organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

S-Phenyl 4,6-O-benzyl­­idene-2,3-O-carbonyl-1-thia-α-D-manno­pyran­oside

CROSSMARK_Color_square_no_text.svg

aRIKEN, DRI, (The Institute of Physical and Chemical Research, Discovery Research Institute), Hirosawa, Wako-shi, Saitama 351-0198, Japan, and bRIKEN, ADSC, (The Institute of Physical and Chemical Research, Advanced Development and Supporting Center), Hirosawa, Wako-shi, Saitama 351-0198, Japan
*Correspondence e-mail: smanabe@riken.jp

(Received 1 May 2007; accepted 5 May 2007; online 26 May 2007)

In the title compound, C20H18O6S, the pyran­oside ring adopts a distorted conformation (E2 oriented 4C1). The presence of a fused cis-carbonate alters the conformation of the pyran­ose ring from the normal 4C1 chair conformation.

Related literature

For related literature, see: Cremer & Pople (1975[Cremer, D. & Pople, A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Crich et al. (2000[Crich, D., Cai, W. & Dai, Z. (2000). J. Org. Chem. 65, 1291-1297.], 2005[Crich, D., Viond, A. U., Picione, J. & Wink, D. J. (2005). Arkivoc, pp. 339-344.]); Manabe et al. (2006[Manabe, S., Ishii, K. & Ito, Y. (2006). J. Am. Chem. Soc. 128, 10666-10667.]); Mendlik, Coleman, Qi, Lowary & Ferguson (2006[Mendlik, M. T., Coleman, R. S., Qi, G., Lowary, T. L. & Ferguson, M. J. (2006). Acta Cryst. E62, o2788-o2790.]); Mendlik, Coleman, Qi, Lowary & McDonald (2006[Mendlik, M. T., Coleman, R. S., Qi, G., Lowary, T. L. & McDonald, R. (2006). Acta Cryst. E62, o2490-o2492.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18O6S

  • Mr = 386.40

  • Monoclinic, P 21

  • a = 11.5672 (9) Å

  • b = 5.7425 (4) Å

  • c = 14.6172 (10) Å

  • β = 108.143 (2)°

  • V = 922.68 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 200 K

  • 0.61 × 0.17 × 0.14 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.928, Tmax = 0.976

  • 11024 measured reflections

  • 4729 independent reflections

  • 3073 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.12

  • 4729 reflections

  • 261 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1790 Friedel pairs

  • Flack parameter: −0.01 (9)

Table 1
Selected torsion angles (°)

C1—C2—C3—C4 −31.8 (3)
C2—C3—C4—C5 48.3 (3)
C3—C4—C5—O1 −66.7 (2)
C4—C5—O1—C1 68.7 (2)
C5—O1—C1—C2 −51.0 (3)
O1—C1—C2—C3 32.3 (4)

Data collection: PROCESS-AUTO (Rigaku Corporation, 1998[Rigaku Corporation (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our recent investigation into the development of α-selective glycosyl donors of 2-amino-2-deoxy sugars (Manabe et al., 2006), we became interested in the relationship between pyranose conformation and selectivity in the glycosylation reaction. The title compound, (I), is an α-selective glycosylation donor of mannose, as reported by Crich et al. (2000). As the first part of this study, we examined the conformation of the mannopyranose ring by X-ray crystal structure analysis.

The glycosyl donor exhibits high α-selectivity despite the lack of a participating group at the 2-position. The pyranose ring of mannose, O1/C1—C5, is distorted probably due to the presence of the 2,3-cis carbonate; this is supported by deviations in the torsion angles around the C1—C2, C2—C3 and C3—C4 bonds from the ideal values for a chair conformation. The same phenomenon was observed in the case of rhamnose (Crich et al., 2005) and daunosamine (Mendlik, Coleman, Qi, Lowary & McDonald, 2006; Mendlik, Coleman, Qi, Lowary & Ferguson, 2006) containing 2,3-cis carbonate. The Cremer-Pople puckering parameters (Cremer & Pople, 1975), Q = 0.546 (2) Å, θ = 153.3 (3)° and φ = 56.0 (6)°, clearly indicate a large distortion of the ring.

Related literature top

For related literature, see: Cremer & Pople (1975); Crich et al. (2000, 2005); Manabe et al. (2006); Mendlik, Coleman, Qi, Lowary & Ferguson (2006); Mendlik, Coleman, Qi, Lowary & McDonald (2006).

Experimental top

The compound was prepared as described by Crich et al. (2000). The compound was dissolved in EtOAc at room temperature and hexane was added. The solution was kept at room temperature in a sealed flask for a few days to give single crystals suitable for X-ray analysis.

Refinement top

All H atoms were found on a difference map and were subsequently treated as riding atoms with C—H distances of 1.00, 0.99 and 0.95 Å for methyne, methylene and phenyl, respectively. The Uiso's of H atoms were fixed to have 1.2Ueq of the parent atoms. Floating origin restraint was applied to fix the X-ray 'center of gravity' of the structure in the b axis direction.

Structure description top

As part of our recent investigation into the development of α-selective glycosyl donors of 2-amino-2-deoxy sugars (Manabe et al., 2006), we became interested in the relationship between pyranose conformation and selectivity in the glycosylation reaction. The title compound, (I), is an α-selective glycosylation donor of mannose, as reported by Crich et al. (2000). As the first part of this study, we examined the conformation of the mannopyranose ring by X-ray crystal structure analysis.

The glycosyl donor exhibits high α-selectivity despite the lack of a participating group at the 2-position. The pyranose ring of mannose, O1/C1—C5, is distorted probably due to the presence of the 2,3-cis carbonate; this is supported by deviations in the torsion angles around the C1—C2, C2—C3 and C3—C4 bonds from the ideal values for a chair conformation. The same phenomenon was observed in the case of rhamnose (Crich et al., 2005) and daunosamine (Mendlik, Coleman, Qi, Lowary & McDonald, 2006; Mendlik, Coleman, Qi, Lowary & Ferguson, 2006) containing 2,3-cis carbonate. The Cremer-Pople puckering parameters (Cremer & Pople, 1975), Q = 0.546 (2) Å, θ = 153.3 (3)° and φ = 56.0 (6)°, clearly indicate a large distortion of the ring.

For related literature, see: Cremer & Pople (1975); Crich et al. (2000, 2005); Manabe et al. (2006); Mendlik, Coleman, Qi, Lowary & Ferguson (2006); Mendlik, Coleman, Qi, Lowary & McDonald (2006).

Computing details top

Data collection: PROCESS-AUTO (Rigaku Corporation, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids of non-H atoms are drawn at the 50% probability level.
S-Phenyl 4,6-O-benzylidene-2,3-O-carbonyl-1-thia-α-D-mannopyranoside top
Crystal data top
C20H18O6SF(000) = 404
Mr = 386.40Dx = 1.391 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 11035 reflections
a = 11.5672 (9) Åθ = 3.5–30.0°
b = 5.7425 (4) ŵ = 0.21 mm1
c = 14.6172 (10) ÅT = 200 K
β = 108.143 (2)°Needle, colourless
V = 922.68 (12) Å30.61 × 0.17 × 0.14 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4729 independent reflections
Radiation source: normal-focus sealed tube3073 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 10 pixels mm-1θmax = 30.0°, θmin = 3.5°
ω scansh = 1616
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 87
Tmin = 0.928, Tmax = 0.976l = 2020
11024 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0269P)2 + 0.1924P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
4729 reflectionsΔρmax = 0.29 e Å3
261 parametersΔρmin = 0.32 e Å3
1 restraintAbsolute structure: Flack (1983), 1790 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (9)
Crystal data top
C20H18O6SV = 922.68 (12) Å3
Mr = 386.40Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.5672 (9) ŵ = 0.21 mm1
b = 5.7425 (4) ÅT = 200 K
c = 14.6172 (10) Å0.61 × 0.17 × 0.14 mm
β = 108.143 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4729 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3073 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.976Rint = 0.044
11024 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.103Δρmax = 0.29 e Å3
S = 1.12Δρmin = 0.32 e Å3
4729 reflectionsAbsolute structure: Flack (1983), 1790 Friedel pairs
261 parametersAbsolute structure parameter: 0.01 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.17264 (6)0.11075 (16)0.08559 (5)0.0574 (2)
O10.29605 (13)0.3564 (3)0.24474 (11)0.0408 (4)
O20.40038 (15)0.6337 (3)0.09979 (12)0.0494 (4)
O30.56776 (14)0.4206 (3)0.12945 (12)0.0430 (4)
O40.60166 (12)0.1151 (4)0.30258 (10)0.0406 (4)
O50.51693 (15)0.0002 (3)0.42029 (12)0.0508 (5)
O60.57299 (18)0.7955 (3)0.08992 (14)0.0579 (5)
C10.2575 (2)0.3698 (5)0.14384 (16)0.0443 (6)
H10.20290.50820.12410.053*
C20.3601 (2)0.3930 (5)0.09890 (17)0.0416 (6)
H20.33100.33530.03100.050*
C30.47901 (19)0.2723 (5)0.15248 (16)0.0372 (5)
H30.48130.11140.12690.045*
C40.50209 (19)0.2671 (5)0.25987 (16)0.0376 (5)
H40.52250.42750.28660.045*
C50.38772 (19)0.1826 (4)0.27995 (16)0.0383 (6)
H50.36030.03120.24640.046*
C60.4145 (2)0.1536 (6)0.38735 (16)0.0501 (7)
H610.43360.30630.42000.060*
H620.34310.08670.40160.060*
C70.62117 (19)0.0930 (5)0.40294 (15)0.0427 (5)
H70.64040.24900.43440.051*
C80.5184 (2)0.6310 (5)0.10486 (16)0.0433 (6)
C90.05254 (19)0.1003 (6)0.13747 (16)0.0465 (6)
C100.0427 (3)0.0881 (6)0.1929 (2)0.0643 (8)
H100.10400.20470.20920.077*
C110.0592 (4)0.1047 (7)0.2248 (3)0.0749 (10)
H110.06770.23520.26210.090*
C120.1470 (3)0.0653 (8)0.2029 (2)0.0746 (11)
H120.21660.05120.22400.089*
C130.1339 (3)0.2529 (7)0.1511 (3)0.0774 (10)
H130.19340.37280.13780.093*
C140.0349 (2)0.2732 (7)0.1171 (2)0.0662 (9)
H140.02730.40500.08010.079*
C150.7251 (2)0.0704 (5)0.44491 (17)0.0419 (6)
C160.7468 (2)0.2562 (5)0.3924 (2)0.0480 (6)
H160.69870.27570.32710.058*
C170.8387 (2)0.4147 (6)0.4347 (2)0.0549 (7)
H170.85380.54160.39830.066*
C180.9080 (2)0.3870 (6)0.5300 (2)0.0561 (7)
H180.97040.49600.55920.067*
C190.8873 (2)0.2032 (6)0.5828 (2)0.0542 (7)
H190.93490.18590.64830.065*
C200.7966 (2)0.0419 (5)0.54035 (19)0.0486 (7)
H200.78340.08720.57650.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0351 (3)0.0882 (5)0.0482 (3)0.0078 (4)0.0120 (3)0.0205 (4)
O10.0273 (8)0.0620 (12)0.0335 (7)0.0073 (8)0.0103 (6)0.0036 (8)
O20.0434 (9)0.0552 (12)0.0556 (10)0.0120 (10)0.0241 (8)0.0092 (10)
O30.0322 (9)0.0491 (10)0.0528 (10)0.0080 (8)0.0204 (7)0.0102 (9)
O40.0284 (7)0.0538 (10)0.0412 (8)0.0067 (9)0.0132 (6)0.0089 (9)
O50.0321 (9)0.0774 (14)0.0445 (9)0.0049 (8)0.0143 (7)0.0172 (9)
O60.0673 (13)0.0510 (12)0.0670 (13)0.0018 (11)0.0379 (11)0.0051 (10)
C10.0265 (11)0.0667 (18)0.0390 (12)0.0065 (11)0.0091 (9)0.0007 (12)
C20.0316 (12)0.0558 (16)0.0390 (11)0.0035 (11)0.0134 (10)0.0009 (12)
C30.0311 (11)0.0423 (14)0.0424 (12)0.0020 (10)0.0177 (9)0.0010 (11)
C40.0257 (11)0.0482 (14)0.0392 (11)0.0039 (10)0.0107 (9)0.0002 (11)
C50.0270 (11)0.0529 (17)0.0362 (11)0.0009 (10)0.0116 (9)0.0023 (10)
C60.0307 (12)0.083 (2)0.0391 (11)0.0079 (13)0.0138 (9)0.0079 (13)
C70.0295 (11)0.0576 (16)0.0394 (11)0.0008 (13)0.0086 (9)0.0021 (13)
C80.0423 (13)0.0529 (16)0.0393 (11)0.0099 (14)0.0196 (10)0.0040 (13)
C90.0290 (11)0.0686 (17)0.0389 (11)0.0036 (14)0.0062 (9)0.0032 (15)
C100.069 (2)0.0591 (19)0.0671 (18)0.0010 (16)0.0241 (16)0.0063 (17)
C110.092 (3)0.068 (2)0.078 (2)0.025 (2)0.046 (2)0.0040 (19)
C120.0486 (17)0.102 (3)0.080 (2)0.0230 (19)0.0310 (16)0.019 (2)
C130.0349 (15)0.109 (3)0.090 (2)0.0075 (18)0.0208 (16)0.016 (2)
C140.0320 (14)0.094 (3)0.0696 (18)0.0094 (16)0.0113 (13)0.0295 (19)
C150.0262 (11)0.0549 (16)0.0449 (12)0.0050 (11)0.0114 (10)0.0083 (12)
C160.0354 (13)0.0547 (16)0.0506 (14)0.0028 (12)0.0086 (11)0.0054 (14)
C170.0475 (15)0.0525 (18)0.0655 (16)0.0012 (14)0.0186 (13)0.0062 (16)
C180.0362 (13)0.0650 (18)0.0650 (16)0.0071 (15)0.0126 (12)0.0187 (18)
C190.0327 (13)0.072 (2)0.0524 (15)0.0002 (14)0.0048 (11)0.0135 (15)
C200.0334 (13)0.0604 (18)0.0499 (14)0.0016 (12)0.0100 (11)0.0072 (13)
Geometric parameters (Å, º) top
S1—C91.779 (2)C7—C151.498 (4)
S1—C11.839 (3)C7—H71.0000
O1—C11.404 (3)C9—C101.378 (4)
O1—C51.430 (3)C9—C141.382 (4)
O2—C81.344 (3)C10—C111.399 (4)
O2—C21.457 (3)C10—H100.9500
O3—C81.337 (3)C11—C121.373 (5)
O3—C31.452 (3)C11—H110.9500
O4—C71.419 (2)C12—C131.352 (5)
O4—C41.425 (3)C12—H120.9500
O5—C71.412 (3)C13—C141.388 (4)
O5—C61.435 (3)C13—H130.9500
O6—C81.194 (3)C14—H140.9500
C1—C21.531 (3)C15—C161.383 (4)
C1—H11.0000C15—C201.392 (3)
C2—C31.522 (3)C16—C171.389 (4)
C2—H21.0000C16—H160.9500
C3—C41.508 (3)C17—C181.384 (4)
C3—H31.0000C17—H170.9500
C4—C51.521 (3)C18—C191.371 (4)
C4—H41.0000C18—H180.9500
C5—C61.512 (3)C19—C201.392 (4)
C5—H51.0000C19—H190.9500
C6—H610.9900C20—H200.9500
C6—H620.9900
C9—S1—C1101.82 (12)O4—C7—C15109.2 (2)
C1—O1—C5111.96 (18)O5—C7—H7109.7
C8—O2—C2107.8 (2)O4—C7—H7109.7
C8—O3—C3108.61 (18)C15—C7—H7109.7
C7—O4—C4110.76 (17)O6—C8—O3124.0 (2)
C7—O5—C6111.6 (2)O6—C8—O2124.5 (3)
O1—C1—C2114.86 (19)O3—C8—O2111.5 (2)
O1—C1—S1113.0 (2)C10—C9—C14120.1 (3)
C2—C1—S1104.18 (18)C10—C9—S1119.7 (2)
O1—C1—H1108.2C14—C9—S1120.0 (2)
C2—C1—H1108.2C9—C10—C11118.8 (3)
S1—C1—H1108.2C9—C10—H10120.6
O2—C2—C3101.07 (19)C11—C10—H10120.6
O2—C2—C1111.5 (2)C12—C11—C10120.9 (4)
C3—C2—C1115.9 (2)C12—C11—H11119.6
O2—C2—H2109.3C10—C11—H11119.6
C3—C2—H2109.3C13—C12—C11119.5 (3)
C1—C2—H2109.3C13—C12—H12120.2
O3—C3—C4110.13 (19)C11—C12—H12120.2
O3—C3—C2101.81 (19)C12—C13—C14121.1 (3)
C4—C3—C2112.54 (18)C12—C13—H13119.5
O3—C3—H3110.7C14—C13—H13119.5
C4—C3—H3110.7C9—C14—C13119.5 (3)
C2—C3—H3110.7C9—C14—H14120.2
O4—C4—C3108.98 (18)C13—C14—H14120.2
O4—C4—C5110.68 (19)C16—C15—C20119.6 (2)
C3—C4—C5108.93 (18)C16—C15—C7121.2 (2)
O4—C4—H4109.4C20—C15—C7119.2 (2)
C3—C4—H4109.4C15—C16—C17120.3 (3)
C5—C4—H4109.4C15—C16—H16119.9
O1—C5—C6109.87 (18)C17—C16—H16119.9
O1—C5—C4107.45 (18)C18—C17—C16119.8 (3)
C6—C5—C4109.03 (18)C18—C17—H17120.1
O1—C5—H5110.1C16—C17—H17120.1
C6—C5—H5110.1C19—C18—C17120.4 (3)
C4—C5—H5110.1C19—C18—H18119.8
O5—C6—C5107.28 (19)C17—C18—H18119.8
O5—C6—H61110.3C18—C19—C20120.1 (3)
C5—C6—H61110.3C18—C19—H19120.0
O5—C6—H62110.3C20—C19—H19120.0
C5—C6—H62110.3C15—C20—C19119.9 (3)
H61—C6—H62108.5C15—C20—H20120.1
O5—C7—O4110.46 (17)C19—C20—H20120.1
O5—C7—C15108.1 (2)
C1—C2—C3—C431.8 (3)C6—O5—C7—O464.2 (3)
C2—C3—C4—C548.3 (3)C6—O5—C7—C15176.4 (2)
C3—C4—C5—O166.7 (2)C4—O4—C7—O560.5 (3)
C4—C5—O1—C168.7 (2)C4—O4—C7—C15179.2 (2)
C5—O1—C1—C251.0 (3)C3—O3—C8—O6173.5 (2)
O1—C1—C2—C332.3 (4)C3—O3—C8—O26.1 (3)
C5—O1—C1—S168.3 (2)C2—O2—C8—O6166.1 (2)
C9—S1—C1—O156.67 (19)C2—O2—C8—O314.3 (3)
C9—S1—C1—C2177.99 (17)C1—S1—C9—C10117.4 (2)
C8—O2—C2—C327.0 (2)C1—S1—C9—C1466.7 (2)
C8—O2—C2—C1150.79 (18)C14—C9—C10—C112.4 (5)
O1—C1—C2—O282.7 (3)S1—C9—C10—C11173.5 (2)
S1—C1—C2—O2153.16 (16)C9—C10—C11—C121.1 (5)
S1—C1—C2—C391.9 (2)C10—C11—C12—C131.0 (5)
C8—O3—C3—C497.1 (2)C11—C12—C13—C142.0 (6)
C8—O3—C3—C222.5 (2)C10—C9—C14—C131.4 (5)
O2—C2—C3—O328.9 (2)S1—C9—C14—C13174.4 (3)
C1—C2—C3—O3149.6 (2)C12—C13—C14—C90.8 (5)
O2—C2—C3—C489.0 (2)O5—C7—C15—C1687.1 (3)
C7—O4—C4—C3176.1 (2)O4—C7—C15—C1633.1 (3)
C7—O4—C4—C556.3 (3)O5—C7—C15—C2089.1 (3)
O3—C3—C4—O478.0 (2)O4—C7—C15—C20150.7 (2)
C2—C3—C4—O4169.2 (2)C20—C15—C16—C170.5 (4)
O3—C3—C4—C5161.14 (19)C7—C15—C16—C17175.7 (3)
C1—O1—C5—C6172.8 (2)C15—C16—C17—C180.5 (4)
O4—C4—C5—O1173.50 (18)C16—C17—C18—C190.5 (4)
O4—C4—C5—C654.5 (3)C17—C18—C19—C200.4 (4)
C3—C4—C5—C6174.3 (2)C16—C15—C20—C191.4 (4)
C7—O5—C6—C561.3 (3)C7—C15—C20—C19174.8 (2)
O1—C5—C6—O5172.92 (19)C18—C19—C20—C151.4 (4)
C4—C5—C6—O555.4 (3)

Experimental details

Crystal data
Chemical formulaC20H18O6S
Mr386.40
Crystal system, space groupMonoclinic, P21
Temperature (K)200
a, b, c (Å)11.5672 (9), 5.7425 (4), 14.6172 (10)
β (°) 108.143 (2)
V3)922.68 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.61 × 0.17 × 0.14
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.928, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
11024, 4729, 3073
Rint0.044
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.12
No. of reflections4729
No. of parameters261
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.32
Absolute structureFlack (1983), 1790 Friedel pairs
Absolute structure parameter0.01 (9)

Computer programs: PROCESS-AUTO (Rigaku Corporation, 1998), PROCESS-AUTO, SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected torsion angles (º) top
C1—C2—C3—C431.8 (3)C4—C5—O1—C168.7 (2)
C2—C3—C4—C548.3 (3)C5—O1—C1—C251.0 (3)
C3—C4—C5—O166.7 (2)O1—C1—C2—C332.3 (4)
 

Acknowledgements

This work was supported by the RIKEN matching fund for PRESTO, the President's Discretionary Fund from RIKEN and Grants-in-Aid for Scientific Research (C) (grant No. 19590032) from the Japan Society for the Promotion of Science.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCrich, D., Cai, W. & Dai, Z. (2000). J. Org. Chem. 65, 1291–1297.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCrich, D., Viond, A. U., Picione, J. & Wink, D. J. (2005). Arkivoc, pp. 339–344.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationManabe, S., Ishii, K. & Ito, Y. (2006). J. Am. Chem. Soc. 128, 10666–10667.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMendlik, M. T., Coleman, R. S., Qi, G., Lowary, T. L. & Ferguson, M. J. (2006). Acta Cryst. E62, o2788–o2790.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMendlik, M. T., Coleman, R. S., Qi, G., Lowary, T. L. & McDonald, R. (2006). Acta Cryst. E62, o2490–o2492.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku Corporation (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds