Download citation
Download citation
link to html
The structure of the title compound (34DMBSA), C8H11NO2S, resembles those of other aryl­sulfonamides. The mol­ecules are packed into a layered supra­molecular structure, in the ac plane, via N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680702483X/im2016sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680702483X/im2016Isup2.hkl
Contains datablock I

CCDC reference: 614955

Key indicators

  • Single-crystal X-ray study
  • T = 299 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.037
  • wR factor = 0.107
  • Data-to-parameter ratio = 13.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.96 PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ?
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Many arylsulfonamides and their N-halo compounds show distinct physical, chemical and biological properties due to their oxidizing action in aqueous, partial aqueous and non-aqueous media. This class of compounds therefore is of interest in synthetic, mechanistic, analytical and biological chemistry (Gowda et al., 2002, 2003, 2005, 2007; Gowda & Shetty, 2004). In the present work, the structure of 3,4-dimethylbenzenesulfonamde (34DMBSA) has been determined to explore the substituent effects on the solid state structures of sulfonamides and N-halo arylsulfonamides (Gowda et al., 2003, 2007). The structure of 34DMBSA (Fig. 1) resembles those of other aryl sulfonamides (Gowda et al., 2003; Jones & Weinkauf, 1993; Kumar et al., 1992; O'Connor & Maslen, 1965). 34DMBSA crystallizes in monoclinic P 21/c space group in contrast to the monoclinic Pc space group of the parent benzenesulfonamide, orthorhombic Pbca space group observed with 4-fluorobenzenesulfonamide (Jones & Weinkauf, 1993) and 4-aminobenzenesulfonamide (O'Connor & Maslen, 1965), monoclinic P21/n space group with 4-chlorobenzenesulfonamide and 4-bromobenzenesulfonamide (Gowda et al., 2003), and 4-methylbenzenesulfonamide (Kumar et al., 1992). Introduction of two methyl groups at the meta and para positions of the benzenesulfonamide slightly decreases the S—N bond length while increasing the S—O bond lengths. Nevertheless, the other bond parameters are not significantly altered. The molecules in the title compound are packed into a layered supramolecular structure as viewed down the ac plane through hydrogen bonding (Fig. 2).

Related literature top

For related literature, see: Gowda & Shetty (2004); Gowda et al. (2002, 2003, 2005, 2007); Jones & Weinkauf (1993); Kumar et al. (1992); O'Connor & Maslen (1965).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2002). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Gowda et al., 2002). Single crystals of the title compound were obtained from a slow evaporation of its ethanolic solution and used for X-ray diffraction studies at room temperature.

Structure description top

Many arylsulfonamides and their N-halo compounds show distinct physical, chemical and biological properties due to their oxidizing action in aqueous, partial aqueous and non-aqueous media. This class of compounds therefore is of interest in synthetic, mechanistic, analytical and biological chemistry (Gowda et al., 2002, 2003, 2005, 2007; Gowda & Shetty, 2004). In the present work, the structure of 3,4-dimethylbenzenesulfonamde (34DMBSA) has been determined to explore the substituent effects on the solid state structures of sulfonamides and N-halo arylsulfonamides (Gowda et al., 2003, 2007). The structure of 34DMBSA (Fig. 1) resembles those of other aryl sulfonamides (Gowda et al., 2003; Jones & Weinkauf, 1993; Kumar et al., 1992; O'Connor & Maslen, 1965). 34DMBSA crystallizes in monoclinic P 21/c space group in contrast to the monoclinic Pc space group of the parent benzenesulfonamide, orthorhombic Pbca space group observed with 4-fluorobenzenesulfonamide (Jones & Weinkauf, 1993) and 4-aminobenzenesulfonamide (O'Connor & Maslen, 1965), monoclinic P21/n space group with 4-chlorobenzenesulfonamide and 4-bromobenzenesulfonamide (Gowda et al., 2003), and 4-methylbenzenesulfonamide (Kumar et al., 1992). Introduction of two methyl groups at the meta and para positions of the benzenesulfonamide slightly decreases the S—N bond length while increasing the S—O bond lengths. Nevertheless, the other bond parameters are not significantly altered. The molecules in the title compound are packed into a layered supramolecular structure as viewed down the ac plane through hydrogen bonding (Fig. 2).

For related literature, see: Gowda & Shetty (2004); Gowda et al. (2002, 2003, 2005, 2007); Jones & Weinkauf (1993); Kumar et al. (1992); O'Connor & Maslen (1965).

Computing details top

Data collection: STADI4 (Stoe & Cie, 1996); cell refinement: STADI4; data reduction: REDU4 (Stoe & Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at 50% probability level.
[Figure 2] Fig. 2. Typical Hydrogen bond bridges observed in the title compound.
3,4-Dimethylbenzenesulfonamide top
Crystal data top
C8H11NO2SF(000) = 392
Mr = 185.24Dx = 1.354 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 9.7939 (4) Åθ = 9.3–30.1°
b = 9.5488 (5) ŵ = 2.85 mm1
c = 10.3342 (8) ÅT = 299 K
β = 109.936 (5)°Prism, colourless
V = 908.54 (9) Å30.58 × 0.35 × 0.2 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1524 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 66.9°, θmin = 4.8°
ω/2θ scansh = 1011
Absorption correction: ψ scan
(North et al., 1968)
k = 1111
Tmin = 0.366, Tmax = 0.586l = 120
3312 measured reflections3 standard reflections every 120 min
1618 independent reflections intensity decay: 3.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0553P)2 + 0.283P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1618 reflectionsΔρmax = 0.46 e Å3
118 parametersΔρmin = 0.44 e Å3
2 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0240 (16)
Crystal data top
C8H11NO2SV = 908.54 (9) Å3
Mr = 185.24Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.7939 (4) ŵ = 2.85 mm1
b = 9.5488 (5) ÅT = 299 K
c = 10.3342 (8) Å0.58 × 0.35 × 0.2 mm
β = 109.936 (5)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1524 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.040
Tmin = 0.366, Tmax = 0.5863 standard reflections every 120 min
3312 measured reflections intensity decay: 3.5%
1618 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.46 e Å3
1618 reflectionsΔρmin = 0.44 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.74966 (18)0.27510 (19)0.30043 (17)0.0353 (4)
C20.86716 (19)0.2192 (2)0.40414 (19)0.0395 (4)
H20.85400.14100.45220.047*
C31.00472 (19)0.2784 (2)0.43747 (19)0.0408 (4)
C41.02302 (19)0.3965 (2)0.36621 (19)0.0430 (5)
C50.9025 (2)0.4516 (2)0.2627 (2)0.0499 (5)
H50.91450.53090.21540.060*
C60.7666 (2)0.3922 (2)0.22840 (19)0.0458 (5)
H60.68800.42990.15850.055*
C71.1309 (2)0.2136 (3)0.5497 (3)0.0624 (6)
H7A1.17010.28040.62240.075*
H7B1.20460.18690.51270.075*
H7C1.09810.13230.58540.075*
C81.1693 (2)0.4650 (3)0.3989 (2)0.0601 (6)
H8A1.15790.55480.35470.072*
H8B1.23080.40700.36630.072*
H8C1.21270.47700.49670.072*
N10.47754 (17)0.29125 (18)0.31866 (16)0.0436 (4)
H11N0.502 (2)0.294 (2)0.4059 (10)0.052*
H12N0.457 (2)0.3705 (15)0.281 (2)0.052*
O10.59702 (15)0.06501 (15)0.33109 (17)0.0574 (4)
O20.51100 (16)0.19748 (19)0.11336 (15)0.0629 (5)
S10.57753 (4)0.19636 (5)0.25981 (4)0.0384 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0331 (8)0.0384 (9)0.0333 (8)0.0005 (7)0.0098 (7)0.0049 (7)
C20.0383 (9)0.0374 (10)0.0393 (9)0.0011 (7)0.0087 (7)0.0002 (7)
C30.0348 (9)0.0437 (10)0.0401 (10)0.0022 (8)0.0078 (7)0.0046 (8)
C40.0380 (9)0.0517 (11)0.0417 (9)0.0043 (8)0.0168 (7)0.0074 (8)
C50.0527 (11)0.0530 (12)0.0464 (10)0.0059 (9)0.0200 (9)0.0098 (9)
C60.0419 (10)0.0515 (12)0.0393 (9)0.0037 (9)0.0078 (7)0.0075 (8)
C70.0427 (11)0.0646 (15)0.0625 (14)0.0030 (10)0.0046 (10)0.0050 (11)
C80.0464 (11)0.0774 (16)0.0598 (13)0.0166 (11)0.0225 (10)0.0082 (11)
N10.0402 (8)0.0527 (11)0.0380 (9)0.0082 (7)0.0135 (7)0.0017 (7)
O10.0498 (8)0.0372 (8)0.0800 (11)0.0059 (6)0.0154 (7)0.0012 (7)
O20.0478 (8)0.1006 (14)0.0346 (8)0.0125 (8)0.0066 (6)0.0214 (7)
S10.0327 (3)0.0430 (3)0.0363 (3)0.00293 (16)0.0076 (2)0.00863 (16)
Geometric parameters (Å, º) top
C1—C61.384 (3)C7—H7A0.9600
C1—C21.384 (3)C7—H7B0.9600
C1—S11.7610 (18)C7—H7C0.9600
C2—C31.392 (3)C8—H8A0.9600
C2—H20.9300C8—H8B0.9600
C3—C41.392 (3)C8—H8C0.9600
C3—C71.509 (3)N1—S11.5987 (16)
C4—C51.397 (3)N1—H11N0.851 (10)
C4—C81.505 (3)N1—H12N0.845 (10)
C5—C61.378 (3)O1—S11.4340 (16)
C5—H50.9300O2—S11.4292 (15)
C6—H60.9300
C6—C1—C2120.49 (17)H7A—C7—H7B109.5
C6—C1—S1119.81 (14)C3—C7—H7C109.5
C2—C1—S1119.71 (14)H7A—C7—H7C109.5
C1—C2—C3120.95 (18)H7B—C7—H7C109.5
C1—C2—H2119.5C4—C8—H8A109.5
C3—C2—H2119.5C4—C8—H8B109.5
C2—C3—C4119.12 (17)H8A—C8—H8B109.5
C2—C3—C7119.58 (19)C4—C8—H8C109.5
C4—C3—C7121.30 (19)H8A—C8—H8C109.5
C3—C4—C5118.86 (17)H8B—C8—H8C109.5
C3—C4—C8121.20 (18)S1—N1—H11N115.8 (16)
C5—C4—C8119.94 (19)S1—N1—H12N114.3 (15)
C6—C5—C4122.11 (19)H11N—N1—H12N114 (2)
C6—C5—H5118.9O2—S1—O1118.90 (10)
C4—C5—H5118.9O2—S1—N1106.34 (9)
C5—C6—C1118.47 (17)O1—S1—N1106.97 (9)
C5—C6—H6120.8O2—S1—C1107.64 (9)
C1—C6—H6120.8O1—S1—C1107.58 (9)
C3—C7—H7A109.5N1—S1—C1109.15 (9)
C3—C7—H7B109.5
C6—C1—C2—C30.6 (3)C4—C5—C6—C10.7 (3)
S1—C1—C2—C3179.33 (14)C2—C1—C6—C50.2 (3)
C1—C2—C3—C40.8 (3)S1—C1—C6—C5179.89 (15)
C1—C2—C3—C7179.12 (19)C6—C1—S1—O240.23 (17)
C2—C3—C4—C50.4 (3)C2—C1—S1—O2139.66 (16)
C7—C3—C4—C5179.6 (2)C6—C1—S1—O1169.48 (15)
C2—C3—C4—C8179.62 (18)C2—C1—S1—O110.41 (17)
C7—C3—C4—C80.4 (3)C6—C1—S1—N174.79 (16)
C3—C4—C5—C60.4 (3)C2—C1—S1—N1105.31 (16)
C8—C4—C5—C6179.60 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11N···O2i0.85 (1)2.12 (1)2.952 (2)167 (2)
N1—H12N···O1ii0.85 (1)2.16 (1)2.999 (2)176 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H11NO2S
Mr185.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)9.7939 (4), 9.5488 (5), 10.3342 (8)
β (°) 109.936 (5)
V3)908.54 (9)
Z4
Radiation typeCu Kα
µ (mm1)2.85
Crystal size (mm)0.58 × 0.35 × 0.2
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.366, 0.586
No. of measured, independent and
observed [I > 2σ(I)] reflections
3312, 1618, 1524
Rint0.040
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.107, 1.11
No. of reflections1618
No. of parameters118
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.44

Computer programs: STADI4 (Stoe & Cie, 1996), STADI4, REDU4 (Stoe & Cie, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1998), SHELXL97, PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11N···O2i0.85 (1)2.12 (1)2.952 (2)167 (2)
N1—H12N···O1ii0.85 (1)2.16 (1)2.999 (2)176 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds