Download citation
Download citation
link to html
The title compound, C12H18N2O4, is an important inter­mediate for the synthesis of biologically active heterocyclic compounds. The asymmetric unit contains two mol­ecules. The planar hydrazide groups are oriented with respect to the benzene rings at dihedral angles of 65.86 (2) and 51.16 (2)°. In the crystal structure, inter­molecular N—H...O hydrogen bonds link the mol­ecules to form a supra­molecular structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807025147/hk2255sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807025147/hk2255Isup2.hkl
Contains datablock I

CCDC reference: 651518

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.043
  • wR factor = 0.077
  • Data-to-parameter ratio = 17.0

checkCIF/PLATON results

No syntax errors found



Alert level C GOODF01_ALERT_2_C The least squares goodness of fit parameter lies outside the range 0.80 <> 2.00 Goodness of fit given = 0.783 PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT230_ALERT_2_C Hirshfeld Test Diff for O1 - C9 .. 5.92 su PLAT353_ALERT_3_C Long N-H Bond (0.87A) N2 - H2B ... 1.02 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H2A .. O3 .. 2.62 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Aromatic hydrazides are important intermediates in heterocyclic chemistry and have been used for the synthesis of various biologically active five-membered heterocycles such as 2,5-disubstituted-1,3,4-oxadiazoles (Zheng et al., 2003; Al-Talib et al., 1990) and 5-substituted-2-mercapto-1,3,4-oxadiazoles (Yousif et al., 1986; Ahmad et al., 2001; Al-Soud et al., 2004; El-Emam et al., 2004). In view of the versatility of these compounds, we have synthesized the title compound, (I), and reported its crystal structure.

The asymmetric unit of the title compound, (I), contains two molecules (Fig. 1), in which the bond lengths and angles are within normal ranges (Allen et al., 1987). The dihedral angles between the planar hydrazidic groups A (C9/O1/N1/N2), C (C21/O5/N3/N4) and benzene rings B (C1—C6), D (C13—C18) are A/B = 65.86 (2)° and C/D = 51.16 (2)°.

In the crystal structure, the intra- and intermolecular N—H···O hydrogen bonds link the molecules to form a supramolecular structure (Fig. 2).

Related literature top

For general backgroud, see: Zheng et al. (2003); Al-Talib et al. (1990); Yousif et al. (1986); Ahmad et al. (2001); Al-Soud et al. (2004); El-Emam et al. (2004); Allen et al. (1987); Furniss et al. (1978).

Experimental top

The title compound, (I), is synthesized by the reaction of methyl ester of 3-(3,4,5-trimethoxyphenyl)propanoic acid with hdyrazine hydrate using the reported procedure (Furniss et al., 1978). For the preparation of (I), a mixture of methyl-3-(3,4,5-trimethoxyphenyl)propanoate (2.68 g, 10 mmol) and hydrazine hydrate (80%, 15 ml) in absolute ethanol (50 ml) was refluxed for 5 h at 413–423 K. The excess solvent was removed by distillation. The solid residue was filtered off, washed with water and recrystallized from ethanol (30%) to give the title compound (yield: 1.45 g, 91%, m.p. 398–399 K). Colourless single crystals of (I) were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

H atoms of NH2 groups were located in difference syntheses and refined isotropically [N—H = 0.883 (17)–1.016 (19) Å and Uiso(H) = 0.027 (6)–0.046 (6) Å2]. The remaining H atoms were positioned geometrically, with N—H = 0.88 Å (for NH) and C—H = 0.95, 0.99 and 0.98 Å for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Structure description top

Aromatic hydrazides are important intermediates in heterocyclic chemistry and have been used for the synthesis of various biologically active five-membered heterocycles such as 2,5-disubstituted-1,3,4-oxadiazoles (Zheng et al., 2003; Al-Talib et al., 1990) and 5-substituted-2-mercapto-1,3,4-oxadiazoles (Yousif et al., 1986; Ahmad et al., 2001; Al-Soud et al., 2004; El-Emam et al., 2004). In view of the versatility of these compounds, we have synthesized the title compound, (I), and reported its crystal structure.

The asymmetric unit of the title compound, (I), contains two molecules (Fig. 1), in which the bond lengths and angles are within normal ranges (Allen et al., 1987). The dihedral angles between the planar hydrazidic groups A (C9/O1/N1/N2), C (C21/O5/N3/N4) and benzene rings B (C1—C6), D (C13—C18) are A/B = 65.86 (2)° and C/D = 51.16 (2)°.

In the crystal structure, the intra- and intermolecular N—H···O hydrogen bonds link the molecules to form a supramolecular structure (Fig. 2).

For general backgroud, see: Zheng et al. (2003); Al-Talib et al. (1990); Yousif et al. (1986); Ahmad et al. (2001); Al-Soud et al. (2004); El-Emam et al. (2004); Allen et al. (1987); Furniss et al. (1978).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. The synthesis route to the title compound.
3-(3,4,5-trimethoxyphenyl)propanohydrazide top
Crystal data top
C12H18N2O4F(000) = 1088
Mr = 254.28Dx = 1.364 Mg m3
Dm = 1.323 Mg m3
Dm measured by not measured
Monoclinic, P21/nMelting point: 398(1) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.7770 (14) ÅCell parameters from 2527 reflections
b = 20.189 (3) Åθ = 2.4–24.6°
c = 12.7300 (19) ŵ = 0.10 mm1
β = 99.618 (3)°T = 100 K
V = 2477.4 (6) Å3Plate, colourless
Z = 80.20 × 0.20 × 0.05 mm
Data collection top
Bruker APEXII
diffractometer
5897 independent reflections
Radiation source: fine-focus sealed tube3183 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
φ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.980, Tmax = 0.995k = 2626
21411 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 0.78 w = 1/[σ2(Fo2) + (0.0237P)2]
where P = (Fo2 + 2Fc2)/3
5897 reflections(Δ/σ)max = 0.001
347 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C12H18N2O4V = 2477.4 (6) Å3
Mr = 254.28Z = 8
Monoclinic, P21/nMo Kα radiation
a = 9.7770 (14) ŵ = 0.10 mm1
b = 20.189 (3) ÅT = 100 K
c = 12.7300 (19) Å0.20 × 0.20 × 0.05 mm
β = 99.618 (3)°
Data collection top
Bruker APEXII
diffractometer
5897 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3183 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.995Rint = 0.066
21411 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 0.78Δρmax = 0.34 e Å3
5897 reflectionsΔρmin = 0.20 e Å3
347 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.77225 (17)0.10545 (9)0.81464 (14)0.0210 (4)
C20.82525 (17)0.16818 (8)0.80155 (14)0.0210 (4)
H20.86370.17790.73960.025*
C30.82242 (17)0.21655 (8)0.87806 (14)0.0188 (4)
C40.76614 (17)0.20276 (8)0.96914 (13)0.0186 (4)
C50.71654 (17)0.13937 (9)0.98398 (13)0.0202 (4)
C60.71960 (17)0.09074 (8)0.90658 (13)0.0208 (4)
H60.68560.04750.91680.025*
C70.76846 (19)0.05754 (8)0.72274 (14)0.0254 (5)
H7A0.70750.07650.66000.031*
H7B0.86310.05480.70500.031*
C80.71982 (19)0.01163 (8)0.73887 (14)0.0249 (4)
H8A0.62490.01060.75630.030*
H8B0.78200.03290.79880.030*
C90.72062 (19)0.05062 (8)0.63750 (14)0.0204 (4)
C100.94256 (18)0.29274 (9)0.78327 (14)0.0262 (5)
H10A1.01950.26130.78600.039*
H10B0.97910.33800.78910.039*
H10C0.87910.28770.71550.039*
C110.63052 (18)0.27887 (9)1.04707 (14)0.0271 (5)
H11A0.60350.30610.98330.041*
H11B0.63290.30641.11080.041*
H11C0.56300.24301.04780.041*
C120.58195 (19)0.07283 (8)1.08450 (14)0.0274 (5)
H12A0.50590.07221.02370.041*
H12B0.54370.07461.15090.041*
H12C0.63800.03261.08380.041*
C130.74678 (17)0.22835 (8)0.45942 (14)0.0182 (4)
C140.80575 (17)0.26561 (8)0.38682 (13)0.0189 (4)
H140.85260.24410.33680.023*
C150.79634 (17)0.33430 (8)0.38729 (13)0.0190 (4)
C160.72976 (18)0.36628 (8)0.46083 (14)0.0201 (4)
C170.66989 (18)0.32884 (9)0.53305 (14)0.0207 (4)
C180.67797 (17)0.26049 (8)0.53184 (13)0.0204 (4)
H180.63610.23530.58090.024*
C190.75655 (18)0.15356 (8)0.46357 (13)0.0210 (4)
H19A0.66450.13570.47130.025*
H19B0.82250.14090.52820.025*
C200.80268 (18)0.12032 (8)0.36739 (13)0.0200 (4)
H20A0.74890.13870.30100.024*
H20B0.90200.12990.36760.024*
C210.78135 (19)0.04633 (8)0.36965 (13)0.0187 (4)
C220.93915 (17)0.34403 (9)0.25389 (13)0.0234 (4)
H22A1.01170.31890.29950.035*
H22B0.98200.37810.21520.035*
H22C0.88440.31400.20290.035*
C230.60159 (19)0.46270 (9)0.40771 (14)0.0302 (5)
H23A0.59130.45020.33240.045*
H23B0.60540.51110.41400.045*
H23C0.52230.44600.43770.045*
C240.54841 (19)0.33045 (9)0.68159 (14)0.0295 (5)
H24A0.47460.30110.64700.044*
H24B0.50980.36220.72700.044*
H24C0.62070.30410.72530.044*
N10.59562 (14)0.06535 (6)0.58244 (11)0.0192 (3)
H10.52180.05350.60910.023*
N20.57586 (16)0.09888 (8)0.48405 (12)0.0211 (4)
N30.89550 (15)0.00953 (7)0.37315 (11)0.0215 (4)
H30.97540.02960.37300.026*
N40.89270 (16)0.06062 (7)0.37717 (14)0.0240 (4)
O10.83011 (12)0.06662 (6)0.60651 (9)0.0227 (3)
O20.86955 (12)0.27991 (6)0.86969 (9)0.0239 (3)
O30.76544 (12)0.25113 (5)1.04613 (9)0.0218 (3)
O40.66724 (12)0.12996 (6)1.07742 (9)0.0252 (3)
O50.66524 (12)0.02119 (5)0.36754 (9)0.0235 (3)
O60.85059 (12)0.37485 (6)0.31826 (9)0.0242 (3)
O70.72754 (12)0.43463 (6)0.46494 (9)0.0248 (3)
O80.60708 (13)0.36544 (6)0.60212 (9)0.0286 (3)
H4A0.8601 (19)0.0726 (9)0.4448 (15)0.046 (6)*
H2A0.6186 (17)0.1373 (8)0.4963 (13)0.027 (6)*
H2B0.6228 (19)0.0706 (9)0.4344 (15)0.046 (6)*
H4B0.8200 (19)0.0721 (8)0.3242 (14)0.035 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0170 (10)0.0238 (11)0.0220 (10)0.0032 (8)0.0025 (8)0.0044 (8)
C20.0186 (10)0.0257 (11)0.0192 (10)0.0011 (8)0.0047 (8)0.0024 (8)
C30.0158 (10)0.0163 (10)0.0224 (11)0.0018 (8)0.0023 (8)0.0016 (8)
C40.0171 (10)0.0186 (10)0.0184 (10)0.0023 (8)0.0020 (8)0.0047 (8)
C50.0189 (10)0.0258 (11)0.0144 (10)0.0046 (8)0.0014 (8)0.0000 (8)
C60.0193 (10)0.0172 (10)0.0246 (11)0.0003 (8)0.0002 (8)0.0017 (8)
C70.0286 (11)0.0236 (11)0.0259 (11)0.0005 (9)0.0096 (9)0.0038 (9)
C80.0272 (11)0.0257 (11)0.0230 (11)0.0016 (9)0.0078 (9)0.0044 (9)
C90.0219 (11)0.0183 (10)0.0216 (10)0.0042 (8)0.0050 (8)0.0005 (8)
C100.0223 (11)0.0287 (11)0.0286 (11)0.0058 (9)0.0070 (9)0.0036 (9)
C110.0250 (11)0.0239 (11)0.0329 (12)0.0040 (9)0.0060 (9)0.0057 (9)
C120.0305 (11)0.0269 (11)0.0266 (11)0.0003 (9)0.0101 (9)0.0001 (9)
C130.0172 (10)0.0185 (10)0.0183 (10)0.0036 (8)0.0010 (8)0.0009 (8)
C140.0192 (10)0.0202 (10)0.0181 (10)0.0010 (8)0.0052 (8)0.0026 (8)
C150.0172 (10)0.0214 (10)0.0182 (10)0.0044 (8)0.0030 (8)0.0025 (8)
C160.0203 (10)0.0155 (10)0.0237 (10)0.0038 (8)0.0017 (8)0.0034 (8)
C170.0189 (10)0.0254 (11)0.0182 (10)0.0036 (8)0.0045 (8)0.0066 (8)
C180.0208 (10)0.0242 (11)0.0166 (10)0.0072 (8)0.0043 (8)0.0015 (8)
C190.0222 (11)0.0212 (10)0.0210 (10)0.0030 (8)0.0077 (8)0.0008 (8)
C200.0178 (10)0.0214 (10)0.0219 (10)0.0009 (8)0.0065 (8)0.0010 (8)
C210.0202 (10)0.0219 (10)0.0152 (10)0.0001 (8)0.0067 (8)0.0003 (8)
C220.0234 (11)0.0287 (11)0.0188 (10)0.0045 (9)0.0057 (8)0.0001 (8)
C230.0323 (12)0.0277 (11)0.0306 (12)0.0048 (9)0.0053 (9)0.0032 (9)
C240.0315 (12)0.0368 (12)0.0232 (11)0.0061 (10)0.0134 (9)0.0072 (9)
N10.0179 (8)0.0204 (8)0.0203 (8)0.0012 (7)0.0064 (7)0.0063 (7)
N20.0246 (9)0.0208 (9)0.0179 (9)0.0003 (8)0.0031 (7)0.0032 (7)
N30.0185 (9)0.0173 (8)0.0300 (9)0.0042 (7)0.0082 (7)0.0004 (7)
N40.0263 (10)0.0181 (9)0.0286 (10)0.0007 (8)0.0073 (8)0.0005 (8)
O10.0165 (7)0.0282 (7)0.0245 (7)0.0012 (6)0.0065 (6)0.0037 (6)
O20.0252 (7)0.0215 (7)0.0256 (8)0.0040 (6)0.0063 (6)0.0035 (6)
O30.0201 (7)0.0221 (7)0.0222 (7)0.0017 (6)0.0003 (5)0.0083 (6)
O40.0339 (8)0.0224 (7)0.0197 (7)0.0045 (6)0.0061 (6)0.0026 (6)
O50.0179 (7)0.0218 (7)0.0323 (8)0.0028 (6)0.0084 (6)0.0003 (6)
O60.0271 (8)0.0218 (7)0.0265 (8)0.0011 (6)0.0130 (6)0.0038 (6)
O70.0238 (7)0.0187 (7)0.0323 (8)0.0023 (6)0.0056 (6)0.0017 (6)
O80.0342 (8)0.0264 (7)0.0288 (8)0.0061 (6)0.0160 (6)0.0073 (6)
Geometric parameters (Å, º) top
C1—C61.387 (2)C14—H140.9500
C1—C21.389 (2)C15—O61.3709 (19)
C1—C71.514 (2)C15—C161.386 (2)
C2—C31.383 (2)C16—O71.3814 (19)
C2—H20.9500C16—C171.392 (2)
C3—O21.3698 (18)C17—O81.3699 (19)
C3—C41.392 (2)C17—C181.382 (2)
C4—O31.3844 (18)C18—H180.9500
C4—C51.392 (2)C19—C201.529 (2)
C5—O41.3692 (19)C19—H19A0.9900
C5—C61.395 (2)C19—H19B0.9900
C6—H60.9500C20—C211.509 (2)
C7—C81.500 (2)C20—H20A0.9900
C7—H7A0.9900C20—H20B0.9900
C7—H7B0.9900C21—O51.2397 (18)
C8—C91.513 (2)C21—N31.335 (2)
C8—H8A0.9900C22—O61.4302 (19)
C8—H8B0.9900C22—H22A0.9800
C9—O11.2438 (19)C22—H22B0.9800
C9—N11.337 (2)C22—H22C0.9800
C10—O21.4316 (19)C23—O71.438 (2)
C10—H10A0.9800C23—H23A0.9800
C10—H10B0.9800C23—H23B0.9800
C10—H10C0.9800C23—H23C0.9800
C11—O31.4350 (19)C24—O81.4303 (19)
C11—H11A0.9800C24—H24A0.9800
C11—H11B0.9800C24—H24B0.9800
C11—H11C0.9800C24—H24C0.9800
C12—O41.4349 (19)N1—N21.4084 (18)
C12—H12A0.9800N1—H10.8800
C12—H12B0.9800N2—H2A0.883 (17)
C12—H12C0.9800N2—H2B1.016 (19)
C13—C141.389 (2)N3—N41.4177 (19)
C13—C181.390 (2)N3—H30.8800
C13—C191.513 (2)N4—H4A0.997 (19)
C14—C151.390 (2)N4—H4B0.924 (18)
C6—C1—C2119.66 (16)O7—C16—C15120.21 (16)
C6—C1—C7123.41 (16)O7—C16—C17120.41 (16)
C2—C1—C7116.84 (16)C15—C16—C17119.33 (16)
C3—C2—C1120.52 (17)O8—C17—C18125.32 (16)
C3—C2—H2119.7O8—C17—C16114.46 (16)
C1—C2—H2119.7C18—C17—C16120.22 (16)
O2—C3—C2123.93 (16)C17—C18—C13120.56 (16)
O2—C3—C4115.88 (15)C17—C18—H18119.7
C2—C3—C4120.17 (16)C13—C18—H18119.7
O3—C4—C3119.86 (15)C13—C19—C20115.81 (14)
O3—C4—C5120.61 (16)C13—C19—H19A108.3
C3—C4—C5119.47 (16)C20—C19—H19A108.3
O4—C5—C4115.25 (15)C13—C19—H19B108.3
O4—C5—C6124.62 (16)C20—C19—H19B108.3
C4—C5—C6120.13 (16)H19A—C19—H19B107.4
C1—C6—C5120.00 (17)C21—C20—C19111.04 (14)
C1—C6—H6120.0C21—C20—H20A109.4
C5—C6—H6120.0C19—C20—H20A109.4
C8—C7—C1117.16 (15)C21—C20—H20B109.4
C8—C7—H7A108.0C19—C20—H20B109.4
C1—C7—H7A108.0H20A—C20—H20B108.0
C8—C7—H7B108.0O5—C21—N3122.02 (16)
C1—C7—H7B108.0O5—C21—C20122.26 (15)
H7A—C7—H7B107.3N3—C21—C20115.72 (15)
C7—C8—C9108.70 (14)O6—C22—H22A109.5
C7—C8—H8A109.9O6—C22—H22B109.5
C9—C8—H8A109.9H22A—C22—H22B109.5
C7—C8—H8B109.9O6—C22—H22C109.5
C9—C8—H8B109.9H22A—C22—H22C109.5
H8A—C8—H8B108.3H22B—C22—H22C109.5
O1—C9—N1122.40 (16)O7—C23—H23A109.5
O1—C9—C8122.22 (16)O7—C23—H23B109.5
N1—C9—C8115.37 (16)H23A—C23—H23B109.5
O2—C10—H10A109.5O7—C23—H23C109.5
O2—C10—H10B109.5H23A—C23—H23C109.5
H10A—C10—H10B109.5H23B—C23—H23C109.5
O2—C10—H10C109.5O8—C24—H24A109.5
H10A—C10—H10C109.5O8—C24—H24B109.5
H10B—C10—H10C109.5H24A—C24—H24B109.5
O3—C11—H11A109.5O8—C24—H24C109.5
O3—C11—H11B109.5H24A—C24—H24C109.5
H11A—C11—H11B109.5H24B—C24—H24C109.5
O3—C11—H11C109.5C9—N1—N2123.42 (14)
H11A—C11—H11C109.5C9—N1—H1118.3
H11B—C11—H11C109.5N2—N1—H1118.3
O4—C12—H12A109.5N1—N2—H2A106.0 (11)
O4—C12—H12B109.5N1—N2—H2B105.9 (10)
H12A—C12—H12B109.5H2A—N2—H2B110.7 (15)
O4—C12—H12C109.5C21—N3—N4122.41 (14)
H12A—C12—H12C109.5C21—N3—H3118.8
H12B—C12—H12C109.5N4—N3—H3118.8
C14—C13—C18119.29 (16)N3—N4—H4A106.5 (11)
C14—C13—C19122.19 (16)N3—N4—H4B104.0 (11)
C18—C13—C19118.52 (15)H4A—N4—H4B104.5 (15)
C13—C14—C15120.15 (16)C3—O2—C10116.49 (13)
C13—C14—H14119.9C4—O3—C11113.23 (13)
C15—C14—H14119.9C5—O4—C12117.30 (13)
O6—C15—C16115.50 (15)C15—O6—C22116.33 (13)
O6—C15—C14124.06 (16)C16—O7—C23113.08 (13)
C16—C15—C14120.44 (16)C17—O8—C24117.60 (14)
C6—C1—C2—C31.8 (3)O7—C16—C17—O82.4 (2)
C7—C1—C2—C3174.91 (16)C15—C16—C17—O8179.92 (15)
C1—C2—C3—O2178.38 (16)O7—C16—C17—C18177.00 (15)
C1—C2—C3—C40.0 (3)C15—C16—C17—C180.5 (3)
O2—C3—C4—O32.5 (2)O8—C17—C18—C13178.71 (16)
C2—C3—C4—O3179.08 (14)C16—C17—C18—C130.6 (3)
O2—C3—C4—C5179.66 (14)C14—C13—C18—C171.0 (3)
C2—C3—C4—C51.9 (2)C19—C13—C18—C17178.13 (16)
O3—C4—C5—O40.8 (2)C14—C13—C19—C2014.5 (2)
C3—C4—C5—O4177.99 (15)C18—C13—C19—C20166.38 (15)
O3—C4—C5—C6179.06 (15)C13—C19—C20—C21168.65 (14)
C3—C4—C5—C61.9 (2)C19—C20—C21—O560.7 (2)
C2—C1—C6—C51.8 (3)C19—C20—C21—N3119.84 (16)
C7—C1—C6—C5174.70 (16)O1—C9—N1—N21.3 (3)
O4—C5—C6—C1179.80 (16)C8—C9—N1—N2177.26 (15)
C4—C5—C6—C10.1 (3)O5—C21—N3—N41.5 (3)
C6—C1—C7—C87.2 (3)C20—C21—N3—N4179.07 (15)
C2—C1—C7—C8176.23 (16)C2—C3—O2—C108.8 (2)
C1—C7—C8—C9178.66 (15)C4—C3—O2—C10172.76 (14)
C7—C8—C9—O169.4 (2)C3—C4—O3—C11106.35 (18)
C7—C8—C9—N1109.15 (17)C5—C4—O3—C1176.49 (19)
C18—C13—C14—C150.3 (3)C4—C5—O4—C12163.54 (14)
C19—C13—C14—C15178.80 (16)C6—C5—O4—C1216.6 (2)
C13—C14—C15—O6179.57 (15)C16—C15—O6—C22169.91 (15)
C13—C14—C15—C160.8 (3)C14—C15—O6—C229.7 (2)
O6—C15—C16—O73.3 (2)C15—C16—O7—C2397.46 (19)
C14—C15—C16—O7176.30 (15)C17—C16—O7—C2385.0 (2)
O6—C15—C16—C17179.11 (15)C18—C17—O8—C241.9 (3)
C14—C15—C16—C171.2 (3)C16—C17—O8—C24177.41 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O6i0.924 (18)2.491 (19)3.401 (2)168.2 (15)
N2—H2B···O51.016 (19)2.110 (19)3.045 (2)152.1 (14)
N2—H2A···O3ii0.883 (17)2.618 (17)3.453 (2)158.2 (15)
N2—H2A···O2ii0.883 (17)2.377 (17)3.067 (2)135.2 (14)
N4—H4A···O10.997 (19)2.131 (19)3.084 (2)159.5 (15)
N3—H3···O1iii0.882.022.8914 (18)171
N1—H1···O5iv0.882.012.8719 (18)166
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+3/2; (iii) x+2, y, z+1; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H18N2O4
Mr254.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.7770 (14), 20.189 (3), 12.7300 (19)
β (°) 99.618 (3)
V3)2477.4 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.20 × 0.05
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.980, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
21411, 5897, 3183
Rint0.066
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.077, 0.78
No. of reflections5897
No. of parameters347
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.20

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SAINT, SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1999), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O6i0.924 (18)2.491 (19)3.401 (2)168.2 (15)
N2—H2B···O51.016 (19)2.110 (19)3.045 (2)152.1 (14)
N2—H2A···O3ii0.883 (17)2.618 (17)3.453 (2)158.2 (15)
N2—H2A···O2ii0.883 (17)2.377 (17)3.067 (2)135.2 (14)
N4—H4A···O10.997 (19)2.131 (19)3.084 (2)159.5 (15)
N3—H3···O1iii0.882.022.8914 (18)170.8
N1—H1···O5iv0.882.012.8719 (18)166.0
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+3/2; (iii) x+2, y, z+1; (iv) x+1, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds