Download citation
Download citation
link to html
In the title complex, [Cu(C7H3NO5)(C10H8N2)(H2O)]·3H2O, the CuII atom has a slightly distorted square-pyramidal coordination geometry, with a basal plane formed by two N atoms of the 2,2′-bipyridine ligand and two O atoms of the pyridine-2,6-dicarboxylate N-oxide. The apical position is occupied by a water mol­ecule. The crystal structure contains O—H...O intermolecular hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680702315X/hy2059sup1.cif
Contains datablocks I, Global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680702315X/hy2059Isup2.hkl
Contains datablock I

CCDC reference: 650687

Key indicators

  • Single-crystal X-ray study
  • T = 297 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.045
  • wR factor = 0.140
  • Data-to-parameter ratio = 14.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.50 Ratio PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.53 PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 200 Deg. PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.30 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 12
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Many of the efforts have so far devoted to the study of transition-metal-based coordination polymers because of their potential applications as functional solid materials in ion exchange, catalysis, and optical electronic and magnetic devices (Moulton & Zaworotko, 2001; Wen et al., 2005). Pyridine-2,6-dicarboxylic acid N-oxide (pydco) shows limited steric hindrance and weak stacking interactions and can offer possibilities to form coordination polymers through a bridge formed by a carboxylate and N-oxide, which is a better electron donor than the ring N atom of pydco (Paul, 1984; Wen et al., 2005)

The Cu1 atom in the title complex, (I), has a distorted square-pyramidal coordination geometry (Fig.1). The basal plane formed by two N atoms from the 2,2'-pyridine ligand and two O atoms from the pydco ligand. The apical position is occupied by a water molecule. A long distance [2.905 (3) Å] between Cu1 and O5(2 - x, 1 - y, 1 - z) at the other apical position indicates a very weak interaction. In the crystal strucrure, the intermolecular hydrogen bonds between the lattice water molecules and the coordination water molecule, and between the lattice water molecules and carboxylate O atoms form a sheet structure (Table 1). The sheets are linked by π···π interactions, forming a three dimensional supramolecular structure.

Related literature top

For related literature, see: Moulton & Zaworotko (2001); Paul (1984); Wen et al. (2005).

Experimental top

Pydco(0.050 g, 8 mmol), Cu(CH3COO)2 (0.180 g, 12 mmol) and 2,2-pyridine (0.230 g, 15 mmol) were added in a mixed solvent of dry ethanol and acetonitrile. The mixture was heated for 5 h under reflux. During the process stirring and influx were required. The resultant was then filtered to give a pure solution which was infiltrated by diethyl ether freely in a closed vessel. After a week, single crystals of (I), suitable for X-Ray diffraction, were obtained.

Refinement top

H atoms on water molecules were located in a difference Fourier map and fixed in the refinement with Uiso(H) = 1.5Ueq(O). The other H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C). The highest residual electron density was found 2.22Å from atom H2.

Structure description top

Many of the efforts have so far devoted to the study of transition-metal-based coordination polymers because of their potential applications as functional solid materials in ion exchange, catalysis, and optical electronic and magnetic devices (Moulton & Zaworotko, 2001; Wen et al., 2005). Pyridine-2,6-dicarboxylic acid N-oxide (pydco) shows limited steric hindrance and weak stacking interactions and can offer possibilities to form coordination polymers through a bridge formed by a carboxylate and N-oxide, which is a better electron donor than the ring N atom of pydco (Paul, 1984; Wen et al., 2005)

The Cu1 atom in the title complex, (I), has a distorted square-pyramidal coordination geometry (Fig.1). The basal plane formed by two N atoms from the 2,2'-pyridine ligand and two O atoms from the pydco ligand. The apical position is occupied by a water molecule. A long distance [2.905 (3) Å] between Cu1 and O5(2 - x, 1 - y, 1 - z) at the other apical position indicates a very weak interaction. In the crystal strucrure, the intermolecular hydrogen bonds between the lattice water molecules and the coordination water molecule, and between the lattice water molecules and carboxylate O atoms form a sheet structure (Table 1). The sheets are linked by π···π interactions, forming a three dimensional supramolecular structure.

For related literature, see: Moulton & Zaworotko (2001); Paul (1984); Wen et al. (2005).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.
Aqua[(pyridine-2,6-dicarboxylato-N-oxide-κ2O1,O2) (2,2'-bipyridine-κ2N,N')]copper(II) trihydrate top
Crystal data top
[Cu(C7H3NO5)(C10H8N2)(H2O)]·3H2OZ = 2
Mr = 472.89F(000) = 486
Triclinic, P1Dx = 1.563 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8293 (2) ÅCell parameters from 3133 reflections
b = 11.8827 (4) Åθ = 1.6–26.0°
c = 12.5673 (4) ŵ = 1.14 mm1
α = 86.136 (2)°T = 297 K
β = 81.584 (2)°Block, blue
γ = 86.151 (2)°0.20 × 0.18 × 0.10 mm
V = 1004.87 (6) Å3
Data collection top
Bruker SMART APEX area-detector
diffractometer
3953 independent reflections
Radiation source: fine-focus sealed tube3133 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
h = 88
Tmin = 0.804, Tmax = 0.894k = 1414
13440 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0811P)2 + 0.7343P]
where P = (Fo2 + 2Fc2)/3
3953 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 1.14 e Å3
12 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Cu(C7H3NO5)(C10H8N2)(H2O)]·3H2Oγ = 86.151 (2)°
Mr = 472.89V = 1004.87 (6) Å3
Triclinic, P1Z = 2
a = 6.8293 (2) ÅMo Kα radiation
b = 11.8827 (4) ŵ = 1.14 mm1
c = 12.5673 (4) ÅT = 297 K
α = 86.136 (2)°0.20 × 0.18 × 0.10 mm
β = 81.584 (2)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
3953 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
3133 reflections with I > 2σ(I)
Tmin = 0.804, Tmax = 0.894Rint = 0.031
13440 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04512 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.03Δρmax = 1.14 e Å3
3953 reflectionsΔρmin = 0.45 e Å3
271 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.73423 (8)0.66865 (4)0.54386 (4)0.0387 (2)
N10.8064 (5)0.5462 (3)0.7427 (3)0.0340 (8)
N20.7508 (6)0.8345 (3)0.5462 (3)0.0434 (9)
N30.7073 (5)0.7095 (3)0.3898 (3)0.0399 (8)
C10.7578 (8)0.8909 (4)0.6340 (5)0.0544 (13)
H10.76150.85070.69980.065*
C20.7598 (8)1.0069 (4)0.6297 (6)0.0673 (17)
H20.76451.04490.69160.081*
C30.7546 (8)1.0655 (4)0.5315 (6)0.0687 (18)
H30.75771.14380.52640.082*
C40.7450 (8)1.0084 (4)0.4411 (5)0.0613 (15)
H40.73981.04760.37480.074*
C50.7430 (7)0.8909 (4)0.4501 (4)0.0464 (11)
C60.7264 (7)0.8198 (4)0.3611 (4)0.0455 (11)
C70.7262 (9)0.8595 (5)0.2544 (5)0.0705 (17)
H70.73980.93570.23470.085*
C80.7053 (10)0.7840 (6)0.1777 (5)0.0756 (18)
H80.70480.80910.10600.091*
C90.6854 (8)0.6722 (5)0.2089 (4)0.0621 (14)
H90.67050.62060.15870.074*
C100.6875 (7)0.6371 (4)0.3152 (4)0.0483 (11)
H100.67490.56110.33600.058*
C110.7941 (7)0.5565 (4)0.8504 (3)0.0403 (10)
C120.7898 (8)0.4624 (4)0.9192 (4)0.0544 (13)
H120.78230.46990.99290.065*
C130.7967 (9)0.3565 (4)0.8801 (4)0.0591 (14)
H130.79510.29220.92660.071*
C140.8059 (7)0.3481 (4)0.7708 (4)0.0473 (11)
H140.80980.27700.74350.057*
C150.8096 (6)0.4430 (3)0.7008 (3)0.0353 (9)
C160.7824 (8)0.6755 (4)0.8890 (3)0.0460 (11)
C170.8104 (7)0.4285 (3)0.5819 (3)0.0376 (9)
O10.4036 (5)0.6858 (3)0.6071 (3)0.0617 (10)
H1A0.35750.68690.67370.093*
H1B0.31930.65940.57320.093*
O20.6125 (6)0.7199 (3)0.9079 (3)0.0702 (11)
O30.9396 (6)0.7143 (3)0.9032 (3)0.0634 (10)
O40.7598 (5)0.5109 (2)0.5205 (2)0.0484 (8)
O50.8520 (5)0.3325 (2)0.5520 (3)0.0514 (8)
O60.8213 (5)0.6428 (2)0.6828 (2)0.0472 (8)
O70.6884 (6)0.3775 (3)0.1792 (3)0.0639 (10)
H7A0.80300.34480.15970.096*
H7B0.60130.33750.15960.096*
O80.5451 (13)0.0649 (6)0.0755 (9)0.199 (4)
H8A0.46330.12620.07990.299*
H8B0.61870.08090.13230.299*
O90.9391 (12)0.0685 (6)0.0931 (9)0.193 (4)
H9B0.93370.08590.02390.290*
H9A0.97300.13420.11320.290*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0540 (4)0.0304 (3)0.0327 (3)0.0019 (2)0.0102 (2)0.00015 (19)
N10.037 (2)0.0344 (17)0.0310 (18)0.0007 (14)0.0097 (14)0.0005 (13)
N20.043 (2)0.0346 (18)0.052 (2)0.0025 (16)0.0064 (17)0.0023 (16)
N30.037 (2)0.043 (2)0.039 (2)0.0019 (15)0.0065 (16)0.0039 (15)
C10.058 (3)0.039 (2)0.066 (3)0.003 (2)0.006 (3)0.011 (2)
C20.056 (3)0.046 (3)0.104 (5)0.001 (2)0.012 (3)0.028 (3)
C30.049 (3)0.033 (2)0.123 (6)0.002 (2)0.012 (3)0.001 (3)
C40.042 (3)0.042 (3)0.097 (5)0.001 (2)0.011 (3)0.018 (3)
C50.034 (3)0.040 (2)0.063 (3)0.0007 (19)0.005 (2)0.007 (2)
C60.039 (3)0.047 (3)0.047 (3)0.0040 (19)0.004 (2)0.011 (2)
C70.073 (4)0.066 (4)0.065 (4)0.003 (3)0.002 (3)0.028 (3)
C80.084 (5)0.100 (5)0.038 (3)0.007 (4)0.008 (3)0.013 (3)
C90.059 (4)0.088 (4)0.040 (3)0.000 (3)0.013 (2)0.003 (3)
C100.047 (3)0.060 (3)0.039 (3)0.001 (2)0.012 (2)0.003 (2)
C110.039 (3)0.048 (2)0.034 (2)0.0001 (19)0.0069 (18)0.0038 (18)
C120.068 (4)0.062 (3)0.034 (2)0.002 (3)0.011 (2)0.005 (2)
C130.075 (4)0.054 (3)0.047 (3)0.003 (3)0.014 (3)0.016 (2)
C140.054 (3)0.039 (2)0.048 (3)0.002 (2)0.008 (2)0.0042 (19)
C150.035 (2)0.035 (2)0.036 (2)0.0003 (17)0.0075 (17)0.0010 (16)
C160.054 (3)0.055 (3)0.030 (2)0.001 (2)0.011 (2)0.0052 (19)
C170.040 (2)0.034 (2)0.040 (2)0.0056 (17)0.0072 (19)0.0037 (17)
O10.057 (2)0.091 (3)0.0394 (19)0.022 (2)0.0063 (16)0.0050 (17)
O20.059 (3)0.072 (2)0.084 (3)0.011 (2)0.017 (2)0.032 (2)
O30.060 (2)0.067 (2)0.069 (2)0.0102 (19)0.0181 (19)0.0174 (19)
O40.077 (2)0.0356 (16)0.0361 (17)0.0006 (15)0.0208 (16)0.0035 (13)
O50.076 (2)0.0313 (16)0.0492 (19)0.0016 (15)0.0160 (17)0.0059 (13)
O60.076 (2)0.0322 (15)0.0362 (17)0.0070 (15)0.0180 (15)0.0010 (12)
O70.060 (2)0.082 (3)0.049 (2)0.006 (2)0.0057 (17)0.0002 (18)
O80.183 (8)0.102 (5)0.341 (13)0.055 (5)0.136 (8)0.074 (6)
O90.153 (7)0.092 (5)0.327 (13)0.040 (5)0.007 (7)0.019 (6)
Geometric parameters (Å, º) top
Cu1—O41.910 (3)C8—H80.9300
Cu1—O61.925 (3)C9—C101.374 (7)
Cu1—N21.984 (4)C9—H90.9300
Cu1—N31.996 (4)C10—H100.9300
Cu1—O12.282 (4)C11—C121.366 (6)
N1—O61.331 (4)C11—C161.518 (6)
N1—C111.357 (5)C12—C131.376 (7)
N1—C151.365 (5)C12—H120.9300
N2—C11.336 (6)C13—C141.376 (7)
N2—C51.348 (6)C13—H130.9300
N3—C101.340 (6)C14—C151.382 (6)
N3—C61.345 (6)C14—H140.9300
C1—C21.376 (7)C15—C171.515 (6)
C1—H10.9300C16—O31.237 (6)
C2—C31.380 (9)C16—O21.239 (6)
C2—H20.9300C17—O51.227 (5)
C3—C41.373 (9)C17—O41.266 (5)
C3—H30.9300O1—H1A0.85
C4—C51.394 (7)O1—H1B0.85
C4—H40.9300O7—H7A0.86
C5—C61.468 (7)O7—H7B0.86
C6—C71.391 (7)O8—H8A0.89
C7—C81.389 (9)O8—H8B0.97
C7—H70.9300O9—H9B0.89
C8—C91.370 (9)O9—H9A0.89
O4—Cu1—O691.68 (12)C6—C7—H7120.4
O4—Cu1—N2169.20 (16)C9—C8—C7119.1 (5)
O6—Cu1—N292.21 (14)C9—C8—H8120.4
O4—Cu1—N392.26 (14)C7—C8—H8120.4
O6—Cu1—N3166.45 (15)C8—C9—C10119.4 (6)
N2—Cu1—N381.76 (15)C8—C9—H9120.3
O4—Cu1—O199.39 (15)C10—C9—H9120.3
O6—Cu1—O196.04 (14)N3—C10—C9121.8 (5)
N2—Cu1—O190.21 (15)N3—C10—H10119.1
N3—Cu1—O196.10 (14)C9—C10—H10119.1
O6—N1—C11115.0 (3)N1—C11—C12120.1 (4)
O6—N1—C15123.6 (3)N1—C11—C16117.1 (4)
C11—N1—C15121.4 (4)C12—C11—C16122.8 (4)
C1—N2—C5120.2 (4)C11—C12—C13120.4 (5)
C1—N2—Cu1125.4 (3)C11—C12—H12119.8
C5—N2—Cu1114.2 (3)C13—C12—H12119.8
C10—N3—C6119.9 (4)C12—C13—C14118.5 (4)
C10—N3—Cu1126.0 (3)C12—C13—H13120.7
C6—N3—Cu1113.9 (3)C14—C13—H13120.7
N2—C1—C2121.9 (5)C13—C14—C15121.4 (5)
N2—C1—H1119.0C13—C14—H14119.3
C2—C1—H1119.0C15—C14—H14119.3
C1—C2—C3118.4 (6)N1—C15—C14118.2 (4)
C1—C2—H2120.8N1—C15—C17122.9 (3)
C3—C2—H2120.8C14—C15—C17118.9 (4)
C4—C3—C2120.2 (5)O3—C16—O2127.6 (5)
C4—C3—H3119.9O3—C16—C11117.2 (4)
C2—C3—H3119.9O2—C16—C11115.0 (4)
C3—C4—C5119.0 (5)O5—C17—O4123.5 (4)
C3—C4—H4120.5O5—C17—C15115.9 (4)
C5—C4—H4120.5O4—C17—C15120.5 (4)
N2—C5—C4120.3 (5)Cu1—O1—H1A123.5
N2—C5—C6115.0 (4)Cu1—O1—H1B120.5
C4—C5—C6124.7 (5)H1A—O1—H1B109.6
N3—C6—C7120.5 (5)C17—O4—Cu1129.6 (3)
N3—C6—C5114.9 (4)N1—O6—Cu1124.5 (2)
C7—C6—C5124.6 (5)H7A—O7—H7B107.6
C8—C7—C6119.3 (5)H8A—O8—H8B96.9
C8—C7—H7120.4H9B—O9—H9A100.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O7i0.851.942.733 (5)154
O1—H1B···O5i0.852.092.867 (5)152
O1—H1B···O4i0.852.533.265 (5)144
O7—H7A···O3ii0.861.932.780 (6)171
O7—H7B···O2i0.861.972.813 (5)166
O8—H8A···O2i0.891.882.716 (8)157
O8—H8B···O90.972.172.735 (12)116
O9—H9A···O3ii0.891.922.768 (7)158
O9—H9B···O9iii0.892.462.930 (19)113
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+2, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C7H3NO5)(C10H8N2)(H2O)]·3H2O
Mr472.89
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)6.8293 (2), 11.8827 (4), 12.5673 (4)
α, β, γ (°)86.136 (2), 81.584 (2), 86.151 (2)
V3)1004.87 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.20 × 0.18 × 0.10
Data collection
DiffractometerBruker SMART APEX area-detector
Absorption correctionMulti-scan
SADABS (Sheldrick, 1996)
Tmin, Tmax0.804, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
13440, 3953, 3133
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.140, 1.03
No. of reflections3953
No. of parameters271
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.14, 0.45

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O7i0.851.942.733 (5)154
O1—H1B···O5i0.852.092.867 (5)152
O1—H1B···O4i0.852.533.265 (5)144
O7—H7A···O3ii0.861.932.780 (6)171
O7—H7B···O2i0.861.972.813 (5)166
O8—H8A···O2i0.891.882.716 (8)157
O8—H8B···O90.972.172.735 (12)116
O9—H9A···O3ii0.891.922.768 (7)158
O9—H9B···O9iii0.892.462.930 (19)113
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+2, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds