Download citation
Download citation
link to html
In the title compound, C4H12N22+·C7H3NO42−·2H2O, inter­molecular N—H...O and O—H...O hydrogen bonds and C—H...π inter­actions between piperazinediium and the aromatic ring of pyridine-2,5-dicarboxyl­ate are responsible for extending the structure into a three-dimensional supra­molecular network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807021538/hk2240sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807021538/hk2240Isup2.hkl
Contains datablock I

CCDC reference: 634339

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.038
  • wR factor = 0.114
  • Data-to-parameter ratio = 17.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 200 Deg. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 8 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 C7 H3 N O4
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Proton transfer is highly important in physics, chemistry and biochemistry. In order to develop new types of proton transfer compounds and hydrogen bonding systems, our research group has already synthesized proton transfer compounds with different proton donors and acceptors (Aghabozorg et al., 2006; Moghimi et al., 2005; Sheshmani et al., 2006). We herein report the crystal structure of the title compound, (I).

The molecule of the title compound, (I), contains one cation, one anion and also two water molecules (Fig. 1). The bond lengths and angles are within normal ranges (Allen et al., 1987). The piperazine ring: A (N2/N3/C8—C11) is not planar, having total puckering amplitude, QT of 1.104 (3) Å and chair conformation [φ = -151.67 (4)°, θ = 122.13 (3)°] (Cremer & Pople, 1975).

In the title compound, protons from one carboxylic acid unit are transferred to N atoms of the piperazine. The non-covalent interactions have an important role in self-association of the crystal system. As can be seen from the packing diagram (Fig. 2), the intermolecular N—H···O and O—H···O hydrogen bonds (Table 1) and C—H···π interactions between piperazinediium and aromatic ring of pyridine-2,5-dicarboxylate (Fig. 3) are responsible for extending the structure into three dimension resulting in a supramolecular network.

Related literature top

For general backgroud, see: Aghabozorg et al. (2006); Moghimi et al. (2005); Sheshmani et al. (2006); Allen et al. (1987); Cremer & Pople (1975).

Experimental top

The title compound was synthesized by a reaction between pyridine-2,5-dicarboxylic acid (2,5-pydcH2) and piperazine (pipz) in a 1:1 molar ratio. A solution of pipz (430 mg, 5 mmol) in tetrahydrofuran (10 ml) was added to a solution of 2,5-pydcH2 (835 mg, 5 mmol) in tetrahydrofuran (10 ml). The resulting powder was dissolved in water to give colorless crystals of (I) (yield; 80%).

Refinement top

H atoms were positioned geometrically, with O—H = 0.82 Å (for OH2), N—H = 0.87 Å (for NH2) and C—H = 0.95 and 0.99 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,O,N).

Structure description top

Proton transfer is highly important in physics, chemistry and biochemistry. In order to develop new types of proton transfer compounds and hydrogen bonding systems, our research group has already synthesized proton transfer compounds with different proton donors and acceptors (Aghabozorg et al., 2006; Moghimi et al., 2005; Sheshmani et al., 2006). We herein report the crystal structure of the title compound, (I).

The molecule of the title compound, (I), contains one cation, one anion and also two water molecules (Fig. 1). The bond lengths and angles are within normal ranges (Allen et al., 1987). The piperazine ring: A (N2/N3/C8—C11) is not planar, having total puckering amplitude, QT of 1.104 (3) Å and chair conformation [φ = -151.67 (4)°, θ = 122.13 (3)°] (Cremer & Pople, 1975).

In the title compound, protons from one carboxylic acid unit are transferred to N atoms of the piperazine. The non-covalent interactions have an important role in self-association of the crystal system. As can be seen from the packing diagram (Fig. 2), the intermolecular N—H···O and O—H···O hydrogen bonds (Table 1) and C—H···π interactions between piperazinediium and aromatic ring of pyridine-2,5-dicarboxylate (Fig. 3) are responsible for extending the structure into three dimension resulting in a supramolecular network.

For general backgroud, see: Aghabozorg et al. (2006); Moghimi et al. (2005); Sheshmani et al. (2006); Allen et al. (1987); Cremer & Pople (1975).

Computing details top

Data collection: APEXII (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2005); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Intermolecular C—H···π interaction between piperazinediium and aromatic ring of pyridine-2,5-dicarboxylate.
Piperazinediium pyridine-2,5-dicarboxylate dihydrate top
Crystal data top
C4H12N22+·C7H3NO42·2H2OZ = 2
Mr = 289.29F(000) = 308
Triclinic, P1Dx = 1.432 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0673 (6) ÅCell parameters from 189 reflections
b = 9.9909 (9) Åθ = 3–28°
c = 11.2827 (10) ŵ = 0.12 mm1
α = 64.181 (2)°T = 100 K
β = 77.479 (2)°Prism, colorless
γ = 69.794 (2)°0.24 × 0.22 × 0.19 mm
V = 670.92 (10) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3200 independent reflections
Radiation source: fine-focus sealed tube2716 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 28.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.971, Tmax = 0.976k = 1313
6675 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: mixed
wR(F2) = 0.114H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0683P)2 + 0.2024P]
where P = (Fo2 + 2Fc2)/3
3200 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C4H12N22+·C7H3NO42·2H2Oγ = 69.794 (2)°
Mr = 289.29V = 670.92 (10) Å3
Triclinic, P1Z = 2
a = 7.0673 (6) ÅMo Kα radiation
b = 9.9909 (9) ŵ = 0.12 mm1
c = 11.2827 (10) ÅT = 100 K
α = 64.181 (2)°0.24 × 0.22 × 0.19 mm
β = 77.479 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3200 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2716 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.976Rint = 0.022
6675 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 0.99Δρmax = 0.41 e Å3
3200 reflectionsΔρmin = 0.31 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.72069 (13)0.42146 (11)0.10061 (9)0.0179 (2)
O20.68360 (13)0.35887 (10)0.31757 (9)0.0172 (2)
O31.71752 (12)0.03466 (10)0.33147 (8)0.0153 (2)
O41.74763 (13)0.08585 (10)0.11263 (9)0.0181 (2)
N11.33832 (15)0.21315 (12)0.10751 (10)0.0139 (2)
C11.13793 (18)0.27830 (14)0.10828 (12)0.0138 (2)
H1A1.08000.33530.02570.017*
C21.00909 (17)0.26795 (13)0.22219 (12)0.0122 (2)
C31.09484 (18)0.18307 (14)0.34258 (12)0.0140 (2)
H3A1.01230.17160.42300.017*
C41.30236 (18)0.11520 (13)0.34412 (12)0.0138 (2)
H4A1.36400.05760.42540.017*
C51.41866 (17)0.13292 (13)0.22462 (12)0.0119 (2)
C60.78624 (17)0.35448 (13)0.21273 (12)0.0124 (2)
C71.64623 (17)0.05751 (13)0.22069 (12)0.0125 (2)
N20.92925 (15)0.22547 (12)0.71808 (10)0.0131 (2)
H2NA1.03830.15900.70230.016*
H2NB0.90620.30130.64130.016*
N30.62060 (14)0.34644 (11)0.88677 (10)0.0125 (2)
H3NA0.51470.41940.89570.015*
H3NB0.64350.26920.96290.015*
C80.76465 (18)0.15153 (14)0.78825 (12)0.0151 (2)
H8A0.80890.06670.87360.018*
H8B0.73450.10620.73450.018*
C90.57630 (18)0.27015 (14)0.81250 (12)0.0153 (2)
H9A0.52470.34950.72690.018*
H9B0.47020.21860.86350.018*
C100.78693 (17)0.41821 (13)0.81741 (11)0.0132 (2)
H10A0.81680.46410.87080.016*
H10B0.74480.50230.73130.016*
C110.97483 (17)0.29762 (14)0.79543 (12)0.0143 (2)
H11A1.08390.34690.74700.017*
H11B1.02210.21680.88160.017*
O1S0.82858 (14)0.44226 (10)0.47339 (9)0.0197 (2)
H1SA0.74240.52140.47500.024*
H1SB0.78270.40280.44010.024*
O2S0.56303 (15)0.71798 (11)0.45834 (9)0.0232 (2)
H2SB0.49510.71010.52860.028*
H2SA0.59190.79660.44410.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0134 (4)0.0224 (4)0.0144 (4)0.0020 (3)0.0028 (3)0.0087 (4)
O20.0124 (4)0.0223 (5)0.0148 (4)0.0014 (3)0.0009 (3)0.0092 (4)
O30.0118 (4)0.0162 (4)0.0132 (4)0.0003 (3)0.0021 (3)0.0045 (3)
O40.0127 (4)0.0191 (4)0.0142 (4)0.0003 (3)0.0009 (3)0.0032 (3)
N10.0117 (5)0.0146 (5)0.0127 (5)0.0017 (4)0.0007 (4)0.0047 (4)
C10.0128 (5)0.0148 (5)0.0125 (6)0.0013 (4)0.0025 (4)0.0055 (4)
C20.0106 (5)0.0118 (5)0.0146 (6)0.0017 (4)0.0007 (4)0.0069 (4)
C30.0142 (6)0.0150 (5)0.0117 (5)0.0028 (4)0.0012 (4)0.0065 (4)
C40.0141 (6)0.0135 (5)0.0122 (5)0.0004 (4)0.0033 (4)0.0053 (4)
C50.0110 (5)0.0107 (5)0.0140 (5)0.0017 (4)0.0009 (4)0.0059 (4)
C60.0114 (5)0.0114 (5)0.0149 (6)0.0022 (4)0.0009 (4)0.0065 (4)
C70.0114 (5)0.0105 (5)0.0153 (6)0.0017 (4)0.0011 (4)0.0058 (4)
N20.0118 (5)0.0139 (5)0.0111 (5)0.0003 (4)0.0004 (4)0.0055 (4)
N30.0109 (5)0.0139 (5)0.0109 (5)0.0014 (4)0.0004 (4)0.0052 (4)
C80.0146 (5)0.0141 (5)0.0177 (6)0.0030 (4)0.0008 (4)0.0083 (5)
C90.0113 (5)0.0189 (6)0.0180 (6)0.0034 (4)0.0014 (4)0.0098 (5)
C100.0144 (5)0.0128 (5)0.0119 (5)0.0038 (4)0.0001 (4)0.0048 (4)
C110.0115 (5)0.0181 (6)0.0142 (6)0.0044 (4)0.0004 (4)0.0075 (5)
O1S0.0254 (5)0.0179 (4)0.0166 (5)0.0043 (4)0.0047 (4)0.0075 (4)
O2S0.0313 (5)0.0206 (5)0.0188 (5)0.0112 (4)0.0070 (4)0.0098 (4)
Geometric parameters (Å, º) top
O1—C61.2511 (15)N3—C101.4843 (15)
O2—C61.2563 (15)N3—C91.4887 (15)
O3—C71.2705 (15)N3—H3NA0.8698
O4—C71.2413 (15)N3—H3NB0.8695
N1—C11.3387 (15)C8—C91.5120 (16)
N1—C51.3413 (15)C8—H8A0.9900
C1—C21.3905 (16)C8—H8B0.9900
C1—H1A0.9500C9—H9A0.9900
C2—C31.3892 (16)C9—H9B0.9900
C2—C61.5137 (15)C10—C111.5128 (16)
C3—C41.3874 (16)C10—H10A0.9900
C3—H3A0.9500C10—H10B0.9900
C4—C51.3918 (16)C11—H11A0.9900
C4—H4A0.9500C11—H11B0.9900
C5—C71.5223 (16)O1S—H1SA0.8197
N2—C81.4868 (16)O1S—H1SB0.8197
N2—C111.4885 (15)O2S—H2SB0.8199
N2—H2NA0.8699O2S—H2SA0.8195
N2—H2NB0.8695
C1—N1—C5117.45 (10)C9—N3—H3NA110.7
N1—C1—C2124.22 (11)C10—N3—H3NB117.0
N1—C1—H1A117.9C9—N3—H3NB100.3
C2—C1—H1A117.9H3NA—N3—H3NB109.6
C3—C2—C1117.48 (11)N2—C8—C9110.20 (10)
C3—C2—C6122.09 (10)N2—C8—H8A109.6
C1—C2—C6120.33 (10)C9—C8—H8A109.6
C4—C3—C2119.28 (11)N2—C8—H8B109.6
C4—C3—H3A120.4C9—C8—H8B109.6
C2—C3—H3A120.4H8A—C8—H8B108.1
C3—C4—C5118.90 (11)N3—C9—C8110.65 (9)
C3—C4—H4A120.6N3—C9—H9A109.5
C5—C4—H4A120.6C8—C9—H9A109.5
N1—C5—C4122.66 (11)N3—C9—H9B109.5
N1—C5—C7116.24 (10)C8—C9—H9B109.5
C4—C5—C7121.08 (10)H9A—C9—H9B108.1
O1—C6—O2125.15 (11)N3—C10—C11110.20 (9)
O1—C6—C2117.55 (10)N3—C10—H10A109.6
O2—C6—C2117.22 (10)C11—C10—H10A109.6
O4—C7—O3124.71 (11)N3—C10—H10B109.6
O4—C7—C5119.37 (10)C11—C10—H10B109.6
O3—C7—C5115.90 (10)H10A—C10—H10B108.1
C8—N2—C11110.78 (9)N2—C11—C10109.79 (9)
C8—N2—H2NA111.4N2—C11—H11A109.7
C11—N2—H2NA110.0C10—C11—H11A109.7
C8—N2—H2NB117.1N2—C11—H11B109.7
C11—N2—H2NB103.1C10—C11—H11B109.7
H2NA—N2—H2NB103.9H11A—C11—H11B108.2
C10—N3—C9111.45 (9)H1SA—O1S—H1SB108.3
C10—N3—H3NA107.6H2SB—O2S—H2SA98.1
C5—N1—C1—C20.01 (18)C3—C2—C6—O26.44 (17)
N1—C1—C2—C30.63 (18)C1—C2—C6—O2169.99 (11)
N1—C1—C2—C6175.95 (11)N1—C5—C7—O47.27 (16)
C1—C2—C3—C40.93 (17)C4—C5—C7—O4174.20 (11)
C6—C2—C3—C4175.59 (11)N1—C5—C7—O3171.12 (10)
C2—C3—C4—C50.64 (18)C4—C5—C7—O37.41 (16)
C1—N1—C5—C40.32 (17)C11—N2—C8—C958.08 (12)
C1—N1—C5—C7178.83 (10)C10—N3—C9—C856.11 (12)
C3—C4—C5—N10.00 (18)N2—C8—C9—N356.11 (13)
C3—C4—C5—C7178.44 (10)C9—N3—C10—C1156.94 (12)
C3—C2—C6—O1176.57 (11)C8—N2—C11—C1058.93 (12)
C1—C2—C6—O17.01 (17)N3—C10—C11—N257.86 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2NA···O3i0.871.822.686 (2)173
N2—H2NB···O1S0.871.862.719 (1)169
N3—H3NA···O1ii0.871.872.736 (2)174
N3—H3NB···O4iii0.871.912.770 (1)168
O1S—H1SA···O2S0.821.892.701 (2)172
O1S—H1SB···O20.821.942.735 (1)164
O2S—H2SB···O2ii0.821.922.709 (1)161
O2S—H2SA···O3iv0.821.982.730 (2)152
Symmetry codes: (i) x+3, y, z+1; (ii) x+1, y+1, z+1; (iii) x1, y, z+1; (iv) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC4H12N22+·C7H3NO42·2H2O
Mr289.29
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.0673 (6), 9.9909 (9), 11.2827 (10)
α, β, γ (°)64.181 (2), 77.479 (2), 69.794 (2)
V3)670.92 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.24 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.971, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
6675, 3200, 2716
Rint0.022
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.114, 0.99
No. of reflections3200
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.31

Computer programs: APEXII (Bruker, 2005), SAINT (Bruker, 2005), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2005), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2NA···O3i0.871.822.686 (2)173
N2—H2NB···O1S0.871.862.719 (1)169
N3—H3NA···O1ii0.871.872.736 (2)174
N3—H3NB···O4iii0.871.912.770 (1)168
O1S—H1SA···O2S0.821.892.701 (2)172
O1S—H1SB···O20.821.942.735 (1)164
O2S—H2SB···O2ii0.821.922.709 (1)161
O2S—H2SA···O3iv0.821.982.730 (2)152
Symmetry codes: (i) x+3, y, z+1; (ii) x+1, y+1, z+1; (iii) x1, y, z+1; (iv) x1, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds