Download citation
Download citation
link to html
In the title compound, [Co(C13H14N2)2(H2O)4](C10H6O6S2)·H2O, the CoII ion, which lies on a centre of symmetry, is coordinated by two N atoms from two 1,3-di-4-pyridylpropane (dpp) ligands and four aqua O atoms in a distorted octa­hedral geometry. Two C atoms of the flexible –CH2CH2CH2– spacer in the dpp ligand are disordered over two positions. The 1,5-naphthalenedisulfonate dianion, which lies about an inversion centre, does not coordinate to the CoII ion but balances the charge. The cations, anions and water mol­ecules are connected by a three-dimensional hydrogen-bonding network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807023446/fj2023sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807023446/fj2023Isup2.hkl
Contains datablock I

CCDC reference: 650691

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.001 Å
  • Disorder in main residue
  • R factor = 0.038
  • wR factor = 0.108
  • Data-to-parameter ratio = 15.6

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT201_ALERT_2_B Isotropic non-H Atoms in Main Residue(s) ....... 1 PLAT354_ALERT_3_B Short O-H Bond (0.82A) O3 - H3A ... 0.60 Ang. PLAT417_ALERT_2_B Short Inter D-H..H-D H2B .. H3A .. 2.09 Ang.
Alert level C PLAT301_ALERT_3_C Main Residue Disorder ......................... 9.00 Perc. PLAT366_ALERT_2_C Short? C(sp?)-C(sp?) Bond C2 - C3 ... 1.38 Ang. PLAT366_ALERT_2_C Short? C(sp?)-C(sp?) Bond C3 - C4 ... 1.37 Ang. PLAT366_ALERT_2_C Short? C(sp?)-C(sp?) Bond C9 - C10 ... 1.36 Ang. PLAT366_ALERT_2_C Short? C(sp?)-C(sp?) Bond C9 - C13 ... 1.37 Ang. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 6
0 ALERT level A = In general: serious problem 3 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

As a bipyridine-type ligand with a flexible –CH2CH2CH2– spacer, 1,3-di-4-pyridylpropane (dpp) has been employed to construct novel metal-organic coordination polymers with intriguing structural topologies (Plater et al., 2000; Pan et al., 2001; Biradha et al., 2002; Fu et al., 2003; Wu et al., 2005; Carlucci et al., 2000, 2002; Luan et al., 2005). The 1,5-naphthalenedisulfonate dianion (NDS2-), which possesses six O atoms, has been also employed either as a ligand with multiple binding sites available to construct coordination polymers with varying dimensionalities, or as a counter ion, forming extensive hydrogen-bonding interaction with the water molecules (Cai et al., 2001; Chandrasekhar et al., 2003; Côtê & Shimizu, 2003; Cai, 2004; Gao et al., 2005; Voogt & Blanch, 2005). In the present work, we report a cobalt(II) complex, [Co(C13H14N2)2(H2O)4].(C10H6O6S2).H2O, (I), with a three-dimensional H-bonding network structure created by the sulfonate dianions acting as hydrogen-bond acceptors.

As shown in Fig. 1, four water molecules coordinate to Co(II) ion in the equatorial positions with Co—O bonds (2.1022 (8)–2.1230 (7) Å), while the two dpp ligands coordinate to Co(II) through N atoms [Co—N = 2.1294 (8) Å] in the long axial direction to complete a distorted octahedral coordination (Table 1). The dihedral angle is 58.76 (5)° between the two pyridyl planes, and the N···N distance is 9.121 (5) Å in the same dpp ligand. The NDS dianion, which lies about an inversion site, does not coordinate to the Co(II) ion, but balances the charge.

Hydrogen bonds play an important role for enhancing the stability of the solid-state structure (Table 2). Two intermolecular hydrogen bonds are formed between O atoms of the two coordinated water molecules and two O atoms of sulfonate groups, respectively. An additional intermolecular hydrogen bond is formed between atom O3 of the uncoordinated water molecule and the sulfonate atom O6. All these intermolecular hydrogen bonds result in a two-dimensional structure (Fig. 2). The two-dimensional structures are further linked via another hydrogen bond between uncoordinated N atom of dpp and coordinated O1 atom to give rise to a three-dimensional network (Fig. 3).

Related literature top

For related literature, see: Biradha et al. (2002); Côtê & Shimizu (2003); Cai (2004); Cai et al. (2001); Carlucci et al. (2000, 2002); Chandrasekhar et al. (2003); Fu et al. (2003); Gao et al. (2005); Luan et al. (2005); Pan et al. (2001); Plater et al. (2000); Voogt & Blanch (2005); Wu et al. (2005).

Experimental top

An aqueous solution (10 ml) of CoCl2.6H2O (0.0238 g, 1 mmol) and a mixture of disodium 1,5-naphthalenedisulfonate (0.0332 g, 1 mmol) and dpp (0.0398 g, 2 mmol) in distilled water (10 ml) were placed in two tubes of an H-tube. Slow diffusion of the two solutions into joint aqueous solution produced deep purple crystals after 1 month (ca 10% yield based on Co).

Refinement top

The atoms C7 and C8 are disordered over two positions. H atoms attached to C atoms were placed in geometrically idealized positions, with Csp3—H = 0.97 Å and Csp2—H= 0.93 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). H atoms attached to O atoms were located in difference Fourier maps and refined with a global Uiso(H) value. The O—H distances are in the range 0.599 (14)–0.947 (15) Å.

Structure description top

As a bipyridine-type ligand with a flexible –CH2CH2CH2– spacer, 1,3-di-4-pyridylpropane (dpp) has been employed to construct novel metal-organic coordination polymers with intriguing structural topologies (Plater et al., 2000; Pan et al., 2001; Biradha et al., 2002; Fu et al., 2003; Wu et al., 2005; Carlucci et al., 2000, 2002; Luan et al., 2005). The 1,5-naphthalenedisulfonate dianion (NDS2-), which possesses six O atoms, has been also employed either as a ligand with multiple binding sites available to construct coordination polymers with varying dimensionalities, or as a counter ion, forming extensive hydrogen-bonding interaction with the water molecules (Cai et al., 2001; Chandrasekhar et al., 2003; Côtê & Shimizu, 2003; Cai, 2004; Gao et al., 2005; Voogt & Blanch, 2005). In the present work, we report a cobalt(II) complex, [Co(C13H14N2)2(H2O)4].(C10H6O6S2).H2O, (I), with a three-dimensional H-bonding network structure created by the sulfonate dianions acting as hydrogen-bond acceptors.

As shown in Fig. 1, four water molecules coordinate to Co(II) ion in the equatorial positions with Co—O bonds (2.1022 (8)–2.1230 (7) Å), while the two dpp ligands coordinate to Co(II) through N atoms [Co—N = 2.1294 (8) Å] in the long axial direction to complete a distorted octahedral coordination (Table 1). The dihedral angle is 58.76 (5)° between the two pyridyl planes, and the N···N distance is 9.121 (5) Å in the same dpp ligand. The NDS dianion, which lies about an inversion site, does not coordinate to the Co(II) ion, but balances the charge.

Hydrogen bonds play an important role for enhancing the stability of the solid-state structure (Table 2). Two intermolecular hydrogen bonds are formed between O atoms of the two coordinated water molecules and two O atoms of sulfonate groups, respectively. An additional intermolecular hydrogen bond is formed between atom O3 of the uncoordinated water molecule and the sulfonate atom O6. All these intermolecular hydrogen bonds result in a two-dimensional structure (Fig. 2). The two-dimensional structures are further linked via another hydrogen bond between uncoordinated N atom of dpp and coordinated O1 atom to give rise to a three-dimensional network (Fig. 3).

For related literature, see: Biradha et al. (2002); Côtê & Shimizu (2003); Cai (2004); Cai et al. (2001); Carlucci et al. (2000, 2002); Chandrasekhar et al. (2003); Fu et al. (2003); Gao et al. (2005); Luan et al. (2005); Pan et al. (2001); Plater et al. (2000); Voogt & Blanch (2005); Wu et al. (2005).

Computing details top

Data collection: RAPID-AUTO (Rigaku 2001); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of a fragment of the title compound, showing 50% probability displacement ellipsoids for non-H atoms. For the sake of clarity, only the major component of the disordered atoms C7 and C8 is shown. [Symmetry codes: (i). -x, -y, -z; (ii). 1 - x, 1 - y, -z].
[Figure 2] Fig. 2. The two-dimensional network formed by hydrogen-bonding interactions (blue dotted lines). For clarity, the dpp ligands and H atoms attached to C atoms have been omitted.
[Figure 3] Fig. 3. The three-dimensional network of the title complex (I). Hydrogen bonds are shown as blue dotted lines, and H atoms attached to C atoms have been omitted.
trans-Tetraaquabis(1,3-di-4-pyridylpropane-κN)cobalt(II) naphthalene-1,5-disulfonate monohydrate top
Crystal data top
[Co(C13H14N2)2(H2O)4](C10H6O6S2)·H2OF(000) = 890
Mr = 849.82Dx = 1.43 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 17625 reflections
a = 11.844 (2) Åθ = 1.7–27.5°
b = 8.3912 (17) ŵ = 0.61 mm1
c = 20.035 (4) ÅT = 298 K
β = 97.56 (3)°Block, pink
V = 1973.9 (7) Å30.51 × 0.44 × 0.37 mm
Z = 2
Data collection top
Rigaku R-axis Rapid IP area-detector
diffractometer
3259 reflections with I > 2σ(I)
ω Oscillation scansRint = 0.041
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
θmax = 27.5°, θmin = 1.7°
Tmin = 0.747, Tmax = 0.807h = 015
17625 measured reflectionsk = 010
4418 independent reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0633P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
4418 reflectionsΔρmax = 0.39 e Å3
283 parametersΔρmin = 0.26 e Å3
0 restraints
Crystal data top
[Co(C13H14N2)2(H2O)4](C10H6O6S2)·H2OV = 1973.9 (7) Å3
Mr = 849.82Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.844 (2) ŵ = 0.61 mm1
b = 8.3912 (17) ÅT = 298 K
c = 20.035 (4) Å0.51 × 0.44 × 0.37 mm
β = 97.56 (3)°
Data collection top
Rigaku R-axis Rapid IP area-detector
diffractometer
4418 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3259 reflections with I > 2σ(I)
Tmin = 0.747, Tmax = 0.807Rint = 0.041
17625 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.39 e Å3
4418 reflectionsΔρmin = 0.26 e Å3
283 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10000.03243 (4)
S10.747491 (16)0.35189 (3)0.086588 (11)0.04424 (6)
N10.05768 (5)0.16358 (9)0.07838 (3)0.03629 (17)
N20.71693 (6)0.35709 (11)0.35647 (4)0.0559 (2)
O10.09129 (4)0.18980 (7)0.05235 (3)0.04155 (16)
O20.14437 (5)0.05367 (8)0.04662 (3)0.04633 (17)
O60.76383 (6)0.47271 (9)0.13864 (3)0.0592 (2)
O40.76400 (5)0.19127 (8)0.11191 (4)0.0585 (2)
O50.81263 (5)0.38569 (8)0.03177 (3)0.05015 (18)
C10.04884 (7)0.12998 (12)0.14243 (4)0.0447 (2)
H10.01580.03370.15230.054*
C20.08631 (7)0.23099 (13)0.19450 (5)0.0498 (3)
H20.07750.2030.23840.06*
C30.13715 (6)0.37430 (12)0.18186 (4)0.0434 (2)
C40.14654 (7)0.40891 (12)0.11582 (5)0.0459 (2)
H40.18050.50360.10480.055*
C50.10545 (7)0.30265 (11)0.06603 (4)0.0423 (2)
H50.11130.32920.02160.051*
C60.18164 (8)0.48559 (13)0.23797 (5)0.0579 (3)0.5
H6A0.12270.50470.26640.069*0.5
H6B0.20130.58690.21920.069*0.5
C70.28932 (14)0.4136 (3)0.28140 (9)0.0529 (5)0.5103 (12)
H7A0.31160.48130.32010.063*0.5103 (12)
H7B0.27120.3090.29760.063*0.5103 (12)
C80.38620 (15)0.4003 (2)0.24030 (10)0.0507 (4)*0.5103 (12)
H8A0.39530.49950.21680.061*0.5103 (12)
H8B0.37110.31590.20720.061*0.5103 (12)
C6'0.18164 (8)0.48559 (13)0.23797 (5)0.0579 (3)0.5
H6'A0.15560.4490.27930.069*0.5
H6'B0.14960.59070.2280.069*0.5
C7'0.31428 (14)0.4992 (2)0.24959 (10)0.0461 (5)0.4897 (12)
H7'A0.34130.54250.20970.055*0.4897 (12)
H7'B0.33760.57070.28690.055*0.4897 (12)
C8'0.36579 (16)0.3346 (3)0.26491 (11)0.0546 (5)*0.4897 (12)
H8'A0.35550.26830.22490.066*0.4897 (12)
H8'B0.32990.28280.30.066*0.4897 (12)
C90.49568 (8)0.36248 (15)0.28889 (6)0.0698 (3)
C100.51811 (9)0.31754 (17)0.35430 (6)0.0756 (4)
H100.45880.28740.37770.091*
C110.62792 (9)0.31639 (16)0.38596 (6)0.0682 (4)
H110.64050.28510.43090.082*
C120.69455 (9)0.39956 (14)0.29287 (5)0.0620 (3)
H120.75530.42770.27030.074*
C130.58737 (9)0.40483 (16)0.25804 (6)0.0714 (4)
H130.57690.43730.21330.086*
C140.53333 (7)0.23713 (12)0.06039 (5)0.0537 (3)
H140.56290.14960.08530.064*
C150.60165 (6)0.36363 (11)0.05135 (4)0.0416 (2)
C160.55874 (6)0.50062 (10)0.01431 (4)0.0402 (2)
C170.62546 (7)0.63484 (12)0.00435 (5)0.0509 (3)
H170.70140.63690.02330.061*
C180.58165 (8)0.76140 (13)0.03229 (6)0.0604 (3)
H180.62810.84790.03890.072*
O30.91963 (6)0.70891 (10)0.13413 (4)0.0646 (2)
H1B0.1124 (8)0.2462 (12)0.0288 (5)0.056 (3)*
H2B0.1361 (8)0.1205 (13)0.0732 (5)0.069 (3)*
H1A0.1499 (9)0.1651 (14)0.0826 (6)0.079 (4)*
H3A0.9564 (10)0.6867 (17)0.1185 (7)0.091 (4)*
H2A0.1742 (8)0.0219 (12)0.0639 (5)0.054 (3)*
H3B0.8764 (11)0.6151 (19)0.1378 (7)0.105 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02614 (5)0.04243 (8)0.02745 (6)0.00126 (6)0.00123 (5)0.00051 (7)
S10.03892 (9)0.05174 (12)0.04334 (11)0.00923 (9)0.01024 (8)0.00641 (10)
N10.0296 (3)0.0474 (4)0.0306 (3)0.0017 (3)0.0007 (2)0.0010 (3)
N20.0445 (3)0.0709 (5)0.0487 (4)0.0011 (4)0.0072 (3)0.0056 (4)
O10.0343 (2)0.0515 (3)0.0367 (3)0.0046 (3)0.0036 (2)0.0015 (3)
O20.0389 (3)0.0546 (3)0.0462 (3)0.0026 (3)0.0083 (2)0.0012 (3)
O60.0601 (3)0.0717 (5)0.0471 (3)0.0018 (3)0.0124 (3)0.0068 (3)
O40.0535 (3)0.0603 (4)0.0631 (4)0.0170 (3)0.0132 (3)0.0197 (3)
O50.0426 (3)0.0606 (4)0.0503 (3)0.0114 (3)0.0171 (2)0.0075 (3)
C10.0445 (4)0.0541 (5)0.0346 (4)0.0113 (4)0.0022 (3)0.0006 (4)
C20.0483 (4)0.0692 (6)0.0309 (4)0.0042 (5)0.0019 (3)0.0018 (4)
C30.0302 (3)0.0571 (5)0.0413 (4)0.0078 (4)0.0007 (3)0.0121 (4)
C40.0426 (4)0.0447 (5)0.0486 (5)0.0033 (4)0.0013 (4)0.0019 (4)
C50.0408 (4)0.0521 (5)0.0330 (4)0.0034 (4)0.0014 (3)0.0012 (4)
C60.0428 (4)0.0712 (6)0.0564 (5)0.0090 (5)0.0057 (4)0.0288 (5)
C70.0462 (8)0.0649 (11)0.0454 (9)0.0040 (9)0.0018 (7)0.0238 (9)
C6'0.0428 (4)0.0712 (6)0.0564 (5)0.0090 (5)0.0057 (4)0.0288 (5)
C7'0.0417 (8)0.0449 (9)0.0483 (9)0.0019 (8)0.0071 (7)0.0075 (9)
C90.0473 (4)0.0830 (7)0.0721 (6)0.0170 (5)0.0184 (4)0.0303 (6)
C100.0463 (5)0.1014 (9)0.0795 (7)0.0036 (6)0.0099 (5)0.0072 (7)
C110.0552 (5)0.0993 (9)0.0486 (5)0.0038 (6)0.0013 (4)0.0113 (6)
C120.0591 (5)0.0731 (7)0.0515 (6)0.0039 (6)0.0013 (5)0.0091 (5)
C130.0754 (6)0.0836 (8)0.0482 (6)0.0172 (6)0.0180 (5)0.0014 (6)
C140.0490 (4)0.0438 (5)0.0695 (6)0.0063 (4)0.0123 (4)0.0179 (5)
C150.0371 (3)0.0437 (5)0.0460 (4)0.0070 (4)0.0131 (3)0.0044 (4)
C160.0373 (3)0.0387 (4)0.0473 (4)0.0053 (4)0.0151 (3)0.0029 (4)
C170.0368 (4)0.0489 (5)0.0680 (6)0.0003 (4)0.0106 (4)0.0100 (5)
C180.0460 (4)0.0468 (5)0.0892 (7)0.0055 (4)0.0122 (5)0.0173 (5)
O30.0722 (4)0.0668 (5)0.0584 (4)0.0010 (4)0.0218 (3)0.0022 (4)
Geometric parameters (Å, º) top
Co1—O2i2.1022 (8)C7—H7A0.97
Co1—O22.1022 (8)C7—H7B0.97
Co1—O12.1230 (7)C8—C91.548 (2)
Co1—O1i2.1230 (7)C8—H8A0.97
Co1—N1i2.1294 (8)C8—H8B0.97
Co1—N12.1294 (8)C7'—C8'1.525 (3)
S1—O41.4444 (8)C7'—H7'A0.97
S1—O61.4491 (8)C7'—H7'B0.97
S1—O51.4508 (8)C8'—C91.568 (2)
S1—C151.7807 (9)C8'—H8'A0.97
N1—C11.3314 (11)C8'—H8'B0.97
N1—C51.3341 (12)C9—C101.3559 (17)
N2—C121.3161 (13)C9—C131.3654 (17)
N2—C111.3193 (14)C10—C111.3700 (15)
O1—H1B0.735 (10)C10—H100.93
O1—H1A0.884 (10)C11—H110.93
O2—H2B0.771 (11)C12—C131.3665 (15)
O2—H2A0.823 (10)C12—H120.93
C1—C21.3718 (13)C13—H130.93
C1—H10.93C14—C151.3612 (13)
C2—C31.3831 (14)C14—C18ii1.4036 (13)
C2—H20.93C14—H140.93
C3—C41.3732 (13)C15—C161.4252 (12)
C3—C61.5026 (13)C16—C171.4051 (13)
C4—C51.3782 (13)C16—C16ii1.4336 (15)
C4—H40.93C17—C181.3549 (14)
C5—H50.93C17—H170.93
C6—C71.567 (2)C18—C14ii1.4036 (13)
C6—H6A0.97C18—H180.93
C6—H6B0.97O3—H3A0.599 (14)
C7—C81.502 (3)O3—H3B0.947 (15)
O2i—Co1—O2180.00 (3)C8—C7—H7A109.6
O2i—Co1—O189.37 (3)C6—C7—H7A109.6
O2—Co1—O190.63 (3)C8—C7—H7B109.6
O2i—Co1—O1i90.63 (3)C6—C7—H7B109.6
O2—Co1—O1i89.37 (3)H7A—C7—H7B108.1
O1—Co1—O1i180.00 (4)C7—C8—C9107.91 (14)
O2i—Co1—N1i90.64 (3)C7—C8—H8A110.1
O2—Co1—N1i89.36 (3)C9—C8—H8A110.1
O1—Co1—N1i88.50 (3)C7—C8—H8B110.1
O1i—Co1—N1i91.50 (3)C9—C8—H8B110.1
O2i—Co1—N189.36 (3)H8A—C8—H8B108.4
O2—Co1—N190.64 (3)C8'—C7'—H7'A109.8
O1—Co1—N191.50 (3)C8'—C7'—H7'B109.8
O1i—Co1—N188.50 (3)H7'A—C7'—H7'B108.3
N1i—Co1—N1180.00 (4)C7'—C8'—C9106.09 (15)
O4—S1—O6113.64 (5)C7'—C8'—H8'A110.5
O4—S1—O5112.80 (4)C9—C8'—H8'A110.5
O6—S1—O5111.97 (4)C7'—C8'—H8'B110.5
O4—S1—C15105.68 (4)C9—C8'—H8'B110.5
O6—S1—C15106.11 (5)H8'A—C8'—H8'B108.7
O5—S1—C15105.89 (4)C10—C9—C13116.33 (10)
C1—N1—C5116.94 (7)C10—C9—C8134.91 (12)
C1—N1—Co1121.07 (6)C13—C9—C8108.20 (12)
C5—N1—Co1121.99 (6)C10—C9—C8'108.32 (12)
C12—N2—C11115.63 (9)C13—C9—C8'134.99 (13)
Co1—O1—H1B111.1 (7)C9—C10—C11120.18 (11)
Co1—O1—H1A117.8 (7)C9—C10—H10119.9
H1B—O1—H1A106.7 (10)C11—C10—H10119.9
Co1—O2—H2B115.2 (8)N2—C11—C10123.83 (11)
Co1—O2—H2A116.1 (7)N2—C11—H11118.1
H2B—O2—H2A107.0 (11)C10—C11—H11118.1
N1—C1—C2122.92 (9)N2—C12—C13123.95 (11)
N1—C1—H1118.5N2—C12—H12118
C2—C1—H1118.5C13—C12—H12118
C1—C2—C3120.20 (9)C9—C13—C12120.08 (11)
C1—C2—H2119.9C9—C13—H13120
C3—C2—H2119.9C12—C13—H13120
C4—C3—C2116.92 (8)C15—C14—C18ii120.14 (9)
C4—C3—C6121.64 (9)C15—C14—H14119.9
C2—C3—C6121.44 (8)C18ii—C14—H14119.9
C3—C4—C5119.66 (9)C14—C15—C16121.39 (7)
C3—C4—H4120.2C14—C15—S1117.82 (7)
C5—C4—H4120.2C16—C15—S1120.79 (6)
N1—C5—C4123.34 (8)C17—C16—C15123.49 (7)
N1—C5—H5118.3C17—C16—C16ii118.91 (10)
C4—C5—H5118.3C15—C16—C16ii117.60 (10)
C3—C6—C7110.84 (11)C18—C17—C16121.52 (8)
C3—C6—H6A109.5C18—C17—H17119.2
C7—C6—H6A109.5C16—C17—H17119.2
C3—C6—H6B109.5C17—C18—C14ii120.42 (9)
C7—C6—H6B109.5C17—C18—H18119.8
H6A—C6—H6B108.1C14ii—C18—H18119.8
C8—C7—C6110.43 (14)H3A—O3—H3B102.7 (16)
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O60.947 (15)1.792 (14)2.7176 (11)164.8 (13)
O3—H3A···O1iii0.599 (14)2.436 (14)2.9013 (12)136.6 (16)
O2—H2A···O4iv0.823 (10)1.916 (10)2.7363 (11)174.6 (10)
O1—H1B···O5v0.735 (10)1.979 (10)2.7096 (10)173.1 (10)
O1—H1A···N2vi0.884 (10)1.872 (10)2.7495 (12)171.3 (11)
O2—H2B···O3vii0.771 (11)1.940 (11)2.6959 (11)166.8 (11)
Symmetry codes: (iii) x+1, y+1, z; (iv) x1, y, z; (v) x+1, y, z; (vi) x+1, y1/2, z+1/2; (vii) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Co(C13H14N2)2(H2O)4](C10H6O6S2)·H2O
Mr849.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.844 (2), 8.3912 (17), 20.035 (4)
β (°) 97.56 (3)
V3)1973.9 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.51 × 0.44 × 0.37
Data collection
DiffractometerRigaku R-axis Rapid IP area-detector
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.747, 0.807
No. of measured, independent and
observed [I > 2σ(I)] reflections
17625, 4418, 3259
Rint0.041
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.108, 1.02
No. of reflections4418
No. of parameters283
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.26

Computer programs: RAPID-AUTO (Rigaku 2001), RAPID-AUTO, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b) and Mercury (Macrae et al., 2006), SHELXL97 and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O60.947 (15)1.792 (14)2.7176 (11)164.8 (13)
O3—H3A···O1i0.599 (14)2.436 (14)2.9013 (12)136.6 (16)
O2—H2A···O4ii0.823 (10)1.916 (10)2.7363 (11)174.6 (10)
O1—H1B···O5iii0.735 (10)1.979 (10)2.7096 (10)173.1 (10)
O1—H1A···N2iv0.884 (10)1.872 (10)2.7495 (12)171.3 (11)
O2—H2B···O3v0.771 (11)1.940 (11)2.6959 (11)166.8 (11)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y1/2, z+1/2; (v) x1, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds