Download citation
Download citation
link to html
The title compound, C50H44, is a derivative of rubrene in which tert-butyl side groups are added to two of the pendant aromatic rings. The complete mol­ecule is generated by a mirror plane, and the unsubstituted and substituted pendant aromatic rings are almost perpendicular to the main backbone of the mol­ecule, which is essentially planar.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807022489/hb2400sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807022489/hb2400Isup2.hkl
Contains datablock I

CCDC reference: 651430

Key indicators

  • Single-crystal X-ray study
  • T = 292 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.074
  • wR factor = 0.207
  • Data-to-parameter ratio = 12.2

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT220_ALERT_2_A Large Non-Solvent C Ueq(max)/Ueq(min) ... 5.27 Ratio
Author Response: excesssive vibration/disorder in the tert-butyl group

Alert level B PLAT222_ALERT_3_B Large Non-Solvent H Ueq(max)/Ueq(min) ... 4.65 Ratio PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for C40
Alert level C PLAT063_ALERT_3_C Crystal Probably too Large for Beam Size ....... 0.80 mm PLAT213_ALERT_2_C Atom C42 has ADP max/min Ratio ............. 3.50 prola PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 5
1 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The electronic properties of rubrene and rubrene derivatives are of great interest owing to fundamental questions on electron transport and associated applications (Sundar et al., 2004; Goldmann et al., 2004). The electric transport properties will be published elsewhere (Stassen et al., 2007).

The crystal structure of the title compound is orthorombic, with space group Pnma. The unit cell contains four molecules (Fig. 1). In (I), the in-plane arrangement of the molecules is very similar to that of rubrene (Jurchescu et al., 2006). Noteworthy is the somewhat shorter distance of 3.55 Å between the naphthacene backbones compared to 3.74 Å in rubrene. However, the addition of the tert-butyl groups increases the inter-layer spacing by 31%. Interestingly, it leaves the backbone almost perfectly planar (Fig. 2). Both the pendant aromatic rings are almost perpendicular to the main backbone of the molecule: atoms C20—C25 and C30—C35 make dihedral angles of 85.04 (13)° and 84.55 (11)°, respectively, with the backbone carbon atoms.

Related literature top

For related literature, see: Dodge et al. (1990); Goldmann et al. (2004); Jurchescu et al. (2006); Kloc et al. (1997); Laudize et al. (1998); Stassen et al. (2007); Sundar et al. (2004).

Experimental top

The title compound was synthesized according to the mehthod of Dodge et al. (1990). Single crystals of (I) were grown by physical vapour transport (Kloc et al., 1997, Laudize et al., 1998) at 533 K using high purity argon as the transport gas.

Refinement top

The H atoms in the aromatic units were located in difference maps and were refined freely along with individual isotropic displacement parameters. The H atoms of the methyl groups were positioned geometrically and were refined as riding on the parent C atoms, Uiso(H) values were set at 1.2Ueq of the parent atom.

Structure description top

The electronic properties of rubrene and rubrene derivatives are of great interest owing to fundamental questions on electron transport and associated applications (Sundar et al., 2004; Goldmann et al., 2004). The electric transport properties will be published elsewhere (Stassen et al., 2007).

The crystal structure of the title compound is orthorombic, with space group Pnma. The unit cell contains four molecules (Fig. 1). In (I), the in-plane arrangement of the molecules is very similar to that of rubrene (Jurchescu et al., 2006). Noteworthy is the somewhat shorter distance of 3.55 Å between the naphthacene backbones compared to 3.74 Å in rubrene. However, the addition of the tert-butyl groups increases the inter-layer spacing by 31%. Interestingly, it leaves the backbone almost perfectly planar (Fig. 2). Both the pendant aromatic rings are almost perpendicular to the main backbone of the molecule: atoms C20—C25 and C30—C35 make dihedral angles of 85.04 (13)° and 84.55 (11)°, respectively, with the backbone carbon atoms.

For related literature, see: Dodge et al. (1990); Goldmann et al. (2004); Jurchescu et al. (2006); Kloc et al. (1997); Laudize et al. (1998); Stassen et al. (2007); Sundar et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms). The unlabelled atoms are generated by the symmetry operation (x, 3/2 - y, z).
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed (a) down the b axis and (b) viewed down the c axis.
5,12-Bis(4-tert-butyl-phenyl)-6,11-diphenylnaphthacene top
Crystal data top
C50H44F(000) = 1376
Mr = 644.90Dx = 1.184 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 3136 reflections
a = 14.158 (2) Åθ = 3.0–25.0°
b = 35.390 (5) ŵ = 0.07 mm1
c = 7.2215 (11) ÅT = 292 K
V = 3618.4 (9) Å3Plate, translucent orange
Z = 40.80 × 0.32 × 0.06 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
3446 independent reflections
Radiation source: fine-focus sealed tube2208 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
φ and ω scansθmax = 25.6°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996; Blessing, 1995)
h = 1717
Tmin = 0.988, Tmax = 0.996k = 4242
28135 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap and geom
R[F2 > 2σ(F2)] = 0.074H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.207 w = 1/[σ2(Fo2) + (0.0891P)2 + 1.9474P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
3446 reflectionsΔρmax = 0.44 e Å3
282 parametersΔρmin = 0.40 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0146 (15)
Crystal data top
C50H44V = 3618.4 (9) Å3
Mr = 644.90Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 14.158 (2) ŵ = 0.07 mm1
b = 35.390 (5) ÅT = 292 K
c = 7.2215 (11) Å0.80 × 0.32 × 0.06 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
3446 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996; Blessing, 1995)
2208 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.996Rint = 0.060
28135 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.207H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.44 e Å3
3446 reflectionsΔρmin = 0.40 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.93705 (17)0.70977 (7)0.3527 (4)0.0340 (6)
C20.89917 (17)0.72967 (7)0.2033 (3)0.0350 (6)
C30.85410 (19)0.71093 (9)0.0504 (4)0.0424 (7)
C50.98466 (18)0.72940 (7)0.4982 (3)0.0317 (6)
C61.03201 (17)0.70973 (7)0.6438 (4)0.0326 (6)
C81.11360 (19)0.71085 (9)0.9468 (4)0.0396 (7)
C71.06983 (17)0.72991 (7)0.7940 (3)0.0320 (6)
C40.8150 (2)0.73005 (9)0.0912 (4)0.0479 (8)
C91.1524 (2)0.73011 (8)1.0896 (4)0.0440 (7)
H81.1141 (19)0.6838 (8)0.942 (4)0.043 (8)*
H30.8547 (19)0.6831 (8)0.045 (4)0.045 (8)*
H310.948 (2)0.6491 (8)0.807 (4)0.051 (8)*
H341.219 (3)0.6126 (10)0.480 (5)0.074 (11)*
H250.798 (2)0.6770 (9)0.527 (5)0.068 (10)*
H321.000 (2)0.5855 (9)0.807 (5)0.067 (10)*
H240.745 (3)0.6144 (11)0.534 (6)0.092 (13)*
H351.171 (2)0.6769 (8)0.470 (4)0.055 (9)*
H211.019 (3)0.6479 (9)0.194 (5)0.070 (10)*
H230.828 (3)0.5687 (11)0.359 (5)0.081 (11)*
H40.787 (2)0.7156 (8)0.197 (4)0.047 (8)*
H220.964 (3)0.5854 (10)0.196 (5)0.082 (12)*
H91.179 (2)0.7171 (8)1.191 (4)0.057 (9)*
C200.91358 (19)0.66864 (7)0.3598 (4)0.0387 (7)
C301.05447 (18)0.66849 (7)0.6373 (4)0.0361 (6)
C311.0058 (2)0.64137 (8)0.7376 (4)0.0446 (7)
C210.9614 (2)0.64110 (8)0.2608 (4)0.0503 (8)
C351.1346 (2)0.65679 (8)0.5419 (4)0.0455 (7)
C250.8324 (2)0.65765 (9)0.4549 (5)0.0508 (8)
C240.8020 (3)0.62075 (10)0.4534 (6)0.0681 (10)
C341.1634 (2)0.61949 (9)0.5450 (5)0.0569 (9)
C321.0352 (3)0.60433 (9)0.7392 (5)0.0539 (8)
C331.1156 (2)0.59238 (8)0.6449 (5)0.0553 (9)
C220.9308 (3)0.60409 (10)0.2607 (6)0.0661 (10)
C230.8510 (3)0.59405 (11)0.3566 (6)0.0745 (11)
C401.1464 (3)0.55077 (10)0.6420 (6)0.0786 (12)
C421.1059 (6)0.52857 (12)0.8005 (9)0.167 (3)
H42A1.03830.52780.78960.200*
H42B1.12290.54040.91530.200*
H42C1.13050.50330.79790.200*
C411.2544 (4)0.54734 (13)0.6482 (8)0.121 (2)
H41A1.27770.55880.75960.146*
H41B1.28110.55990.54270.146*
H41C1.27190.52110.64630.146*
C431.1162 (4)0.53380 (12)0.4580 (8)0.129 (2)
H43A1.13570.50780.45240.155*
H43B1.14500.54760.35850.155*
H43C1.04870.53520.44670.155*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0293 (14)0.0368 (14)0.0360 (15)0.0011 (10)0.0026 (11)0.0043 (12)
C20.0258 (14)0.0460 (14)0.0331 (15)0.0011 (11)0.0012 (11)0.0022 (11)
C30.0375 (16)0.0488 (18)0.0410 (17)0.0013 (13)0.0007 (13)0.0089 (14)
C50.0271 (12)0.0350 (13)0.0331 (13)0.0012 (11)0.0014 (10)0.0001 (12)
C60.0292 (13)0.0346 (14)0.0339 (14)0.0016 (10)0.0021 (11)0.0007 (11)
C80.0377 (16)0.0435 (17)0.0377 (16)0.0012 (12)0.0028 (12)0.0048 (13)
C70.0269 (13)0.0370 (13)0.0321 (14)0.0001 (10)0.0018 (11)0.0020 (11)
C40.0404 (17)0.0676 (19)0.0359 (16)0.0018 (14)0.0066 (13)0.0082 (14)
C90.0391 (16)0.0563 (17)0.0365 (16)0.0014 (13)0.0064 (13)0.0074 (13)
C200.0406 (15)0.0393 (15)0.0361 (15)0.0003 (12)0.0070 (12)0.0027 (12)
C300.0362 (15)0.0365 (14)0.0355 (15)0.0005 (11)0.0061 (12)0.0030 (12)
C310.0508 (19)0.0387 (16)0.0443 (17)0.0015 (13)0.0038 (14)0.0042 (13)
C210.061 (2)0.0449 (18)0.0454 (18)0.0049 (15)0.0008 (16)0.0076 (15)
C350.0405 (17)0.0431 (17)0.0529 (18)0.0015 (13)0.0033 (14)0.0020 (14)
C250.0416 (17)0.0468 (18)0.064 (2)0.0018 (14)0.0005 (15)0.0016 (16)
C240.062 (2)0.054 (2)0.088 (3)0.0155 (18)0.002 (2)0.008 (2)
C340.0497 (19)0.0500 (19)0.071 (2)0.0126 (15)0.0013 (17)0.0047 (17)
C320.073 (2)0.0387 (17)0.0505 (19)0.0047 (16)0.0000 (17)0.0070 (15)
C330.071 (2)0.0374 (16)0.058 (2)0.0110 (15)0.0107 (17)0.0009 (15)
C220.095 (3)0.0441 (19)0.060 (2)0.010 (2)0.012 (2)0.0107 (18)
C230.092 (3)0.045 (2)0.087 (3)0.020 (2)0.018 (2)0.002 (2)
C400.110 (3)0.0417 (19)0.084 (3)0.023 (2)0.014 (2)0.0067 (19)
C420.281 (9)0.049 (3)0.171 (6)0.058 (4)0.069 (6)0.049 (3)
C410.135 (5)0.080 (3)0.150 (5)0.061 (3)0.029 (4)0.014 (3)
C430.169 (5)0.060 (3)0.158 (5)0.033 (3)0.051 (4)0.044 (3)
Geometric parameters (Å, º) top
C1—C21.396 (4)C35—C341.382 (4)
C1—C51.429 (4)C35—H351.02 (3)
C1—C201.494 (4)C25—C241.375 (4)
C2—C31.437 (4)C25—H250.99 (3)
C2—C2i1.439 (5)C24—C231.365 (6)
C3—C41.345 (4)C24—H241.02 (4)
C3—H30.99 (3)C34—C331.378 (5)
C5—C61.428 (4)C34—H340.95 (4)
C5—C5i1.458 (5)C32—C331.392 (5)
C6—C71.405 (4)C32—H320.97 (3)
C6—C301.495 (3)C33—C401.536 (4)
C8—C91.353 (4)C22—C231.371 (6)
C8—C71.434 (4)C22—H220.94 (4)
C8—H80.96 (3)C23—H230.96 (4)
C7—C7i1.422 (5)C40—C421.502 (6)
C4—C4i1.412 (6)C40—C431.520 (6)
C4—H41.00 (3)C40—C411.534 (6)
C9—C9i1.408 (6)C42—H42A0.9600
C9—H90.95 (3)C42—H42B0.9600
C20—C211.385 (4)C42—H42C0.9600
C20—C251.395 (4)C41—H41A0.9600
C30—C311.386 (4)C41—H41B0.9600
C30—C351.390 (4)C41—H41C0.9600
C31—C321.376 (4)C43—H43A0.9600
C31—H311.00 (3)C43—H43B0.9600
C21—C221.380 (5)C43—H43C0.9600
C21—H210.98 (4)
C2—C1—C5120.3 (2)C20—C25—H25117.9 (19)
C2—C1—C20115.6 (2)C23—C24—C25120.2 (4)
C5—C1—C20123.6 (2)C23—C24—H24123 (2)
C1—C2—C3122.1 (2)C25—C24—H24117 (2)
C1—C2—C2i120.30 (15)C33—C34—C35121.9 (3)
C3—C2—C2i117.48 (16)C33—C34—H34119 (2)
C4—C3—C2122.3 (3)C35—C34—H34119 (2)
C4—C3—H3118.4 (17)C31—C32—C33122.2 (3)
C2—C3—H3119.3 (17)C31—C32—H32120 (2)
C6—C5—C1121.7 (2)C33—C32—H32117.5 (19)
C6—C5—C5i119.17 (14)C34—C33—C32116.5 (3)
C1—C5—C5i119.09 (14)C34—C33—C40121.4 (3)
C7—C6—C5120.0 (2)C32—C33—C40122.0 (3)
C7—C6—C30116.1 (2)C23—C22—C21120.3 (4)
C5—C6—C30123.6 (2)C23—C22—H22119 (2)
C9—C8—C7121.7 (3)C21—C22—H22121 (2)
C9—C8—H8121.8 (17)C24—C23—C22119.9 (3)
C7—C8—H8116.6 (17)C24—C23—H23118 (2)
C6—C7—C7i120.55 (14)C22—C23—H23122 (2)
C6—C7—C8121.3 (2)C42—C40—C43110.6 (4)
C7i—C7—C8118.05 (16)C42—C40—C41108.5 (5)
C3—C4—C4i120.20 (18)C43—C40—C41106.0 (4)
C3—C4—H4119.0 (16)C42—C40—C33112.5 (4)
C4i—C4—H4120.8 (16)C43—C40—C33108.1 (3)
C8—C9—C9i120.26 (18)C41—C40—C33111.0 (4)
C8—C9—H9120.8 (19)C40—C42—H42A109.5
C9i—C9—H9119.0 (18)C40—C42—H42B109.5
C21—C20—C25117.4 (3)H42A—C42—H42B109.5
C21—C20—C1124.0 (3)C40—C42—H42C109.5
C25—C20—C1118.2 (2)H42A—C42—H42C109.5
C31—C30—C35117.3 (3)H42B—C42—H42C109.5
C31—C30—C6123.7 (2)C40—C41—H41A109.5
C35—C30—C6118.7 (2)C40—C41—H41B109.5
C32—C31—C30120.9 (3)H41A—C41—H41B109.5
C32—C31—H31120.2 (16)C40—C41—H41C109.5
C30—C31—H31118.9 (16)H41A—C41—H41C109.5
C22—C21—C20121.0 (3)H41B—C41—H41C109.5
C22—C21—H21120 (2)C40—C43—H43A109.5
C20—C21—H21119 (2)C40—C43—H43B109.5
C34—C35—C30121.2 (3)H43A—C43—H43B109.5
C34—C35—H35121.8 (17)C40—C43—H43C109.5
C30—C35—H35117.1 (16)H43A—C43—H43C109.5
C24—C25—C20121.2 (3)H43B—C43—H43C109.5
C24—C25—H25121 (2)
Symmetry code: (i) x, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC50H44
Mr644.90
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)292
a, b, c (Å)14.158 (2), 35.390 (5), 7.2215 (11)
V3)3618.4 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.80 × 0.32 × 0.06
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996; Blessing, 1995)
Tmin, Tmax0.988, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
28135, 3446, 2208
Rint0.060
(sin θ/λ)max1)0.607
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.207, 1.15
No. of reflections3446
No. of parameters282
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.40

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds