Download citation
Download citation
link to html
In the title compound, C16H18N2O2S, the o-methoxy­phenyl group is not coplanar with the thio­phene ring, making a dihedral angle of 12.9 (1)°. The crystal structure is stabilized by intra­molecular N—H...O and C—H...O hydrogen bonds and by inter­molecular N—H...O inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807024403/fj2031sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807024403/fj2031Isup2.hkl
Contains datablock I

CCDC reference: 651508

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.052
  • wR factor = 0.147
  • Data-to-parameter ratio = 14.8

checkCIF/PLATON results

No syntax errors found



Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The title compound (I) is one of a series of 3-aryl carboximides. These compounds display different biological activities, such as antitubercular, antibacterial and antifungal activities (Mohan & Saravanan 2003). Schiff bases containing sulfur are the most effective (Csaszar & Morvay 1983; Lakshmi et al., 1985; Cohen et al.,1977).

The molecular structure and the packing diagram of (I) are shown in Figures (1) and (2) respectively. The thiophene ring is essentially planar, with a short C8—C9 bond distance [1.352 (3) Å,], indicating the absence of delocalization in the double bonds. This is also reflected in the S1—C2 and S1—C8 distances, which are shorter than the normal C—S distances. The cyclohexene ring adopts a half-chair conformation, with the puckering parameters q2 = 0.325 (2) Å, Φ = -99.4 (3)° and θ = 130.7 (2)°. (Cremer & Pople, 1975; Spek, 2003). The thiophene ring makes a dihedral angle of 12.9 (1) ° with the o-methoxyphenyl ring.

The molecular structure of (I) is stabilized by intramolecular C—H···O and N—H···O hydrogen bonds and by intermolecular N—H···O interactions. (Table 2) The intramolecular C16—H16···O1 and N1—H1···O1 hydrogen bonds form pseudo-six membered rings and N2—H2···O2 forms a pseudo five membered ring, thus locking the molecular conformation and eliminating flexibility. Molecules are linked via N—H···O interactions, forming zigzag chains along the c axis, (Fig. 2).

Related literature top

For related literature, see: Cremer & Pople (1975); Lakshmi et al. (1985); Mohan & Saravanan (2003); Spek (2003).

For related literature, see: Cohen et al. (1977); Csaszar & Morvay (1983); Gewald et al. (1966); Sheldrick (1996).

Experimental top

The title compound (I), was synthesized by mixing cyclohexanone (0.98 g, 0.01 mol) and o-methoxycyanoacetanilide (1.94 g, 0.01 mol) and refluxing for 1 h (Gewald et al., 1966) in the presence of 4.0 ml of diethylamine. Sulfur powder (1.28 g, 0.04 mol) and 40 ml e thanol were then added, and the resulting solution was heated for 2 h at 323 K. Crystals of (I) were grown by slow evaporation from a solution in 2-propanol (yield 68%).

Refinement top

H atoms were positioned geometrically [N—H = 0.86 Å, and C—H = 0.93 (CH), 0.97 (CH2) and 0.96 Å (CH3)] and constrained to ride on their parent atoms with Uiso(H) values of 1.2 Ueq(C,N), or 1.5 Ueq(C-methyl). A rotating-group model was used for the methyl group.

Structure description top

The title compound (I) is one of a series of 3-aryl carboximides. These compounds display different biological activities, such as antitubercular, antibacterial and antifungal activities (Mohan & Saravanan 2003). Schiff bases containing sulfur are the most effective (Csaszar & Morvay 1983; Lakshmi et al., 1985; Cohen et al.,1977).

The molecular structure and the packing diagram of (I) are shown in Figures (1) and (2) respectively. The thiophene ring is essentially planar, with a short C8—C9 bond distance [1.352 (3) Å,], indicating the absence of delocalization in the double bonds. This is also reflected in the S1—C2 and S1—C8 distances, which are shorter than the normal C—S distances. The cyclohexene ring adopts a half-chair conformation, with the puckering parameters q2 = 0.325 (2) Å, Φ = -99.4 (3)° and θ = 130.7 (2)°. (Cremer & Pople, 1975; Spek, 2003). The thiophene ring makes a dihedral angle of 12.9 (1) ° with the o-methoxyphenyl ring.

The molecular structure of (I) is stabilized by intramolecular C—H···O and N—H···O hydrogen bonds and by intermolecular N—H···O interactions. (Table 2) The intramolecular C16—H16···O1 and N1—H1···O1 hydrogen bonds form pseudo-six membered rings and N2—H2···O2 forms a pseudo five membered ring, thus locking the molecular conformation and eliminating flexibility. Molecules are linked via N—H···O interactions, forming zigzag chains along the c axis, (Fig. 2).

For related literature, see: Cremer & Pople (1975); Lakshmi et al. (1985); Mohan & Saravanan (2003); Spek (2003).

For related literature, see: Cohen et al. (1977); Csaszar & Morvay (1983); Gewald et al. (1966); Sheldrick (1996).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST (Nardelli, 1995); PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. Dashed lines indicate intramolecular hydrogen bonds.
[Figure 2] Fig. 2. The packing of (I), viewed down the a axis shows molecules connected by N—H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted.
2-Amino-N-(2-methoxyphenyl)-4,5,6,7-tetrahydrobenzo-1-thiophene-3-carboxamide top
Crystal data top
C16H18N2O2SF(000) = 640
Mr = 302.38Dx = 1.324 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 520 reflections
a = 8.709 (2) Åθ = 1.5–28.5°
b = 8.576 (2) ŵ = 0.22 mm1
c = 20.306 (5) ÅT = 293 K
β = 90.742 (4)°Prism, colourless
V = 1516.6 (6) Å30.48 × 0.25 × 0.04 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2831 independent reflections
Radiation source: fine-focus sealed tube2266 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ψ and ω scansθmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 109
Tmin = 0.937, Tmax = 0.998k = 1010
10964 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0762P)2 + 0.3763P]
where P = (Fo2 + 2Fc2)/3
2831 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C16H18N2O2SV = 1516.6 (6) Å3
Mr = 302.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.709 (2) ŵ = 0.22 mm1
b = 8.576 (2) ÅT = 293 K
c = 20.306 (5) Å0.48 × 0.25 × 0.04 mm
β = 90.742 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2831 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2266 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.998Rint = 0.035
10964 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.09Δρmax = 0.31 e Å3
2831 reflectionsΔρmin = 0.27 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2332 (3)0.4280 (3)0.75854 (10)0.0537 (6)
H1A0.29210.36160.73970.064*
H1B0.26250.47240.79450.064*
N20.0765 (2)0.3030 (2)0.56763 (9)0.0431 (5)
H20.01610.37750.55580.052*
O10.2092 (2)0.2087 (2)0.65522 (8)0.0568 (5)
O20.0842 (2)0.3124 (2)0.46026 (9)0.0602 (6)
S10.02268 (8)0.59785 (8)0.76968 (3)0.0466 (2)
C20.0936 (3)0.4630 (3)0.73142 (10)0.0372 (5)
C30.0248 (3)0.4060 (2)0.67459 (10)0.0332 (5)
C40.2396 (3)0.4330 (3)0.60860 (13)0.0457 (6)
H4A0.23630.32170.60010.055*
H4B0.21000.48660.56870.055*
C50.4026 (3)0.4794 (4)0.62600 (17)0.0700 (9)
H5A0.46640.47470.58650.084*
H5B0.44280.40450.65720.084*
C60.4136 (4)0.6365 (4)0.65456 (17)0.0733 (9)
H6A0.52010.65720.66490.088*
H6B0.38270.71200.62170.088*
C70.3169 (3)0.6604 (4)0.71594 (14)0.0561 (7)
H7A0.29820.77090.72240.067*
H7B0.37160.62160.75390.067*
C80.1664 (3)0.5760 (3)0.71018 (11)0.0410 (6)
C90.1266 (3)0.4723 (2)0.66323 (10)0.0348 (5)
C100.1099 (3)0.2970 (2)0.63284 (10)0.0358 (5)
C110.1258 (3)0.2057 (3)0.51622 (11)0.0393 (5)
C120.0353 (3)0.2094 (3)0.45871 (11)0.0440 (6)
C130.0714 (4)0.1160 (3)0.40563 (12)0.0556 (7)
H130.01120.11870.36750.067*
C140.1965 (4)0.0193 (3)0.40959 (14)0.0617 (8)
H140.21970.04520.37430.074*
C150.2878 (4)0.0167 (3)0.46525 (15)0.0608 (8)
H150.37320.04830.46700.073*
C160.2536 (3)0.1103 (3)0.51877 (13)0.0499 (6)
H160.31630.10890.55620.060*
C170.2049 (4)0.2966 (4)0.41266 (14)0.0665 (8)
H17A0.16540.31570.36950.100*
H17B0.28450.37050.42190.100*
H17C0.24600.19280.41460.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0486 (14)0.0669 (15)0.0452 (11)0.0091 (11)0.0165 (10)0.0131 (10)
N20.0523 (13)0.0423 (12)0.0344 (10)0.0187 (9)0.0073 (9)0.0032 (8)
O10.0608 (12)0.0652 (12)0.0439 (9)0.0288 (10)0.0142 (8)0.0020 (8)
O20.0615 (13)0.0734 (13)0.0450 (10)0.0203 (10)0.0201 (9)0.0107 (9)
S10.0501 (4)0.0524 (4)0.0374 (3)0.0024 (3)0.0013 (3)0.0102 (3)
C20.0389 (14)0.0395 (12)0.0331 (11)0.0031 (10)0.0017 (9)0.0011 (9)
C30.0340 (13)0.0343 (11)0.0314 (10)0.0010 (9)0.0031 (9)0.0035 (9)
C40.0411 (15)0.0415 (13)0.0541 (14)0.0050 (11)0.0126 (11)0.0061 (11)
C50.0432 (18)0.078 (2)0.089 (2)0.0065 (15)0.0170 (15)0.0128 (17)
C60.0479 (19)0.074 (2)0.098 (2)0.0185 (15)0.0123 (17)0.0151 (18)
C70.0481 (17)0.0589 (17)0.0614 (16)0.0145 (13)0.0041 (13)0.0069 (13)
C80.0386 (14)0.0419 (13)0.0426 (13)0.0022 (10)0.0014 (10)0.0003 (10)
C90.0356 (13)0.0325 (11)0.0362 (11)0.0010 (9)0.0016 (9)0.0015 (9)
C100.0359 (13)0.0352 (12)0.0363 (11)0.0027 (9)0.0063 (9)0.0014 (9)
C110.0460 (15)0.0355 (12)0.0364 (11)0.0016 (10)0.0026 (10)0.0015 (9)
C120.0514 (16)0.0437 (14)0.0369 (12)0.0042 (11)0.0008 (11)0.0003 (10)
C130.070 (2)0.0569 (16)0.0405 (13)0.0074 (15)0.0029 (12)0.0089 (11)
C140.082 (2)0.0519 (17)0.0519 (15)0.0056 (15)0.0210 (15)0.0133 (13)
C150.064 (2)0.0492 (16)0.0700 (18)0.0133 (14)0.0207 (15)0.0047 (13)
C160.0503 (16)0.0492 (15)0.0503 (14)0.0104 (12)0.0041 (12)0.0007 (11)
C170.065 (2)0.077 (2)0.0566 (16)0.0081 (16)0.0254 (14)0.0132 (15)
Geometric parameters (Å, º) top
N1—C21.362 (3)C6—C71.509 (4)
N1—H1A0.8600C6—H6A0.9700
N1—H1B0.8600C6—H6B0.9700
N2—C101.353 (3)C7—C81.504 (4)
N2—C111.408 (3)C7—H7A0.9700
N2—H20.8600C7—H7B0.9700
O1—C101.232 (3)C8—C91.352 (3)
O2—C121.366 (3)C11—C161.382 (3)
O2—C171.425 (3)C11—C121.401 (3)
S1—C21.728 (2)C12—C131.383 (3)
S1—C81.738 (2)C13—C141.370 (4)
C2—C31.383 (3)C13—H130.9300
C3—C91.452 (3)C14—C151.374 (4)
C3—C101.469 (3)C14—H140.9300
C4—C91.512 (3)C15—C161.386 (4)
C4—C51.520 (4)C15—H150.9300
C4—H4A0.9700C16—H160.9300
C4—H4B0.9700C17—H17A0.9600
C5—C61.471 (4)C17—H17B0.9600
C5—H5A0.9700C17—H17C0.9600
C5—H5B0.9700
C2—N1—H1A120.0C6—C7—H7B109.6
C2—N1—H1B120.0H7A—C7—H7B108.1
H1A—N1—H1B120.0C9—C8—C7127.1 (2)
C10—N2—C11129.7 (2)C9—C8—S1111.86 (18)
C10—N2—H2115.1C7—C8—S1120.99 (18)
C11—N2—H2115.1C8—C9—C3112.7 (2)
C12—O2—C17118.6 (2)C8—C9—C4119.6 (2)
C2—S1—C892.08 (11)C3—C9—C4127.6 (2)
N1—C2—C3129.4 (2)O1—C10—N2121.7 (2)
N1—C2—S1119.40 (17)O1—C10—C3122.4 (2)
C3—C2—S1111.20 (17)N2—C10—C3115.89 (19)
C2—C3—C9112.2 (2)C16—C11—C12119.3 (2)
C2—C3—C10119.3 (2)C16—C11—N2125.2 (2)
C9—C3—C10128.45 (19)C12—C11—N2115.5 (2)
C9—C4—C5111.8 (2)O2—C12—C13125.0 (2)
C9—C4—H4A109.2O2—C12—C11114.6 (2)
C5—C4—H4A109.2C13—C12—C11120.4 (2)
C9—C4—H4B109.2C14—C13—C12119.6 (3)
C5—C4—H4B109.2C14—C13—H13120.2
H4A—C4—H4B107.9C12—C13—H13120.2
C6—C5—C4113.4 (3)C15—C14—C13120.6 (2)
C6—C5—H5A108.9C15—C14—H14119.7
C4—C5—H5A108.9C13—C14—H14119.7
C6—C5—H5B108.9C14—C15—C16120.5 (3)
C4—C5—H5B108.9C14—C15—H15119.7
H5A—C5—H5B107.7C16—C15—H15119.7
C5—C6—C7114.3 (3)C11—C16—C15119.6 (3)
C5—C6—H6A108.7C11—C16—H16120.2
C7—C6—H6A108.7C15—C16—H16120.2
C5—C6—H6B108.7O2—C17—H17A109.5
C7—C6—H6B108.7O2—C17—H17B109.5
H6A—C6—H6B107.6H17A—C17—H17B109.5
C8—C7—C6110.4 (2)O2—C17—H17C109.5
C8—C7—H7A109.6H17A—C17—H17C109.5
C6—C7—H7A109.6H17B—C17—H17C109.5
C8—C7—H7B109.6
C8—S1—C2—N1179.4 (2)C5—C4—C9—C3159.3 (2)
C8—S1—C2—C30.96 (18)C11—N2—C10—O19.1 (4)
N1—C2—C3—C9179.3 (2)C11—N2—C10—C3173.1 (2)
S1—C2—C3—C91.1 (2)C2—C3—C10—O128.5 (3)
N1—C2—C3—C103.4 (4)C9—C3—C10—O1154.7 (2)
S1—C2—C3—C10176.22 (16)C2—C3—C10—N2149.3 (2)
C9—C4—C5—C645.6 (4)C9—C3—C10—N227.4 (3)
C4—C5—C6—C757.6 (4)C10—N2—C11—C1620.0 (4)
C5—C6—C7—C837.7 (4)C10—N2—C11—C12160.2 (2)
C6—C7—C8—C910.1 (4)C17—O2—C12—C1317.7 (4)
C6—C7—C8—S1173.4 (2)C17—O2—C12—C11163.6 (2)
C2—S1—C8—C90.60 (19)C16—C11—C12—O2177.3 (2)
C2—S1—C8—C7176.4 (2)N2—C11—C12—O22.6 (3)
C7—C8—C9—C3176.7 (2)C16—C11—C12—C131.5 (4)
S1—C8—C9—C30.1 (3)N2—C11—C12—C13178.7 (2)
C7—C8—C9—C40.9 (4)O2—C12—C13—C14178.7 (2)
S1—C8—C9—C4177.63 (17)C11—C12—C13—C140.0 (4)
C2—C3—C9—C80.6 (3)C12—C13—C14—C151.3 (4)
C10—C3—C9—C8176.3 (2)C13—C14—C15—C161.0 (4)
C2—C3—C9—C4176.7 (2)C12—C11—C16—C151.8 (4)
C10—C3—C9—C46.4 (4)N2—C11—C16—C15178.4 (2)
C5—C4—C9—C817.9 (3)C14—C15—C16—C110.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.862.272.823 (3)122
N1—H1B···O1i0.862.283.015 (3)143
N2—H2···O20.862.192.577 (3)107
C16—H16···O10.932.392.927 (3)117
Symmetry code: (i) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC16H18N2O2S
Mr302.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.709 (2), 8.576 (2), 20.306 (5)
β (°) 90.742 (4)
V3)1516.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.48 × 0.25 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.937, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
10964, 2831, 2266
Rint0.035
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.147, 1.09
No. of reflections2831
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.27

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), PARST (Nardelli, 1995); PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.86002.27002.823 (3)122.00
N1—H1B···O1i0.86002.28003.015 (3)143.00
N2—H2···O20.86002.19002.577 (3)107.00
C16—H16···O10.93002.39002.927 (3)117.00
Symmetry code: (i) x+1/2, y+1/2, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds