Download citation
Download citation
link to html
In the title compound, C23H17N3·0.5C2H6O, two pyrazole mol­ecules are bridged by one ethanol mol­ecule through N—H...O and O—H...N hydrogen bonds. The ethanol solvent mol­ecule is located on a mirror plane. These trimolecular units are linked by C—H...N, N—H...O and hydrogen bonds involving the nitrile groups and ethanol OH as acceptors and C—H...π stacking inter­actions between phenyl groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807021812/hg2234sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807021812/hg2234Isup2.hkl
Contains datablock I

CCDC reference: 651410

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.079
  • wR factor = 0.213
  • Data-to-parameter ratio = 17.6

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT417_ALERT_2_B Short Inter D-H..H-D H1 .. H2 .. 1.64 Ang. PLAT417_ALERT_2_B Short Inter D-H..H-D H1 .. H2 .. 1.64 Ang.
Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.50 Ratio PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C24 PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C20 - C23 ... 1.43 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H15 .. N3 .. 2.70 Ang.
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Substituted pyrazole tends to form cyclic poly-membered clusters through intermolecular N—H···N hydrogen bonds (Haghiri et al., 2003). Huang et al. report a 4-benzyl substituted 3,5-diphenyl-1H-pyrazole, in which two pyrazole molecules are connected by N—H···N hydrogen bonds (Huang et al., 2007). In the present paper, we report another substituted pyrazole, 4-((3,5-diphenyl-1H-pyrazol-4-yl)methyl)benzonitrile (Fig. 1). In the unit cell, two pyrazole molecules are bridged by one ethanol molecule through N—H···O and O–H···N hydrogen bonds forming a dimer. These dimers are linked by C—H···N hydrogen bonds between the phenyl group and benzonitrile, C—H···π hydrogen bonds between the phenyl groups and π···π interactions between benzonitrile planes as showed in Fig.2. The centroid-centroid contact between two benzonitrile molecules is 4.320 (1) Å.

Related literature top

For related literature, see: Haghiri et al. (2003); Huang et al. (2007).

Experimental top

Hydrazine hydrate (85%) (7.06 g, 12.0 mmol) was added to a solution of 4-(2-benzoyl-3-oxo-3-phenylpropyl)benzonitrile (3.40 g, 10.0 mmol) in 20 ml e thanol. The mixture was refluxed for two hours, then cooled to room temperature to give colourless microcrystals. The crystals were filtered, washed with a minimum amount of cold ethanol and dried under vacuum (yield, of 3.2 g). Crystals were obtained by slow evaporation of a ethanol solution of the title compound. 1H NMR (400 MHz, CDCl3): δ 1.25 (3iH, t, J=7.0 Hz, CH3), 3.73 (3H, q, J=7.0 Hz, CH2), 4.16 (2iH, s, CH2), 7.22 (4H, d, J=8.0 Hz, benzonitrile-H), 7.36 (12H, m, Ph—H), 7.41 (8H, m,Ph—H), 7.54 (4H, d, J=8.0 Hz, benzonitrile-H), 10.5 (2H,br, N—H) p.p.m.

Refinement top

The imino H atom was located in a difference Fourier map and refined as riding on N2, with N–H = 0.91 Å and Uiso(H) = 1.2Ueq(N2). The hydroxy H atom was located in a difference Fourier map and refined as riding on O1, with O–H = 0.77 Å and Uiso(H) = 1.2Ueq(O1). The aromatic H atoms were constrained to an ideal geometry, with C—H distances of 0.93 Å and with Uiso(H) = 1.2Ueq(C). The methyl H atoms were rotated to fit the electron density, with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C). The methylene H atoms were constrained to ideal geometry, with C—H distances of 0.97 Å and Uiso(H) = 1.2Ueq(C).The largest peak and deepest hole on the final difference Fourier map corresponded to 0.33 and -0.45 e.Å-3, and were located 0.56 and 1.55 Å from the C24 and H1 atom, respectively.

Structure description top

Substituted pyrazole tends to form cyclic poly-membered clusters through intermolecular N—H···N hydrogen bonds (Haghiri et al., 2003). Huang et al. report a 4-benzyl substituted 3,5-diphenyl-1H-pyrazole, in which two pyrazole molecules are connected by N—H···N hydrogen bonds (Huang et al., 2007). In the present paper, we report another substituted pyrazole, 4-((3,5-diphenyl-1H-pyrazol-4-yl)methyl)benzonitrile (Fig. 1). In the unit cell, two pyrazole molecules are bridged by one ethanol molecule through N—H···O and O–H···N hydrogen bonds forming a dimer. These dimers are linked by C—H···N hydrogen bonds between the phenyl group and benzonitrile, C—H···π hydrogen bonds between the phenyl groups and π···π interactions between benzonitrile planes as showed in Fig.2. The centroid-centroid contact between two benzonitrile molecules is 4.320 (1) Å.

For related literature, see: Haghiri et al. (2003); Huang et al. (2007).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1999); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. Crystal packing for title compound.
4-[(3,5-Diphenyl-1H-pyrazol-4-yl)methyl]benzonitrile ethanol hemisolvate top
Crystal data top
C23H17N3·0.5C2H6OF(000) = 756
Mr = 358.43Dx = 1.230 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 582 reflections
a = 6.1301 (12) Åθ = 1.2–27.5°
b = 34.541 (7) ŵ = 0.08 mm1
c = 9.4459 (19) ÅT = 291 K
β = 104.52 (3)°Block, colorless
V = 1936.2 (7) Å30.25 × 0.18 × 0.15 mm
Z = 4
Data collection top
Rigaku RAXIS RAPID IP
diffractometer
4500 independent reflections
Radiation source: Rotating Anode3819 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Oscillation scansθmax = 27.5°, θmin = 1.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 77
Tmin = 0.98, Tmax = 0.99k = 044
5538 measured reflectionsl = 012
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.214H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.199P)2 + 0.1P]
where P = (Fo2 + 2Fc2)/3
4500 reflections(Δ/σ)max = 0.001
256 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C23H17N3·0.5C2H6OV = 1936.2 (7) Å3
Mr = 358.43Z = 4
Monoclinic, P21/mMo Kα radiation
a = 6.1301 (12) ŵ = 0.08 mm1
b = 34.541 (7) ÅT = 291 K
c = 9.4459 (19) Å0.25 × 0.18 × 0.15 mm
β = 104.52 (3)°
Data collection top
Rigaku RAXIS RAPID IP
diffractometer
4500 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3819 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.99Rint = 0.038
5538 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.214H-atom parameters constrained
S = 1.08Δρmax = 0.33 e Å3
4500 reflectionsΔρmin = 0.45 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1507 (2)0.17406 (4)0.55204 (15)0.0431 (3)
C20.0612 (3)0.17793 (4)0.43839 (15)0.0448 (4)
C30.2417 (3)0.19860 (5)0.45897 (18)0.0503 (4)
H30.22700.21210.54600.060*
C40.4435 (3)0.20000 (6)0.3553 (2)0.0627 (5)
H40.56300.21410.37310.075*
C50.4694 (4)0.18040 (7)0.2239 (2)0.0689 (5)
H50.60620.18090.15360.083*
C60.2842 (4)0.15971 (7)0.1993 (2)0.0692 (5)
H60.29730.14730.11020.083*
C70.0844 (3)0.15756 (6)0.30514 (18)0.0599 (5)
H70.03450.14290.28940.072*
C80.2659 (2)0.14007 (5)0.60830 (15)0.0441 (3)
C90.4582 (2)0.15295 (4)0.71101 (15)0.0434 (3)
C100.6524 (3)0.13115 (4)0.80378 (16)0.0454 (4)
C110.8684 (3)0.14761 (5)0.83408 (16)0.0493 (4)
H110.88970.17170.79590.059*
C121.0487 (3)0.12795 (6)0.92064 (19)0.0601 (5)
H121.19100.13920.94210.072*
C131.0214 (4)0.09147 (7)0.9765 (2)0.0699 (6)
H131.14410.07821.03380.084*
C140.8116 (4)0.07567 (7)0.9456 (3)0.0749 (6)
H140.79210.05130.98260.090*
C150.6261 (3)0.09482 (5)0.86047 (19)0.0568 (4)
H150.48430.08340.84130.068*
C160.1811 (3)0.09973 (5)0.56892 (16)0.0469 (4)
H16B0.02130.10130.52200.056*
H16C0.19670.08530.65900.056*
C170.2924 (2)0.07649 (4)0.47008 (14)0.0435 (3)
C180.4823 (3)0.08927 (5)0.42526 (18)0.0506 (4)
H180.54190.11360.45480.061*
C190.5828 (3)0.06676 (5)0.33870 (19)0.0568 (4)
H190.70590.07610.30830.068*
C200.4983 (3)0.03003 (5)0.29748 (18)0.0532 (4)
C210.3082 (3)0.01678 (5)0.3381 (2)0.0601 (5)
H210.24810.00740.30760.072*
C220.2100 (3)0.03981 (5)0.42376 (19)0.0554 (4)
H220.08440.03060.45160.066*
C230.6143 (3)0.00582 (6)0.2168 (2)0.0618 (5)
N10.2632 (2)0.20491 (4)0.62334 (13)0.0475 (3)
N20.4512 (2)0.19150 (4)0.71881 (13)0.0475 (3)
H20.53630.20940.77920.105 (10)*
N30.7146 (4)0.01378 (7)0.1585 (2)0.0833 (6)
O10.7504 (4)0.25000.8444 (3)0.0823 (7)
H10.63340.25000.86130.18 (3)*
C240.8776 (18)0.25000.9996 (6)0.163 (3)
H24A0.84650.27291.05050.196*0.50
H24B0.84650.22711.05050.196*0.50
C251.1059 (16)0.25000.9826 (17)0.303 (9)
H25A1.10670.23980.88810.455*0.50
H25B1.19930.23421.05720.455*0.50
H25C1.16310.27600.99110.455*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0417 (8)0.0438 (8)0.0423 (7)0.0021 (5)0.0078 (5)0.0025 (5)
C20.0454 (8)0.0420 (7)0.0467 (7)0.0016 (6)0.0110 (5)0.0011 (5)
C30.0501 (9)0.0412 (8)0.0571 (8)0.0015 (6)0.0088 (6)0.0014 (5)
C40.0541 (10)0.0592 (11)0.0710 (10)0.0064 (8)0.0084 (7)0.0025 (8)
C50.0619 (12)0.0676 (13)0.0693 (11)0.0075 (9)0.0015 (8)0.0009 (8)
C60.0777 (14)0.0682 (13)0.0570 (9)0.0025 (10)0.0080 (8)0.0080 (8)
C70.0664 (11)0.0596 (11)0.0527 (9)0.0001 (8)0.0129 (7)0.0047 (7)
C80.0424 (8)0.0438 (8)0.0458 (7)0.0031 (5)0.0106 (5)0.0035 (5)
C90.0427 (8)0.0419 (7)0.0459 (7)0.0031 (5)0.0118 (5)0.0037 (5)
C100.0461 (8)0.0409 (7)0.0480 (7)0.0044 (5)0.0099 (5)0.0078 (5)
C110.0436 (8)0.0556 (9)0.0483 (7)0.0001 (6)0.0105 (5)0.0020 (6)
C120.0439 (9)0.0719 (12)0.0602 (9)0.0070 (7)0.0048 (6)0.0058 (7)
C130.0653 (12)0.0716 (13)0.0684 (11)0.0233 (10)0.0085 (8)0.0016 (8)
C140.0811 (15)0.0581 (12)0.0815 (12)0.0106 (10)0.0128 (10)0.0108 (9)
C150.0584 (10)0.0460 (9)0.0627 (9)0.0032 (7)0.0089 (7)0.0034 (6)
C160.0397 (8)0.0448 (8)0.0521 (8)0.0028 (5)0.0037 (5)0.0045 (5)
C170.0407 (8)0.0377 (7)0.0477 (7)0.0010 (5)0.0030 (5)0.0011 (5)
C180.0523 (9)0.0401 (8)0.0589 (8)0.0070 (6)0.0128 (6)0.0081 (5)
C190.0620 (10)0.0465 (9)0.0630 (9)0.0055 (7)0.0179 (7)0.0041 (7)
C200.0582 (10)0.0408 (8)0.0577 (8)0.0018 (7)0.0088 (6)0.0055 (6)
C210.0592 (10)0.0435 (9)0.0736 (10)0.0090 (7)0.0090 (7)0.0153 (7)
C220.0515 (9)0.0458 (9)0.0671 (9)0.0064 (7)0.0116 (6)0.0069 (6)
C230.0682 (12)0.0465 (9)0.0722 (10)0.0033 (8)0.0201 (8)0.0055 (7)
N10.0451 (7)0.0426 (7)0.0512 (7)0.0005 (5)0.0053 (5)0.0063 (5)
N20.0458 (7)0.0431 (7)0.0509 (7)0.0007 (5)0.0070 (5)0.0068 (5)
N30.0951 (16)0.0631 (12)0.0988 (13)0.0049 (10)0.0375 (11)0.0144 (10)
O10.0603 (14)0.0570 (13)0.1096 (17)0.0000.0159 (10)0.000
C240.250 (10)0.109 (5)0.098 (3)0.0000.015 (4)0.000
C250.108 (6)0.219 (12)0.469 (19)0.0000.142 (9)0.000
Geometric parameters (Å, º) top
C1—N11.354 (2)C14—H140.9300
C1—C81.404 (2)C15—H150.9300
C1—C21.469 (2)C16—C171.517 (2)
C2—C31.371 (2)C16—H16B0.9700
C2—C71.418 (2)C16—H16C0.9700
C3—C41.372 (2)C17—C221.393 (2)
C3—H30.9300C17—C181.406 (2)
C4—C51.387 (3)C18—C191.380 (2)
C4—H40.9300C18—H180.9300
C5—C61.410 (4)C19—C201.389 (2)
C5—H50.9300C19—H190.9300
C6—C71.375 (3)C20—C211.393 (3)
C6—H60.9300C20—C231.434 (2)
C7—H70.9300C21—C221.376 (3)
C8—C91.398 (2)C21—H210.9300
C8—C161.501 (2)C22—H220.9300
C9—N21.335 (2)C23—N31.144 (3)
C9—C101.493 (2)N1—N21.355 (2)
C10—C151.390 (2)N2—H20.910
C10—C111.403 (2)O1—C241.478 (6)
C11—C121.378 (2)O1—H10.77
C11—H110.9300C24—C251.448 (15)
C12—C131.393 (3)C24—H24A0.9700
C12—H120.9300C24—H24B0.9700
C13—C141.359 (4)C25—H25A0.9600
C13—H130.9300C25—H25B0.9600
C14—C151.385 (3)C25—H25C0.9600
N1—C1—C8108.95 (13)C10—C15—H15120.1
N1—C1—C2122.61 (13)C8—C16—C17117.6 (1)
C8—C1—C2128.41 (13)C8—C16—H16B107.9
C3—C2—C7118.65 (16)C17—C16—H16B107.9
C3—C2—C1122.74 (13)C8—C16—H16C107.9
C7—C2—C1118.50 (14)C17—C16—H16C107.9
C2—C3—C4122.14 (16)H16B—C16—H16C107.2
C2—C3—H3118.9C22—C17—C18116.97 (14)
C4—C3—H3118.9C22—C17—C16119.40 (14)
C3—C4—C5120.13 (19)C18—C17—C16123.60 (13)
C3—C4—H4119.9C19—C18—C17121.86 (15)
C5—C4—H4119.9C19—C18—H18119.1
C4—C5—C6118.58 (19)C17—C18—H18119.1
C4—C5—H5120.7C18—C19—C20119.35 (17)
C6—C5—H5120.7C18—C19—H19120.3
C7—C6—C5121.01 (18)C20—C19—H19120.3
C7—C6—H6119.5C19—C20—C21120.14 (16)
C5—C6—H6119.5C19—C20—C23118.81 (17)
C6—C7—C2119.43 (18)C21—C20—C23121.03 (16)
C6—C7—H7120.3C22—C21—C20119.45 (16)
C2—C7—H7120.3C22—C21—H21120.3
C9—C8—C1104.66 (14)C20—C21—H21120.3
C9—C8—C16130.29 (14)C21—C22—C17122.19 (16)
C1—C8—C16124.91 (14)C21—C22—H22118.9
N2—C9—C8108.83 (14)C17—C22—H22118.9
N2—C9—C10120.16 (13)N3—C23—C20176.7 (2)
C8—C9—C10131.01 (14)C1—N1—N2107.7 (1)
C15—C10—C11118.84 (15)C9—N2—N1109.7 (1)
C15—C10—C9121.93 (15)C9—N2—H2134
C11—C10—C9119.23 (14)N1—N2—H2116
C12—C11—C10119.81 (17)C24—O1—H195
C12—C11—H11120.1C25—C24—O1100.0 (7)
C10—C11—H11120.1C25—C24—H24A111.8
C11—C12—C13121.05 (18)O1—C24—H24A111.8
C11—C12—H12119.5C25—C24—H24B111.8
C13—C12—H12119.5O1—C24—H24B111.8
C14—C13—C12118.64 (19)H24A—C24—H24B109.5
C14—C13—H13120.7C24—C25—H25A109.5
C12—C13—H13120.7C24—C25—H25B109.5
C13—C14—C15121.9 (2)H25A—C25—H25B109.5
C13—C14—H14119.1C24—C25—H25C109.5
C15—C14—H14119.1H25A—C25—H25C109.5
C14—C15—C10119.80 (19)H25B—C25—H25C109.5
C14—C15—H15120.1
N1—C1—C2—C351.3 (2)C10—C11—C12—C131.4 (3)
C8—C1—C2—C3126.61 (17)C11—C12—C13—C140.9 (3)
N1—C1—C2—C7132.54 (17)C12—C13—C14—C150.1 (3)
C8—C1—C2—C749.6 (2)C13—C14—C15—C100.3 (3)
C7—C2—C3—C40.3 (3)C11—C10—C15—C140.2 (2)
C1—C2—C3—C4175.85 (17)C9—C10—C15—C14179.78 (16)
C2—C3—C4—C50.6 (3)C9—C8—C16—C1778.51 (19)
C3—C4—C5—C60.9 (3)C1—C8—C16—C17106.47 (16)
C4—C5—C6—C72.6 (3)C8—C16—C17—C22176.18 (14)
C5—C6—C7—C22.9 (3)C8—C16—C17—C186.1 (2)
C3—C2—C7—C61.4 (3)C22—C17—C18—C190.3 (2)
C1—C2—C7—C6177.75 (17)C16—C17—C18—C19178.05 (15)
N1—C1—C8—C93.01 (16)C17—C18—C19—C201.7 (3)
C2—C1—C8—C9178.87 (13)C18—C19—C20—C212.7 (3)
N1—C1—C8—C16173.06 (13)C18—C19—C20—C23175.38 (17)
C2—C1—C8—C165.1 (2)C19—C20—C21—C222.3 (3)
C1—C8—C9—N22.43 (15)C23—C20—C21—C22175.70 (17)
C16—C8—C9—N2173.35 (14)C20—C21—C22—C170.9 (3)
C1—C8—C9—C10177.27 (14)C18—C17—C22—C210.1 (2)
C16—C8—C9—C107.0 (2)C16—C17—C22—C21177.77 (16)
N2—C9—C10—C15145.60 (15)C8—C1—N1—N22.50 (16)
C8—C9—C10—C1534.7 (2)C2—C1—N1—N2179.25 (12)
N2—C9—C10—C1134.83 (19)C8—C9—N2—N11.00 (16)
C8—C9—C10—C11144.84 (15)C10—C9—N2—N1178.74 (12)
C15—C10—C11—C121.0 (2)C1—N1—N2—C90.93 (16)
C9—C10—C11—C12179.42 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.772.532.786 (2)102
O1—H1···N2i0.772.532.786 (2)102
N2—H2···O10.911.912.786 (2)160
C15—H15···N3ii0.932.703.470 (3)141
C6—H6···Cg1iii0.932.723.601 (2)159
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y, z+1; (iii) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC23H17N3·0.5C2H6O
Mr358.43
Crystal system, space groupMonoclinic, P21/m
Temperature (K)291
a, b, c (Å)6.1301 (12), 34.541 (7), 9.4459 (19)
β (°) 104.52 (3)
V3)1936.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.18 × 0.15
Data collection
DiffractometerRigaku RAXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.98, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
5538, 4500, 3819
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.214, 1.08
No. of reflections4500
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.45

Computer programs: RAPID-AUTO (Rigaku, 1999), RAPID-AUTO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.772.532.786 (2)102
O1—H1···N2i0.772.532.786 (2)102
N2—H2···O10.911.912.786 (2)160
C15—H15···N3ii0.932.703.470 (3)141
C6—H6···Cg1iii0.932.723.601 (2)159
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y, z+1; (iii) x1, y, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds