supplementary materials


Acta Cryst. (2007). E63, o2992    [ doi:10.1107/S1600536807023859 ]

2,10,12-Trimethyl-12H-5,7-dioxa-6-thiadibenzo[a,d]cyclooctene 6-oxide

S.-L. Dong, B. Xu, Z.-Q. Feng and J.-T. Wang

Abstract top

In the two independent molecules of the title compound, C16H16O3S, the dihedral angles between the benzene rings are 79.06 (2) and 78.46 (2)°. The SO2C5 rings are not planar and have boat-chair conformations.

Comment top

In a research for novel antioxidants, a series of medium-ring heterocycles derived from sterically hindered phenols has been prepared and investigated (Pastor et al., 1983). We herein report the crystal structure of the title compound, (I).

The asymmetric unit of (I) contains two independent molecules, essentially in the same geometry (Fig. 1). The bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987).

Rings A(C2—C7), B(C9—C14), D(C18—C23) and E(C25—C30) are, of course, planar and the dihedral angles between them are A/B = 79.06 (2)° and D/E=78.46 (2)°. Rings C (S1/O2/O3/C4/C5/C12/C13/C15) and F (S2/O5/O6/C21/C22/C27/C28/C31) are not planar, having total puckering amplitudes, QT, of 1.057 (3) and 1.037 (3) Å, respectively, and boat-chair conformations (Cremer & Pople, 1975).

Related literature top

For general backgroud, see: Pastor et al. (1983); Allen et al. (1987); Cremer & Pople (1975).

Experimental top

2,2'-ethylidenebis(4-methylPhenol)(1.21 g, 5 mmol) and triethylamine (11 mmol, 1.52 ml) and methylene chloride(AR) (100 ml) were added into the four-neck round-bottom flask fitted with a mechanical stirrer, dropping funnel, thermometer, and reflux condenser. The system was put in an ice-water bath and stirred for 30 min. and then thionyl chloride (5 mmol, 0.36 ml) which was dissolved in methylene chloride(AR) (50 ml) was added and stirred. The reaction was kept at 273 K in an ice-water bath for 24 h. The mixture was washed with hydrogen chloride solution (5%, 100 ml) and saturated sodium hydrogen carbonate (7.4%, 100 ml) and distilled water (200 ml). The solvent was distilled under reduced pressure. The residue was exsiccated in a desiccator. The product was purified by repeated crystallization. Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of isopropyl alcohol(AR) (10 ml) (yield; 1.04 g, 72%, m.p. 401 K).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93, 0.98 and 0.96 Å for aromatic, methine and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 15% probability level.
2,10,12-Trimethyl-12H-5,7-dioxa-6-thiadibenzo[a,d]cyclooctene 6-oxide top
Crystal data top
C16H16O3SDx = 1.323 Mg m3
Mr = 288.36Melting point: 401 K
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 25 reflections
a = 14.122 (3) Åθ = 10–13°
b = 8.0880 (16) ŵ = 0.23 mm1
c = 25.343 (5) ÅT = 298 K
V = 2894.6 (10) Å3Block, colorless
Z = 80.30 × 0.20 × 0.10 mm
F(000) = 1216
Data collection top
Enraf–Nonius CAD-4
diffractometer
1444 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
graphiteθmax = 26.0°, θmin = 1.6°
ω/2θ scansh = 017
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.915, Tmax = 0.958l = 310
3213 measured reflections3 standard reflections every 200 reflections
2890 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.040P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2890 reflectionsΔρmax = 0.31 e Å3
361 parametersΔρmin = 0.14 e Å3
202 restraintsAbsolute structure: Flack (1983), 208 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.06 (17)
Crystal data top
C16H16O3SV = 2894.6 (10) Å3
Mr = 288.36Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 14.122 (3) ŵ = 0.23 mm1
b = 8.0880 (16) ÅT = 298 K
c = 25.343 (5) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1444 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.021
Tmin = 0.915, Tmax = 0.958θmax = 26.0°
3213 measured reflections3 standard reflections every 200 reflections
2890 independent reflections intensity decay: none
Refinement top
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.116Δρmax = 0.31 e Å3
S = 1.00Δρmin = 0.14 e Å3
2890 reflectionsAbsolute structure: Flack (1983), 208 Friedel pairs
361 parametersFlack parameter: 0.06 (17)
202 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.21883 (16)0.7088 (3)0.74303 (10)0.0973 (7)
O10.1300 (4)0.7391 (6)0.7223 (2)0.1098 (19)
O20.2261 (3)0.8052 (6)0.7991 (2)0.0862 (16)
O30.2965 (3)0.8038 (6)0.7086 (2)0.0833 (15)
C10.0108 (6)1.3898 (10)0.8340 (3)0.116 (3)
H1B0.04821.36060.85030.175*
H1C0.00131.44500.80110.175*
H1D0.04561.46220.85700.175*
C20.0693 (5)1.2320 (9)0.8237 (3)0.0788 (19)
C30.1592 (4)1.2418 (8)0.8007 (3)0.0655 (18)
H3A0.18261.34470.79060.079*
C40.2138 (5)1.1037 (9)0.7925 (3)0.0617 (18)
C50.1728 (5)0.9516 (10)0.8060 (3)0.0694 (19)
C60.0842 (5)0.9431 (10)0.8286 (3)0.083 (2)
H6A0.05900.84160.83850.099*
C70.0340 (5)1.0837 (10)0.8362 (3)0.084 (2)
H7A0.02661.07700.85050.101*
C80.2456 (6)1.3871 (9)0.5856 (3)0.102 (2)
H8A0.25341.48390.60710.152*
H8B0.18391.38830.56970.152*
H8C0.29311.38610.55840.152*
C90.2561 (4)1.2314 (8)0.6201 (3)0.0676 (16)
C100.2452 (5)1.0780 (9)0.5978 (3)0.0739 (19)
H10A0.22961.06950.56220.089*
C110.2570 (5)0.9372 (9)0.6271 (3)0.0762 (18)
H11A0.25110.83370.61150.091*
C120.2775 (4)0.9505 (9)0.6798 (3)0.0689 (18)
C130.2884 (4)1.1028 (9)0.7053 (3)0.0580 (17)
C140.2783 (4)1.2404 (8)0.6728 (3)0.0675 (18)
H14A0.28711.34450.68760.081*
C150.3078 (4)1.1142 (9)0.7630 (3)0.0660 (19)
H15A0.34391.01520.77250.079*
C160.3669 (4)1.2611 (7)0.7795 (3)0.082 (2)
H16A0.42621.25890.76100.122*
H16B0.37831.25630.81680.122*
H16C0.33371.36130.77110.122*
S20.04866 (15)0.7149 (3)0.51953 (10)0.0912 (6)
O40.1369 (4)0.7467 (6)0.5400 (2)0.1101 (19)
O50.0329 (3)0.8073 (6)0.5539 (2)0.0810 (15)
O60.0424 (3)0.8172 (6)0.4638 (2)0.0813 (16)
C170.2390 (6)1.4193 (10)0.4275 (3)0.109 (3)
H17A0.20001.51030.43850.163*
H17B0.25351.43030.39070.163*
H17C0.29661.41920.44760.163*
C180.1868 (5)1.2598 (8)0.4366 (3)0.0731 (18)
C190.2286 (5)1.1054 (10)0.4249 (3)0.080 (2)
H19A0.28991.10100.41150.096*
C200.1795 (6)0.9635 (11)0.4330 (3)0.081 (2)
H20A0.20530.86310.42230.097*
C210.0904 (5)0.9661 (9)0.4573 (3)0.0665 (18)
C220.0483 (5)1.1173 (9)0.4706 (3)0.0664 (19)
C230.0994 (5)1.2595 (8)0.4597 (3)0.0716 (18)
H23A0.07251.36070.46850.086*
C240.0153 (5)1.3952 (9)0.6739 (3)0.093 (2)
H24A0.00611.48870.65110.140*
H24B0.07721.40060.68940.140*
H24C0.03171.39650.70130.140*
C250.0060 (4)1.2366 (9)0.6420 (3)0.0734 (18)
C260.0158 (4)1.2464 (7)0.5889 (3)0.0636 (17)
H26A0.02311.35010.57360.076*
C270.0273 (4)1.1081 (10)0.5581 (3)0.0679 (19)
C280.0154 (4)0.9546 (9)0.5820 (3)0.0642 (17)
C290.0086 (5)0.9411 (10)0.6343 (3)0.0750 (19)
H29A0.01890.83780.64930.090*
C300.0170 (4)1.0803 (10)0.6639 (3)0.0755 (19)
H30A0.03051.07070.69970.091*
C310.0445 (4)1.1191 (8)0.4987 (3)0.0640 (18)
H31A0.07721.01690.48860.077*
C320.1105 (4)1.2619 (8)0.4832 (3)0.083 (2)
H32A0.12091.26010.44580.124*
H32B0.08201.36520.49300.124*
H32C0.17001.24980.50120.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0971 (16)0.0757 (12)0.119 (2)0.0127 (12)0.0042 (14)0.0001 (15)
O10.127 (5)0.085 (4)0.118 (4)0.020 (3)0.003 (4)0.007 (3)
O20.108 (4)0.070 (3)0.080 (4)0.003 (3)0.000 (3)0.015 (3)
O30.072 (3)0.077 (3)0.101 (4)0.010 (3)0.005 (3)0.007 (3)
C10.108 (6)0.130 (7)0.111 (7)0.025 (6)0.030 (6)0.014 (6)
C20.074 (4)0.089 (4)0.073 (4)0.009 (4)0.011 (3)0.001 (4)
C30.072 (4)0.064 (4)0.060 (4)0.007 (3)0.007 (3)0.002 (3)
C40.057 (4)0.068 (4)0.061 (4)0.001 (3)0.017 (3)0.005 (4)
C50.072 (4)0.075 (4)0.061 (5)0.010 (4)0.001 (3)0.014 (4)
C60.080 (4)0.084 (4)0.084 (5)0.015 (4)0.004 (4)0.002 (4)
C70.065 (4)0.107 (5)0.081 (5)0.005 (4)0.002 (4)0.000 (5)
C80.098 (5)0.105 (5)0.101 (5)0.014 (5)0.007 (5)0.012 (4)
C90.054 (3)0.079 (4)0.071 (4)0.003 (3)0.002 (3)0.013 (3)
C100.058 (4)0.088 (4)0.075 (4)0.004 (4)0.009 (4)0.008 (4)
C110.061 (4)0.077 (4)0.091 (4)0.006 (4)0.012 (4)0.014 (4)
C120.051 (4)0.059 (3)0.096 (5)0.002 (3)0.002 (4)0.008 (4)
C130.044 (3)0.068 (4)0.062 (4)0.001 (3)0.005 (3)0.003 (3)
C140.055 (4)0.068 (4)0.079 (4)0.007 (3)0.002 (3)0.001 (3)
C150.039 (3)0.070 (4)0.090 (5)0.000 (3)0.008 (3)0.012 (4)
C160.066 (4)0.074 (5)0.105 (6)0.007 (4)0.015 (4)0.005 (4)
S20.0892 (15)0.0773 (12)0.1071 (16)0.0089 (12)0.0064 (14)0.0016 (14)
O40.116 (5)0.089 (4)0.126 (5)0.022 (3)0.005 (4)0.009 (3)
O50.064 (3)0.068 (3)0.110 (4)0.007 (3)0.009 (3)0.005 (3)
O60.073 (3)0.072 (3)0.099 (4)0.006 (3)0.016 (3)0.016 (3)
C170.105 (6)0.116 (6)0.105 (6)0.050 (5)0.003 (5)0.004 (5)
C180.079 (4)0.083 (4)0.058 (4)0.009 (4)0.012 (3)0.010 (3)
C190.074 (4)0.103 (5)0.064 (4)0.009 (4)0.021 (4)0.010 (4)
C200.085 (4)0.089 (4)0.069 (5)0.023 (4)0.004 (4)0.001 (4)
C210.067 (4)0.069 (4)0.064 (4)0.004 (3)0.014 (3)0.011 (4)
C220.057 (4)0.069 (4)0.073 (5)0.000 (3)0.000 (3)0.011 (4)
C230.067 (4)0.071 (4)0.077 (4)0.004 (3)0.002 (3)0.006 (4)
C240.086 (5)0.111 (6)0.083 (5)0.002 (5)0.002 (4)0.035 (5)
C250.054 (4)0.088 (4)0.078 (4)0.010 (4)0.005 (3)0.000 (4)
C260.060 (4)0.049 (3)0.082 (4)0.005 (3)0.001 (3)0.004 (3)
C270.044 (3)0.080 (4)0.080 (5)0.001 (3)0.005 (3)0.004 (4)
C280.050 (3)0.063 (4)0.079 (4)0.003 (3)0.010 (3)0.005 (4)
C290.060 (4)0.086 (4)0.079 (4)0.003 (4)0.004 (4)0.007 (4)
C300.054 (4)0.099 (5)0.073 (4)0.000 (4)0.003 (3)0.006 (4)
C310.057 (4)0.048 (4)0.087 (5)0.000 (3)0.013 (4)0.006 (3)
C320.053 (4)0.087 (5)0.108 (6)0.009 (4)0.025 (4)0.005 (4)
Geometric parameters (Å, °) top
S1—O11.381 (5)S2—O41.375 (5)
S1—O31.599 (5)S2—O51.626 (5)
S1—O21.625 (6)S2—O61.639 (6)
O2—C51.414 (8)O5—C281.410 (8)
O3—C121.418 (9)O6—C211.391 (8)
C1—C21.542 (9)C17—C181.503 (9)
C1—H1B0.9600C17—H17A0.9600
C1—H1C0.9600C17—H17B0.9600
C1—H1D0.9600C17—H17C0.9600
C2—C71.337 (9)C18—C231.366 (9)
C2—C31.400 (9)C18—C191.413 (9)
C3—C41.374 (8)C19—C201.357 (10)
C3—H3A0.9300C19—H19A0.9300
C4—C51.403 (10)C20—C211.401 (10)
C4—C151.525 (8)C20—H20A0.9300
C5—C61.377 (10)C21—C221.401 (9)
C6—C71.353 (10)C22—C231.385 (9)
C6—H6A0.9300C22—C311.491 (9)
C7—H7A0.9300C23—H23A0.9300
C8—C91.541 (9)C24—C251.522 (9)
C8—H8A0.9600C24—H24A0.9600
C8—H8B0.9600C24—H24B0.9600
C8—H8C0.9600C24—H24C0.9600
C9—C101.373 (8)C25—C261.383 (9)
C9—C141.374 (9)C25—C301.389 (9)
C10—C111.371 (9)C26—C271.374 (9)
C10—H10A0.9300C26—H26A0.9300
C11—C121.370 (10)C27—C281.392 (10)
C11—H11A0.9300C27—C311.528 (10)
C12—C131.399 (10)C28—C291.371 (9)
C13—C141.392 (9)C29—C301.358 (9)
C13—C151.491 (10)C29—H29A0.9300
C14—H14A0.9300C30—H30A0.9300
C15—C161.511 (8)C31—C321.536 (8)
C15—H15A0.9800C31—H31A0.9800
C16—H16A0.9600C32—H32A0.9600
C16—H16B0.9600C32—H32B0.9600
C16—H16C0.9600C32—H32C0.9600
O1—S1—O3109.3 (3)O4—S2—O5110.7 (3)
O1—S1—O2107.7 (3)O4—S2—O6106.2 (3)
O3—S1—O2101.8 (3)O5—S2—O6101.0 (3)
C5—O2—S1118.4 (5)C28—O5—S2122.3 (4)
C12—O3—S1123.6 (4)C21—O6—S2120.8 (5)
C2—C1—H1B109.5C18—C17—H17A109.5
C2—C1—H1C109.5C18—C17—H17B109.5
H1B—C1—H1C109.5H17A—C17—H17B109.5
C2—C1—H1D109.5C18—C17—H17C109.5
H1B—C1—H1D109.5H17A—C17—H17C109.5
H1C—C1—H1D109.5H17B—C17—H17C109.5
C7—C2—C3119.2 (7)C23—C18—C19117.8 (6)
C7—C2—C1120.2 (7)C23—C18—C17120.6 (7)
C3—C2—C1120.6 (7)C19—C18—C17121.5 (7)
C4—C3—C2121.8 (6)C20—C19—C18120.1 (7)
C4—C3—H3A119.1C20—C19—H19A119.9
C2—C3—H3A119.1C18—C19—H19A119.9
C3—C4—C5116.4 (7)C19—C20—C21120.9 (8)
C3—C4—C15121.2 (7)C19—C20—H20A119.6
C5—C4—C15121.9 (7)C21—C20—H20A119.6
C6—C5—C4121.4 (7)O6—C21—C22121.4 (6)
C6—C5—O2119.6 (7)O6—C21—C20118.4 (7)
C4—C5—O2118.9 (6)C22—C21—C20120.0 (7)
C7—C6—C5119.5 (8)C23—C22—C21117.1 (6)
C7—C6—H6A120.2C23—C22—C31123.0 (7)
C5—C6—H6A120.2C21—C22—C31119.7 (7)
C2—C7—C6121.6 (7)C18—C23—C22123.9 (7)
C2—C7—H7A119.2C18—C23—H23A118.1
C6—C7—H7A119.2C22—C23—H23A118.1
C9—C8—H8A109.5C25—C24—H24A109.5
C9—C8—H8B109.5C25—C24—H24B109.5
H8A—C8—H8B109.5H24A—C24—H24B109.5
C9—C8—H8C109.5C25—C24—H24C109.5
H8A—C8—H8C109.5H24A—C24—H24C109.5
H8B—C8—H8C109.5H24B—C24—H24C109.5
C10—C9—C14118.3 (6)C26—C25—C30117.7 (7)
C10—C9—C8119.6 (6)C26—C25—C24119.2 (7)
C14—C9—C8122.1 (6)C30—C25—C24123.1 (7)
C11—C10—C9120.9 (7)C27—C26—C25122.2 (6)
C11—C10—H10A119.6C27—C26—H26A118.9
C9—C10—H10A119.6C25—C26—H26A118.9
C12—C11—C10119.3 (8)C26—C27—C28117.6 (8)
C12—C11—H11A120.4C26—C27—C31122.1 (7)
C10—C11—H11A120.4C28—C27—C31120.0 (7)
C11—C12—C13122.8 (8)C29—C28—C27121.4 (8)
C11—C12—O3118.3 (7)C29—C28—O5117.7 (7)
C13—C12—O3118.6 (7)C27—C28—O5120.8 (7)
C14—C13—C12114.8 (7)C30—C29—C28119.3 (8)
C14—C13—C15123.3 (7)C30—C29—H29A120.3
C12—C13—C15121.8 (7)C28—C29—H29A120.3
C9—C14—C13123.8 (6)C29—C30—C25121.6 (8)
C9—C14—H14A118.1C29—C30—H30A119.2
C13—C14—H14A118.1C25—C30—H30A119.2
C13—C15—C16114.9 (6)C22—C31—C27109.3 (5)
C13—C15—C4108.5 (5)C22—C31—C32114.8 (6)
C16—C15—C4112.9 (6)C27—C31—C32113.1 (6)
C13—C15—H15A106.7C22—C31—H31A106.4
C16—C15—H15A106.7C27—C31—H31A106.4
C4—C15—H15A106.7C32—C31—H31A106.4
C15—C16—H16A109.5C31—C32—H32A109.5
C15—C16—H16B109.5C31—C32—H32B109.5
H16A—C16—H16B109.5H32A—C32—H32B109.5
C15—C16—H16C109.5C31—C32—H32C109.5
H16A—C16—H16C109.5H32A—C32—H32C109.5
H16B—C16—H16C109.5H32B—C32—H32C109.5
O1—S1—O2—C529.3 (6)O4—S2—O5—C2828.1 (7)
O3—S1—O2—C585.6 (6)O6—S2—O5—C2884.2 (6)
O1—S1—O3—C1227.4 (7)O4—S2—O6—C2131.6 (6)
O2—S1—O3—C1286.3 (6)O5—S2—O6—C2184.0 (5)
C7—C2—C3—C42.7 (11)C23—C18—C19—C204.6 (10)
C1—C2—C3—C4178.1 (7)C17—C18—C19—C20179.3 (7)
C2—C3—C4—C53.1 (10)C18—C19—C20—C215.6 (11)
C2—C3—C4—C15174.6 (6)S2—O6—C21—C2289.2 (8)
C3—C4—C5—C62.9 (11)S2—O6—C21—C2096.0 (8)
C15—C4—C5—C6174.4 (7)C19—C20—C21—O6178.9 (7)
C3—C4—C5—O2179.2 (7)C19—C20—C21—C224.0 (12)
C15—C4—C5—O29.4 (10)O6—C21—C22—C23176.1 (7)
S1—O2—C5—C693.5 (8)C20—C21—C22—C231.4 (11)
S1—O2—C5—C490.2 (7)O6—C21—C22—C318.1 (11)
C4—C5—C6—C72.4 (11)C20—C21—C22—C31177.2 (7)
O2—C5—C6—C7178.6 (6)C19—C18—C23—C222.1 (11)
C3—C2—C7—C62.0 (11)C17—C18—C23—C22178.2 (7)
C1—C2—C7—C6178.8 (7)C21—C22—C23—C180.5 (11)
C5—C6—C7—C21.9 (12)C31—C22—C23—C18176.2 (7)
C14—C9—C10—C110.6 (10)C30—C25—C26—C270.4 (10)
C8—C9—C10—C11177.9 (7)C24—C25—C26—C27178.5 (6)
C9—C10—C11—C121.7 (10)C25—C26—C27—C280.5 (10)
C10—C11—C12—C130.9 (10)C25—C26—C27—C31175.5 (6)
C10—C11—C12—O3175.3 (6)C26—C27—C28—C291.1 (10)
S1—O3—C12—C1196.8 (7)C31—C27—C28—C29174.0 (6)
S1—O3—C12—C1388.6 (7)C26—C27—C28—O5175.2 (6)
C11—C12—C13—C141.0 (9)C31—C27—C28—O59.6 (10)
O3—C12—C13—C14173.4 (5)S2—O5—C28—C2994.4 (7)
C11—C12—C13—C15178.1 (6)S2—O5—C28—C2789.1 (7)
O3—C12—C13—C157.6 (9)C27—C28—C29—C302.8 (10)
C10—C9—C14—C131.5 (10)O5—C28—C29—C30173.7 (6)
C8—C9—C14—C13180.0 (6)C28—C29—C30—C252.8 (10)
C12—C13—C14—C92.2 (9)C26—C25—C30—C291.3 (10)
C15—C13—C14—C9176.8 (6)C24—C25—C30—C29179.8 (7)
C14—C13—C15—C1632.3 (8)C23—C22—C31—C2788.7 (9)
C12—C13—C15—C16148.7 (6)C21—C22—C31—C2786.8 (8)
C14—C13—C15—C495.1 (7)C23—C22—C31—C3239.5 (10)
C12—C13—C15—C483.8 (8)C21—C22—C31—C32145.0 (6)
C3—C4—C15—C1385.1 (8)C26—C27—C31—C2290.0 (8)
C5—C4—C15—C1385.9 (8)C28—C27—C31—C2284.9 (8)
C3—C4—C15—C1643.4 (9)C26—C27—C31—C3239.2 (9)
C5—C4—C15—C16145.6 (6)C28—C27—C31—C32145.9 (6)
Table 1
Selected geometric parameters (Å, °)
top
S1—O11.381 (5)S2—O41.375 (5)
S1—O31.599 (5)S2—O51.626 (5)
S1—O21.625 (6)S2—O61.639 (6)
O2—C51.414 (8)O5—C281.410 (8)
O3—C121.418 (9)O6—C211.391 (8)
O1—S1—O3109.3 (3)O4—S2—O5110.7 (3)
O1—S1—O2107.7 (3)O4—S2—O6106.2 (3)
O3—S1—O2101.8 (3)O5—S2—O6101.0 (3)
C5—O2—S1118.4 (5)C28—O5—S2122.3 (4)
C12—O3—S1123.6 (4)C21—O6—S2120.8 (5)
C6—C5—O2119.6 (7)O6—C21—C22121.4 (6)
C4—C5—O2118.9 (6)O6—C21—C20118.4 (7)
C11—C12—O3118.3 (7)C29—C28—O5117.7 (7)
C13—C12—O3118.6 (7)C27—C28—O5120.8 (7)
Acknowledgements top

The authors would like to thank the Analysis Centre of Nanjing University, for carrying out the X-ray crystallographic analysis.

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Enraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Pastor, S. D., Spivack, J. D., Steinhuebel, L. P. & Matzura, C. (1983). Phosphorus Sulfur, 15, 253–256.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.