C161.5 (4)
N1—Cu1—N3—C249.4 (3)Cu1—N2—C15—C16174.5 (2)
N2—Cu1—N3—C24179.6 (3)N2—C15—C16—C170.4 (5)
O1—Cu1—N3—C2097.58 (19)C15—C16—C17—C180.8 (5)
O3—Cu1—N3—C2081.09 (19)C16—C17—C18—C190.9 (4)
N1—Cu1—N3—C20166.48 (19)C16—C17—C18—C25179.3 (3)
N2—Cu1—N3—C204.50 (18)C15—N2—C19—C181.4 (4)
O3—Cu1—O1—C388.9 (5)Cu1—N2—C19—C18174.7 (2)
N1—Cu1—O1—C38.9 (2)C15—N2—C19—C20179.9 (3)
N2—Cu1—O1—C3174.0 (2)Cu1—N2—C19—C206.6 (3)
N3—Cu1—O1—C397.3 (2)C17—C18—C19—N20.2 (4)
O1—Cu1—O3—C1085.7 (4)C25—C18—C19—N2178.3 (3)
N1—Cu1—O3—C104.7 (2)C17—C18—C19—C20178.9 (3)
N2—Cu1—O3—C10176.4 (2)C25—C18—C19—C200.4 (4)
N3—Cu1—O3—C10100.4 (2)C24—N3—C20—C210.3 (4)
C9—N1—C1—C2178.3 (3)Cu1—N3—C20—C21176.3 (2)
Cu1—N1—C1—C20.4 (4)C24—N3—C20—C19179.3 (3)
N1—C1—C2—C7176.1 (3)Cu1—N3—C20—C192.7 (3)
N1—C1—C2—C34.8 (5)N2—C19—C20—N32.0 (4)
Cu1—O1—C3—C26.7 (4)C18—C19—C20—N3179.2 (3)
Cu1—O1—C3—C4174.0 (2)N2—C19—C20—C21178.9 (2)
C7—C2—C3—O1179.5 (3)C18—C19—C20—C210.2 (4)
C1—C2—C3—O11.4 (5)N3—C20—C21—C220.3 (4)
C7—C2—C3—C41.2 (4)C19—C20—C21—C22178.7 (3)
C1—C2—C3—C4177.9 (3)N3—C20—C21—C26179.5 (3)
C8—O2—C4—C58.3 (5)C19—C20—C21—C260.5 (4)
C8—O2—C4—C3172.0 (3)C20—C21—C22—C230.9 (5)
O1—C3—C4—C5179.9 (3)C26—C21—C22—C23179.9 (3)
C2—C3—C4—C50.8 (4)C21—C22—C23—C240.9 (5)
O1—C3—C4—O20.5 (4)C20—N3—C24—C230.3 (5)
C2—C3—C4—O2178.9 (3)Cu1—N3—C24—C23175.3 (2)
O2—C4—C5—C6179.6 (3)C22—C23—C24—N30.3 (5)
C3—C4—C5—C60.0 (5)C19—C18—C25—C260.7 (5)
C4—C5—C6—C70.4 (5)C17—C18—C25—C26179.1 (3)
C5—C6—C7—C20.0 (5)C18—C25—C26—C210.3 (5)
C3—C2—C7—C60.8 (5)C22—C21—C26—C25178.9 (3)
C1—C2—C7—C6178.3 (3)C20—C21—C26—C250.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.821.932.719 (5)160
O4—H4···O3i0.821.922.735 (6)171
C17—H17···O2ii0.932.433.204 (4)141
Symmetry codes: (i) x+1, y, z1; (ii) x, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Cu(C14H11NO3)(C12H8N2)]·CH4O
Mr517.02
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.905 (3), 10.335 (3), 12.094 (3)
α, β, γ (°)82.701 (3), 70.742 (3), 89.236 (3)
V3)1158.8 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.21 × 0.18 × 0.07
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SABADS; Sheldrick, 1996)
Tmin, Tmax0.820, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
5996, 4012, 3134
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.096, 1.03
No. of reflections4012
No. of parameters325
No. of restraints16
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.47

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—O11.926 (2)Cu1—N22.041 (2)
Cu1—O31.949 (2)Cu1—N32.333 (3)
Cu1—N11.950 (2)
O1—Cu1—O3167.67 (9)N1—Cu1—N2171.06 (9)
O1—Cu1—N194.04 (9)O1—Cu1—N396.12 (9)
O3—Cu1—N183.92 (9)O3—Cu1—N396.14 (9)
O1—Cu1—N294.42 (8)N1—Cu1—N3105.59 (9)
O3—Cu1—N287.19 (9)N2—Cu1—N376.37 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.821.932.719 (5)159.8
O4'—H4'···O3i0.821.922.735 (6)170.6
C17—H17···O2ii0.932.433.204 (4)141.2
Symmetry codes: (i) x+1, y, z1; (ii) x, y+2, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds