Download citation
Download citation
link to html
In the mol­ecule of the title compound, C29H36O8, the five-membered rings adopt envelope conformations, while the six-membered rings have twist and chair conformations. The five-membered rings also have pseudo-mirror planes, while the six-membered rings have pseudo-twofold axes. In the crystal structure, intra- and inter­molecular C—H...O hydrogen bonds cause the formation of a network structure. This study establishes the relative configuration of the compound.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807024786/hk2249sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807024786/hk2249Isup2.hkl
Contains datablock I

CCDC reference: 632479

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.051
  • wR factor = 0.128
  • Data-to-parameter ratio = 8.9

checkCIF/PLATON results

No syntax errors found



Alert level C STRVA01_ALERT_4_C Flack test results are meaningless. From the CIF: _refine_ls_abs_structure_Flack 0.000 From the CIF: _refine_ls_abs_structure_Flack_su 10.000 PLAT032_ALERT_4_C Std. Uncertainty in Flack Parameter too High ... 10.00 PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.75 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.24 Ratio PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 5 PLAT480_ALERT_4_C Long H...A H-Bond Reported H30B .. O29 .. 2.64 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H2'A .. O29 .. 2.63 Ang. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 4 PLAT850_ALERT_2_C Check Flack Parameter Exact Value 0.00 and su .. 10.00
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.00 From the CIF: _reflns_number_total 3012 Count of symmetry unique reflns 3054 Completeness (_total/calc) 98.62% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT791_ALERT_1_G Confirm the Absolute Configuration of C9 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C10 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C17 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C17A = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C18 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C19 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C20A = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C24A = . R PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 10 ALERT level C = Check and explain 12 ALERT level G = General alerts; check 11 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Macrocyclic trichothecenes have attracted considerable interest mainly due to their potent biological activity, such as cancer prevention (Amagata et al., 2003), cytotoxicity (Namikoshi et al., 2001; Alvi et al., 2002; Xu et al., 2006) and phytotoxicity (Abbas et al., 2002). Knowledge of the three-dimensional structure of these compounds is important in order to establish structure-activity relationships (Kaneko et al., 1982). We herein report the crystal structure of roridin H, (I), a bioactive macrocyclic trichothecene with systematic name Spiro[7,10-epoxy-17,19-methano-1H,3H,9H,24H-[1,6,12]trioxacyclo- nonadecino[3,\4 - d][1]benzopyran-18(19H),2'-oxirane], verrucarin A derivative.

In the molecule of the title compound, (I), the bond lengths and angles are within normal ranges (Allen et al., 1987; Jarvis & Midiwo, 1982). Rings A (O8/O27/C7/C9/C10) and B (C1'/C17A/C17—C19) have envelope conformations with atoms C9 and C18 displaced by -0.556 (3) Å and -0.671 (3) Å from the planes of the other four ring atoms, respectively. Rings C (C20A/C24A/C21—C24) and D (O20/C17A/C18/C19/C20A/C24A) are not planar, having total puckering amplitudes, QT, of 0.464 (3) and 0.637 (3) Å, respectively and twist and chair conformations φ = 91.55 (6)°, θ = 131.26 (4)° and φ = 66.76 (3)°, θ = 161.87 (3)° (Cremer & Pople, 1975). The five-membered rings A and B have pseudo mirror planes running through C9 and the mid-point of C7—O27 bond (for ring A) and C18 and the mid-point of C1'-C17 bond (for ring B), while the six-membered rings C and D have pseudo twofold axes passing through the mid-points of C18—C19 and C20A—C24A bonds (for ring C) and C21—C22 and C24—C24A bonds (for ring D), as can be deduced from the torsion angles (Table 1).

There is no significant anomalous dispersion for the determination of the absolute configuration. However, the relative configuration for the molecule was definitely determined and the absolute configurations in the trichothecene moiety were certain (Shen et al., 2006), thus C17R, C17aS, C18S, C19R, C20aR, C24aR were presumed in (I) and the absolute configurations of C9S and C10S would be deduced. This absolute configuration of the molecule needs to be verified.

In the crystal structure, the weak intra- and intermolecular C—H···O hydrogen bonds (Table 2) cause to the formation of a network structure (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general backgroud, see: Amagata et al. (2003); Namikoshi et al. (2001); Alvi et al. (2002); Xu et al. (2006); Abbas et al. (2002); Kaneko et al. (1982); Allen et al. (1987); Jarvis & Midiwo (1982); Cremer & Pople (1975). For related literature, see: Shen et al. (2006).

Experimental top

The title compound, (I), was isolated from 3L culture of the fungal strain S1–1 (a Myrothecium sp.), affording 3.2 mg by repeated column chromatography on Sephadex LH-20 and Silica gel. Pyricularia oryzae was grown on a slant culture medium consisting of yeast extract 0.2%, soluble starch 1% and agar 2% at 300 K for 12~14 days, using as the indicator organism of the antifungal activity. Single crystals suitable for X-ray analysis were obtained from acetone by slow evaporation at room temperature.

Refinement top

Friedel pairs were merged before the final refinement, as there is no significant anomalous dispersion for the determination of the absolute configuration. H atoms were positioned geometrically, with C—H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Structure description top

Macrocyclic trichothecenes have attracted considerable interest mainly due to their potent biological activity, such as cancer prevention (Amagata et al., 2003), cytotoxicity (Namikoshi et al., 2001; Alvi et al., 2002; Xu et al., 2006) and phytotoxicity (Abbas et al., 2002). Knowledge of the three-dimensional structure of these compounds is important in order to establish structure-activity relationships (Kaneko et al., 1982). We herein report the crystal structure of roridin H, (I), a bioactive macrocyclic trichothecene with systematic name Spiro[7,10-epoxy-17,19-methano-1H,3H,9H,24H-[1,6,12]trioxacyclo- nonadecino[3,\4 - d][1]benzopyran-18(19H),2'-oxirane], verrucarin A derivative.

In the molecule of the title compound, (I), the bond lengths and angles are within normal ranges (Allen et al., 1987; Jarvis & Midiwo, 1982). Rings A (O8/O27/C7/C9/C10) and B (C1'/C17A/C17—C19) have envelope conformations with atoms C9 and C18 displaced by -0.556 (3) Å and -0.671 (3) Å from the planes of the other four ring atoms, respectively. Rings C (C20A/C24A/C21—C24) and D (O20/C17A/C18/C19/C20A/C24A) are not planar, having total puckering amplitudes, QT, of 0.464 (3) and 0.637 (3) Å, respectively and twist and chair conformations φ = 91.55 (6)°, θ = 131.26 (4)° and φ = 66.76 (3)°, θ = 161.87 (3)° (Cremer & Pople, 1975). The five-membered rings A and B have pseudo mirror planes running through C9 and the mid-point of C7—O27 bond (for ring A) and C18 and the mid-point of C1'-C17 bond (for ring B), while the six-membered rings C and D have pseudo twofold axes passing through the mid-points of C18—C19 and C20A—C24A bonds (for ring C) and C21—C22 and C24—C24A bonds (for ring D), as can be deduced from the torsion angles (Table 1).

There is no significant anomalous dispersion for the determination of the absolute configuration. However, the relative configuration for the molecule was definitely determined and the absolute configurations in the trichothecene moiety were certain (Shen et al., 2006), thus C17R, C17aS, C18S, C19R, C20aR, C24aR were presumed in (I) and the absolute configurations of C9S and C10S would be deduced. This absolute configuration of the molecule needs to be verified.

In the crystal structure, the weak intra- and intermolecular C—H···O hydrogen bonds (Table 2) cause to the formation of a network structure (Fig. 2), in which they may be effective in the stabilization of the structure.

For general backgroud, see: Amagata et al. (2003); Namikoshi et al. (2001); Alvi et al. (2002); Xu et al. (2006); Abbas et al. (2002); Kaneko et al. (1982); Allen et al. (1987); Jarvis & Midiwo (1982); Cremer & Pople (1975). For related literature, see: Shen et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
(I) top
Crystal data top
C29H36O8F(000) = 548
Mr = 512.58Dx = 1.300 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 940 reflections
a = 10.259 (6) Åθ = 2.6–23.2°
b = 8.989 (5) ŵ = 0.09 mm1
c = 14.290 (8) ÅT = 293 K
β = 96.410 (7)°Prism, colorless
V = 1309.6 (13) Å30.25 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3012 independent reflections
Radiation source: fine-focus sealed tube2555 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
φ and ω scansθmax = 27.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.977, Tmax = 0.981k = 1011
6524 measured reflectionsl = 1218
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0693P)2 + 0.0186P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3012 reflectionsΔρmax = 0.23 e Å3
338 parametersΔρmin = 0.18 e Å3
1 restraintAbsolute structure: Flack (1983), with no Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0 (10)
Crystal data top
C29H36O8V = 1309.6 (13) Å3
Mr = 512.58Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.259 (6) ŵ = 0.09 mm1
b = 8.989 (5) ÅT = 293 K
c = 14.290 (8) Å0.25 × 0.20 × 0.20 mm
β = 96.410 (7)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3012 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2555 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.981Rint = 0.044
6524 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.128Δρmax = 0.23 e Å3
S = 1.09Δρmin = 0.18 e Å3
3012 reflectionsAbsolute structure: Flack (1983), with no Friedel pairs
338 parametersAbsolute structure parameter: 0 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5453 (3)0.3762 (3)0.6923 (2)0.0384 (6)
H1A0.64050.37730.70130.046*
H1B0.51650.44470.64180.046*
O20.4955 (2)0.4239 (2)0.77738 (14)0.0419 (5)
C30.5125 (3)0.5676 (4)0.7996 (2)0.0483 (7)
C40.4303 (4)0.6080 (4)0.8736 (2)0.0500 (8)
H40.36090.54430.88140.060*
C50.4437 (4)0.7245 (4)0.9306 (2)0.0502 (8)
C60.3512 (4)0.7469 (4)1.0042 (2)0.0572 (9)
H6A0.40280.76101.06470.069*
H6B0.30030.65661.00830.069*
C70.2570 (4)0.8766 (5)0.9873 (3)0.0602 (9)
H70.30710.96970.99010.072*
O80.1679 (3)0.8806 (4)1.05537 (18)0.0714 (8)
C90.0537 (4)0.8063 (5)1.0137 (3)0.0647 (10)
H90.06850.69861.01710.078*
C100.0486 (4)0.8563 (5)0.9119 (3)0.0619 (10)
H100.01050.95630.90610.074*
C110.0257 (4)0.7571 (5)0.8415 (3)0.0616 (10)
H110.11580.74910.84330.074*
C120.0264 (4)0.6798 (4)0.7767 (2)0.0539 (8)
H120.11590.68870.77270.065*
C130.0495 (3)0.5820 (5)0.7119 (2)0.0564 (9)
H130.13940.58050.71530.068*
C140.0053 (3)0.4928 (5)0.6470 (2)0.0537 (8)
H140.06660.43790.60850.064*
C150.1339 (3)0.4763 (4)0.6332 (2)0.0448 (7)
O160.1512 (2)0.3506 (3)0.58600 (15)0.0472 (5)
C170.2858 (3)0.3108 (4)0.5746 (2)0.0391 (6)
H170.34050.39990.57260.047*
C17A0.3426 (3)0.2037 (3)0.6553 (2)0.0354 (6)
C180.3089 (3)0.0526 (4)0.6096 (2)0.0411 (7)
C190.3448 (3)0.0706 (4)0.5121 (2)0.0431 (7)
H190.30560.00840.47090.052*
O200.4846 (2)0.0672 (2)0.51674 (14)0.0411 (5)
C20A0.5468 (3)0.1918 (3)0.5675 (2)0.0349 (6)
H20A0.52950.28160.52920.042*
C210.6912 (3)0.1586 (4)0.5744 (2)0.0445 (7)
H210.73180.16650.51960.053*
C220.7645 (3)0.1194 (4)0.6515 (3)0.0499 (8)
C230.7103 (3)0.1063 (5)0.7434 (2)0.0562 (9)
H23A0.74090.19000.78280.067*
H23B0.74430.01630.77470.067*
C240.5609 (3)0.1021 (4)0.7350 (2)0.0427 (7)
H24A0.53240.11990.79650.051*
H24B0.53110.00370.71450.051*
C24A0.4972 (3)0.2185 (3)0.66494 (18)0.0331 (6)
O250.5840 (4)0.6482 (3)0.7619 (2)0.0807 (10)
C260.5507 (5)0.8364 (6)0.9300 (3)0.0880 (16)
H26A0.60650.83170.98850.132*
H26B0.51320.93410.92220.132*
H26C0.60120.81550.87890.132*
O270.1828 (3)0.8649 (4)0.89813 (17)0.0668 (7)
C280.0622 (5)0.8447 (7)1.0651 (3)0.0907 (16)
H28A0.04180.82311.13090.136*
H28B0.13670.78681.04010.136*
H28C0.08210.94851.05710.136*
O290.2216 (3)0.5599 (3)0.66110 (19)0.0610 (7)
C300.2802 (3)0.2202 (4)0.7473 (2)0.0437 (7)
H30A0.19100.18640.73800.066*
H30B0.28220.32290.76590.066*
H30C0.32840.16180.79560.066*
O310.1813 (2)0.0075 (3)0.6160 (2)0.0624 (7)
C320.9084 (3)0.0833 (6)0.6520 (3)0.0743 (12)
H32A0.92170.02140.66210.111*
H32B0.95820.13770.70160.111*
H32C0.93680.11080.59260.111*
C1'0.2847 (3)0.2206 (4)0.4835 (2)0.0504 (8)
H1'A0.19570.20830.45370.061*
H1'B0.33590.27040.43970.061*
C2'0.2946 (4)0.0883 (4)0.6567 (3)0.0586 (9)
H2'A0.31850.17810.62500.070*
H2'B0.31210.09060.72480.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0381 (15)0.0391 (15)0.0392 (14)0.0056 (12)0.0091 (12)0.0044 (12)
O20.0493 (12)0.0388 (11)0.0389 (11)0.0044 (9)0.0111 (9)0.0051 (9)
C30.059 (2)0.0400 (17)0.0468 (17)0.0055 (16)0.0098 (14)0.0033 (14)
C40.063 (2)0.0423 (18)0.0467 (17)0.0073 (15)0.0149 (15)0.0019 (14)
C50.069 (2)0.0438 (18)0.0380 (15)0.0022 (16)0.0067 (15)0.0003 (14)
C60.085 (3)0.050 (2)0.0377 (16)0.0062 (18)0.0119 (16)0.0040 (14)
C70.081 (3)0.049 (2)0.0531 (19)0.0025 (19)0.0179 (18)0.0097 (17)
O80.087 (2)0.0735 (19)0.0569 (14)0.0052 (16)0.0204 (14)0.0208 (14)
C90.086 (3)0.054 (2)0.058 (2)0.006 (2)0.025 (2)0.0090 (18)
C100.077 (3)0.051 (2)0.060 (2)0.0157 (19)0.0180 (19)0.0035 (18)
C110.065 (2)0.061 (2)0.059 (2)0.0185 (19)0.0129 (18)0.0032 (18)
C120.057 (2)0.057 (2)0.0486 (18)0.0120 (17)0.0098 (15)0.0035 (15)
C130.0445 (18)0.070 (2)0.0542 (19)0.0191 (17)0.0031 (15)0.0016 (18)
C140.0450 (18)0.056 (2)0.0578 (19)0.0118 (16)0.0030 (15)0.0070 (17)
C150.0484 (18)0.0376 (16)0.0489 (17)0.0076 (14)0.0074 (14)0.0005 (14)
O160.0343 (11)0.0468 (13)0.0600 (13)0.0067 (9)0.0024 (9)0.0108 (11)
C170.0328 (14)0.0404 (16)0.0443 (15)0.0054 (12)0.0054 (12)0.0030 (12)
C17A0.0301 (14)0.0363 (16)0.0411 (14)0.0011 (11)0.0105 (11)0.0040 (12)
C180.0296 (14)0.0370 (16)0.0575 (17)0.0040 (12)0.0084 (12)0.0109 (13)
C190.0379 (15)0.0452 (17)0.0458 (16)0.0007 (13)0.0022 (12)0.0164 (14)
O200.0369 (11)0.0402 (12)0.0475 (11)0.0019 (9)0.0097 (8)0.0121 (10)
C20A0.0335 (14)0.0331 (14)0.0393 (14)0.0013 (11)0.0099 (11)0.0043 (11)
C210.0379 (16)0.0455 (18)0.0536 (18)0.0036 (13)0.0203 (14)0.0064 (14)
C220.0326 (15)0.0478 (19)0.070 (2)0.0011 (14)0.0100 (15)0.0031 (16)
C230.0418 (17)0.065 (2)0.060 (2)0.0035 (16)0.0034 (15)0.0081 (18)
C240.0410 (16)0.0460 (18)0.0418 (15)0.0005 (13)0.0080 (12)0.0057 (13)
C24A0.0326 (13)0.0334 (15)0.0344 (13)0.0013 (11)0.0085 (11)0.0009 (11)
O250.112 (2)0.0499 (16)0.090 (2)0.0335 (16)0.0539 (19)0.0207 (14)
C260.117 (4)0.074 (3)0.078 (3)0.032 (3)0.032 (3)0.033 (2)
O270.0792 (18)0.0735 (18)0.0496 (13)0.0002 (15)0.0160 (12)0.0037 (13)
C280.098 (3)0.103 (4)0.078 (3)0.009 (3)0.037 (3)0.019 (3)
O290.0579 (15)0.0452 (14)0.0838 (17)0.0043 (12)0.0257 (13)0.0147 (13)
C300.0364 (15)0.0485 (18)0.0487 (17)0.0028 (13)0.0164 (13)0.0059 (14)
O310.0411 (13)0.0580 (15)0.0908 (18)0.0157 (12)0.0191 (12)0.0186 (14)
C320.0348 (18)0.089 (3)0.100 (3)0.010 (2)0.0119 (19)0.005 (3)
C1'0.0440 (17)0.059 (2)0.0469 (17)0.0107 (16)0.0000 (13)0.0079 (15)
C2'0.056 (2)0.043 (2)0.079 (3)0.0100 (16)0.0181 (18)0.0061 (18)
Geometric parameters (Å, º) top
C1—O21.436 (3)C17A—C301.532 (4)
C1—C24A1.538 (4)C17A—C24A1.582 (4)
C1—H1A0.9700C18—O311.428 (4)
C1—H1B0.9700C18—C2'1.449 (5)
O2—C31.337 (4)C18—C191.489 (4)
C3—O251.201 (4)C19—O201.428 (4)
C3—C41.470 (5)C19—C1'1.520 (5)
C4—C51.324 (5)C19—H190.9800
C4—H40.9300O20—C20A1.444 (3)
C5—C261.489 (6)C20A—C211.504 (4)
C5—C61.507 (5)C20A—C24A1.553 (4)
C6—C71.517 (6)C20A—H20A0.9800
C6—H6A0.9700C21—C221.311 (5)
C6—H6B0.9700C21—H210.9300
C7—O81.407 (5)C22—C231.487 (5)
C7—O271.414 (5)C22—C321.511 (5)
C7—H70.9800C23—C241.524 (5)
O8—C91.421 (5)C23—H23A0.9700
C9—C281.506 (6)C23—H23B0.9700
C9—C101.518 (5)C24—C24A1.542 (4)
C9—H90.9800C24—H24A0.9700
C10—O271.415 (5)C24—H24B0.9700
C10—C111.489 (6)C26—H26A0.9599
C10—H100.9800C26—H26B0.9599
C11—C121.317 (5)C26—H26C0.9599
C11—H110.9300C28—H28A0.9599
C12—C131.441 (5)C28—H28B0.9599
C12—H120.9300C28—H28C0.9599
C13—C141.341 (5)C30—H30A0.9599
C13—H130.9300C30—H30B0.9599
C14—C151.471 (5)C30—H30C0.9599
C14—H140.9300O31—C2'1.437 (5)
C15—O291.206 (4)C32—H32A0.9599
C15—O161.338 (4)C32—H32B0.9599
O16—C171.453 (3)C32—H32C0.9599
C17—C1'1.533 (4)C1'—H1'A0.9700
C17—C17A1.564 (4)C1'—H1'B0.9700
C17—H170.9800C2'—H2'A0.9700
C17A—C181.530 (4)C2'—H2'B0.9700
O2—C1—C24A110.8 (2)O20—C19—C18107.8 (2)
O2—C1—H1A109.5O20—C19—C1'114.0 (3)
C24A—C1—H1A109.5C18—C19—C1'102.3 (3)
O2—C1—H1B109.5O20—C19—H19110.8
C24A—C1—H1B109.5C18—C19—H19110.8
H1A—C1—H1B108.1C1'—C19—H19110.8
C3—O2—C1116.1 (2)C19—O20—C20A113.1 (2)
O25—C3—O2123.1 (3)O20—C20A—C21104.8 (2)
O25—C3—C4127.0 (3)O20—C20A—C24A113.6 (2)
O2—C3—C4109.8 (3)C21—C20A—C24A113.0 (2)
C5—C4—C3127.5 (3)O20—C20A—H20A108.4
C5—C4—H4116.2C21—C20A—H20A108.4
C3—C4—H4116.2C24A—C20A—H20A108.4
C4—C5—C26123.8 (3)C22—C21—C20A125.2 (3)
C4—C5—C6120.3 (3)C22—C21—H21117.4
C26—C5—C6115.8 (3)C20A—C21—H21117.4
C5—C6—C7115.5 (3)C21—C22—C23121.9 (3)
C5—C6—H6A108.4C21—C22—C32122.0 (3)
C7—C6—H6A108.4C23—C22—C32116.1 (3)
C5—C6—H6B108.4C22—C23—C24113.8 (3)
C7—C6—H6B108.4C22—C23—H23A108.8
H6A—C6—H6B107.5C24—C23—H23A108.8
O8—C7—O27107.4 (3)C22—C23—H23B108.8
O8—C7—C6111.1 (3)C24—C23—H23B108.8
O27—C7—C6110.8 (3)H23A—C23—H23B107.7
O8—C7—H7109.2C23—C24—C24A112.6 (3)
O27—C7—H7109.2C23—C24—H24A109.1
C6—C7—H7109.2C24A—C24—H24A109.1
C7—O8—C9105.5 (3)C23—C24—H24B109.1
O8—C9—C28110.3 (3)C24A—C24—H24B109.1
O8—C9—C10101.6 (3)H24A—C24—H24B107.8
C28—C9—C10117.0 (4)C1—C24A—C24111.1 (2)
O8—C9—H9109.2C1—C24A—C20A104.0 (2)
C28—C9—H9109.2C24—C24A—C20A108.6 (2)
C10—C9—H9109.2C1—C24A—C17A113.0 (2)
O27—C10—C11111.8 (3)C24—C24A—C17A110.4 (2)
O27—C10—C9102.7 (3)C20A—C24A—C17A109.6 (2)
C11—C10—C9115.5 (4)C5—C26—H26A109.5
O27—C10—H10108.9C5—C26—H26B109.5
C11—C10—H10108.9H26A—C26—H26B109.5
C9—C10—H10108.9C5—C26—H26C109.5
C12—C11—C10125.0 (4)H26A—C26—H26C109.5
C12—C11—H11117.5H26B—C26—H26C109.5
C10—C11—H11117.5C7—O27—C10108.2 (3)
C11—C12—C13122.8 (4)C9—C28—H28A109.5
C11—C12—H12118.6C9—C28—H28B109.5
C13—C12—H12118.6H28A—C28—H28B109.5
C14—C13—C12127.5 (3)C9—C28—H28C109.5
C14—C13—H13116.2H28A—C28—H28C109.5
C12—C13—H13116.2H28B—C28—H28C109.5
C13—C14—C15124.1 (3)C17A—C30—H30A109.5
C13—C14—H14117.9C17A—C30—H30B109.5
C15—C14—H14117.9H30A—C30—H30B109.5
O29—C15—O16123.8 (3)C17A—C30—H30C109.5
O29—C15—C14126.4 (3)H30A—C30—H30C109.5
O16—C15—C14109.8 (3)H30B—C30—H30C109.5
C15—O16—C17116.5 (2)C18—O31—C2'60.8 (2)
O16—C17—C1'108.0 (2)C22—C32—H32A109.5
O16—C17—C17A110.4 (2)C22—C32—H32B109.5
C1'—C17—C17A105.5 (3)H32A—C32—H32B109.5
O16—C17—H17110.9C22—C32—H32C109.5
C1'—C17—H17110.9H32A—C32—H32C109.5
C17A—C17—H17110.9H32B—C32—H32C109.5
C18—C17A—C30110.9 (2)C19—C1'—C17106.0 (3)
C18—C17A—C17100.6 (2)C19—C1'—H1'A110.5
C30—C17A—C17114.6 (2)C17—C1'—H1'A110.5
C18—C17A—C24A106.7 (2)C19—C1'—H1'B110.5
C30—C17A—C24A115.3 (2)C17—C1'—H1'B110.5
C17—C17A—C24A107.4 (2)H1'A—C1'—H1'B108.7
O31—C18—C2'59.9 (2)O31—C2'—C1859.3 (2)
O31—C18—C19115.2 (3)O31—C2'—H2'A117.8
C2'—C18—C19125.3 (3)C18—C2'—H2'A117.8
O31—C18—C17A118.2 (2)O31—C2'—H2'B117.8
C2'—C18—C17A127.4 (3)C18—C2'—H2'B117.8
C19—C18—C17A103.6 (3)H2'A—C2'—H2'B115.0
C24A—C1—O2—C3169.2 (3)O31—C18—C19—C1'84.4 (3)
C1—O2—C3—O2512.7 (5)C2'—C18—C19—C1'154.2 (3)
C1—O2—C3—C4166.3 (3)C17A—C18—C19—C1'46.2 (3)
O25—C3—C4—C520.0 (7)C18—C19—O20—C20A65.4 (3)
O2—C3—C4—C5161.0 (3)C1'—C19—O20—C20A47.4 (3)
C3—C4—C5—C261.4 (6)C19—O20—C20A—C21173.5 (2)
C3—C4—C5—C6178.8 (4)C19—O20—C20A—C24A49.6 (3)
C4—C5—C6—C7110.5 (4)O20—C20A—C21—C22108.2 (3)
C26—C5—C6—C772.0 (5)C24A—C20A—C21—C2216.0 (4)
C5—C6—C7—O8175.1 (3)C20A—C21—C22—C231.3 (5)
C5—C6—C7—O2755.7 (5)C20A—C21—C22—C32178.1 (4)
O27—C7—O8—C925.6 (4)C21—C22—C23—C2415.1 (5)
C6—C7—O8—C995.7 (4)C32—C22—C23—C24164.3 (4)
C7—O8—C9—C28161.9 (4)C22—C23—C24—C24A43.9 (4)
C7—O8—C9—C1037.1 (4)O2—C1—C24A—C2469.2 (3)
O8—C9—C10—O2735.1 (4)O2—C1—C24A—C20A174.1 (2)
C28—C9—C10—O27155.3 (4)O2—C1—C24A—C17A55.4 (3)
O8—C9—C10—C11157.1 (3)C23—C24—C24A—C156.7 (3)
C28—C9—C10—C1182.7 (5)C23—C24—C24A—C20A57.1 (3)
O27—C10—C11—C123.3 (6)C23—C24—C24A—C17A177.2 (3)
C9—C10—C11—C12113.6 (4)O20—C20A—C24A—C1164.7 (2)
C10—C11—C12—C13178.2 (4)C21—C20A—C24A—C176.1 (3)
C11—C12—C13—C14176.1 (4)O20—C20A—C24A—C2477.0 (3)
C12—C13—C14—C152.1 (6)C21—C20A—C24A—C2442.3 (3)
C13—C14—C15—O2917.4 (6)O20—C20A—C24A—C17A43.6 (3)
C13—C14—C15—O16161.1 (4)C21—C20A—C24A—C17A162.9 (2)
O29—C15—O16—C174.3 (5)C18—C17A—C24A—C1169.1 (2)
C14—C15—O16—C17174.2 (3)C30—C17A—C24A—C167.3 (3)
C15—O16—C17—C1'151.5 (3)C17—C17A—C24A—C161.9 (3)
C15—O16—C17—C17A93.6 (3)C18—C17A—C24A—C2465.9 (3)
O16—C17—C17A—C1891.9 (3)C30—C17A—C24A—C2457.7 (3)
C1'—C17—C17A—C1824.5 (3)C17—C17A—C24A—C24173.1 (2)
O16—C17—C17A—C3027.1 (3)C18—C17A—C24A—C20A53.6 (3)
C1'—C17—C17A—C30143.6 (3)C30—C17A—C24A—C20A177.3 (2)
O16—C17—C17A—C24A156.7 (2)C17—C17A—C24A—C20A53.6 (3)
C1'—C17—C17A—C24A86.9 (3)O8—C7—O27—C102.0 (4)
C30—C17A—C18—O3136.7 (4)C6—C7—O27—C10119.5 (4)
C17—C17A—C18—O3185.0 (3)C11—C10—O27—C7144.9 (3)
C24A—C17A—C18—O31163.0 (3)C9—C10—O27—C720.5 (4)
C30—C17A—C18—C2'35.5 (4)C19—C18—O31—C2'117.8 (3)
C17—C17A—C18—C2'157.2 (3)C17A—C18—O31—C2'119.1 (3)
C24A—C17A—C18—C2'90.8 (4)O20—C19—C1'—C1786.6 (3)
C30—C17A—C18—C19165.4 (2)C18—C19—C1'—C1729.5 (3)
C17—C17A—C18—C1943.8 (3)O16—C17—C1'—C19120.6 (3)
C24A—C17A—C18—C1968.2 (3)C17A—C17—C1'—C192.5 (3)
O31—C18—C19—O20155.1 (3)C19—C18—C2'—O31101.1 (3)
C2'—C18—C19—O2085.3 (4)C17A—C18—C2'—O31104.2 (3)
C17A—C18—C19—O2074.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C30—H30B···O20.962.362.864 (4)112
C30—H30B···O290.962.643.322 (5)129
C12—H12···O290.932.332.940 (4)123
C26—H26C···O250.962.242.989 (5)134
C1—H1B···O20i0.972.523.430 (4)157
C2—H2A···O29ii0.972.633.252 (5)122
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC29H36O8
Mr512.58
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)10.259 (6), 8.989 (5), 14.290 (8)
β (°) 96.410 (7)
V3)1309.6 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.977, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
6524, 3012, 2555
Rint0.044
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.128, 1.09
No. of reflections3012
No. of parameters338
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.18
Absolute structureFlack (1983), with no Friedel pairs
Absolute structure parameter0 (10)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000), SHELXTL.

Selected torsion angles (º) top
O27—C7—O8—C925.6 (4)C20A—C21—C22—C231.3 (5)
C7—O8—C9—C1037.1 (4)C21—C22—C23—C2415.1 (5)
O8—C9—C10—O2735.1 (4)C22—C23—C24—C24A43.9 (4)
C1'—C17—C17A—C1824.5 (3)C23—C24—C24A—C20A57.1 (3)
C17—C17A—C18—C1943.8 (3)C21—C20A—C24A—C2442.3 (3)
C24A—C17A—C18—C1968.2 (3)O20—C20A—C24A—C17A43.6 (3)
C17A—C18—C19—O2074.3 (3)C18—C17A—C24A—C20A53.6 (3)
C17A—C18—C19—C1'46.2 (3)O8—C7—O27—C102.0 (4)
C18—C19—O20—C20A65.4 (3)C9—C10—O27—C720.5 (4)
C19—O20—C20A—C24A49.6 (3)C18—C19—C1'—C1729.5 (3)
C24A—C20A—C21—C2216.0 (4)C17A—C17—C1'—C192.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C30—H30B···O20.962.362.864 (4)112.3
C30—H30B···O290.962.643.322 (5)128.5
C12—H12···O290.932.332.940 (4)122.5
C26—H26C···O250.962.242.989 (5)134.0
C1—H1B···O20i0.972.523.430 (4)156.7
C2'—H2'A···O29ii0.972.633.252 (5)122.2
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds