Download citation
Download citation
link to html
In the title compound, [Cd(C2H4O2)(C12H8N2)2]ClO4·H2O, the CuII ion is in a distorted octa­hedral coordination geometry with normal Cd—O and Cd—N bond lengths. The cation and anion both lie on crystallographic twofold axes. In the crystal structure, inter­molecular O—H...O hydrogen bonds form one-dimensional chains along [100] and in addition weak π–π stacking inter­actions connect mol­ecules along [001]. The Cg1 (central fused benzene ring) and Cg2 (outer fused pyridine ring) centroid–centroid and perpendicular distances are 3.746 (2) and 3.623 (2) Å, respectively, with Cg1...Cg2i = 3.602 (2) Å [symmety code: (i) −x, 1 − y, 1 − z].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807022908/lh2380sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807022908/lh2380Isup2.hkl
Contains datablock I

CCDC reference: 650680

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • R factor = 0.059
  • wR factor = 0.155
  • Data-to-parameter ratio = 15.3

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

The formula unit of (I) comprises a monnuclear [Cd(phen)2(CH 3COO)]+ cation (Fig. 1), a perchlorate anion and a hydrate. The Cd II ion is in a distorted octahedral CdN4O2 geometry coordinated by four N atoms of phen ligands and two O atoms of a chelating bidentate acetato anion. By virtue of the twofold symmetry, atoms C13, C14, O1, O1b atoms are exactly planar (Zhang et al., 2003)[symmety code: (b) -x, y, 1/2 - z]. In the crystal structure, one-dimensional chains along [100] are formed by intermolecular Owater—H···Operchlorate and Owater –H···Owater hydrogen bonds (Fig. 2. and Table 2). In addition weak π-π stacking interactions form chains along [001] as shown in Fig.3. Cg1 and Cg2 are the centroids defined by atoms C4/C5/C6/C7/C11/C12 and N2/C7/C8/C9/C10/C11, respectively. The relevant centroid–centroid and perpendicular distances defining these interactions are 3.746 (2), and 3.623 and 3.602 Å for Cg1··· Cg2i [symmety code:(i) -x,1 - y,1 - z].

Related literature top

The structure of a related Cd complex has been published (Zhang et al. 2003).

Experimental top

Cd(CH3COO)2 ˙ 2(H2 O)(0.266 g, 1 mmol), NaClO4 (0.14 g, 1 mmol) phen (0.396 g, 2 mmol) were dissolved in a water-methanol solution (40 ml, 1:1). The mixture was refluxed for 4 h, and then filtered after cooling to room temperature. Single crystals of (I) were obtained after two weeks.

Refinement top

H atoms bonded to O atoms were located in difference maps and then included in the refinement with bond-length restraints of O – H = 0.82 (2) Å, with Uiso (H) = 1.5Ueq (O). H atoms bonded to C atoms were placed in calculated positions and included in the riding-model approximation, with C–H = 0.93—0.96 Å and U iso(H) = 1.2U eq (C of aromatic) or 1.5U eq(C of methyl). Atoms O2/O3/O4 of the perchlorate anion are disordered over a twofold axis with equal occupancies. The largest peak of 1.18 Å-3 in the final differnce Fourier is close to atom Cl1.

Structure description top

The formula unit of (I) comprises a monnuclear [Cd(phen)2(CH 3COO)]+ cation (Fig. 1), a perchlorate anion and a hydrate. The Cd II ion is in a distorted octahedral CdN4O2 geometry coordinated by four N atoms of phen ligands and two O atoms of a chelating bidentate acetato anion. By virtue of the twofold symmetry, atoms C13, C14, O1, O1b atoms are exactly planar (Zhang et al., 2003)[symmety code: (b) -x, y, 1/2 - z]. In the crystal structure, one-dimensional chains along [100] are formed by intermolecular Owater—H···Operchlorate and Owater –H···Owater hydrogen bonds (Fig. 2. and Table 2). In addition weak π-π stacking interactions form chains along [001] as shown in Fig.3. Cg1 and Cg2 are the centroids defined by atoms C4/C5/C6/C7/C11/C12 and N2/C7/C8/C9/C10/C11, respectively. The relevant centroid–centroid and perpendicular distances defining these interactions are 3.746 (2), and 3.623 and 3.602 Å for Cg1··· Cg2i [symmety code:(i) -x,1 - y,1 - z].

The structure of a related Cd complex has been published (Zhang et al. 2003).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The cation of (I), with displacement ellipsoids drawn at the 50% probability level. The H atoms, disordered perchlorate and water molecules have been omitted for clarity. [symmetry code:(b) -x, y, 1/2 - z]
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of hydrogen-bonded (dashed lines) one-dimensional chains.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of π-π stacking (dashed lines) interactions.
(Acetato-κ2O,O')bis(1,10-phenanthroline-κ2N,N')cadmium(II) perchlorate dihydrate top
Crystal data top
[Cd(C2H4O2)(C12H8N2)2]ClO4·2H2OF(000) = 672
Mr = 667.33Dx = 1.626 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 3241 reflections
a = 9.887 (4) Åθ = 2.2–23.0°
b = 8.177 (4) ŵ = 0.96 mm1
c = 17.791 (7) ÅT = 298 K
β = 108.612 (19)°Block, colorless
V = 1363.1 (10) Å30.32 × 0.30 × 0.30 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
2584 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.058
Graphite monochromatorθmax = 27.5°, θmin = 2.2°
φ and ω scansh = 1212
8986 measured reflectionsk = 1010
3118 independent reflectionsl = 2317
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0965P)2]
where P = (Fo2 + 2Fc2)/3
3118 reflections(Δ/σ)max < 0.001
204 parametersΔρmax = 1.27 e Å3
64 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Cd(C2H4O2)(C12H8N2)2]ClO4·2H2OV = 1363.1 (10) Å3
Mr = 667.33Z = 2
Monoclinic, P2/cMo Kα radiation
a = 9.887 (4) ŵ = 0.96 mm1
b = 8.177 (4) ÅT = 298 K
c = 17.791 (7) Å0.32 × 0.30 × 0.30 mm
β = 108.612 (19)°
Data collection top
Bruker SMART CCD
diffractometer
2584 reflections with I > 2σ(I)
8986 measured reflectionsRint = 0.058
3118 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05964 restraints
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.27 e Å3
3118 reflectionsΔρmin = 0.59 e Å3
204 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.00000.53861 (6)0.25000.0522 (2)
O10.1072 (4)0.2850 (5)0.2079 (2)0.0759 (10)
N10.1344 (4)0.6807 (5)0.1392 (2)0.0553 (9)
N20.1397 (4)0.5700 (5)0.1676 (2)0.0551 (9)
C10.2671 (6)0.7337 (7)0.1252 (3)0.0695 (13)
H10.31240.71250.16260.083*
C20.3405 (7)0.8187 (8)0.0577 (4)0.0831 (16)
H20.43240.85690.05040.100*
C30.2761 (7)0.8454 (7)0.0025 (4)0.0840 (17)
H30.32520.90080.04390.101*
C40.1383 (6)0.7917 (6)0.0134 (3)0.0657 (13)
C50.0647 (8)0.8114 (8)0.0436 (3)0.0844 (17)
H50.11120.86330.09140.101*
C60.0664 (8)0.7584 (8)0.0305 (3)0.0829 (18)
H60.11100.77700.06850.099*
C70.1428 (6)0.6720 (7)0.0411 (3)0.0663 (13)
C80.2802 (7)0.6092 (8)0.0557 (4)0.0798 (17)
H80.32800.62300.01890.096*
C90.3412 (7)0.5300 (9)0.1227 (5)0.0847 (19)
H90.43240.48750.13240.102*
C100.2714 (6)0.5085 (8)0.1795 (4)0.0730 (14)
H100.31660.45110.22580.088*
C110.0762 (5)0.6493 (5)0.0986 (3)0.0531 (10)
C120.0698 (5)0.7090 (5)0.0842 (2)0.0519 (10)
C130.00000.2084 (9)0.25000.0667 (19)
C140.00000.0252 (12)0.25000.130 (5)
H14A0.07640.01390.20530.195*0.50
H14B0.01300.01390.29810.195*0.50
H14C0.08940.01390.24660.195*0.50
O1W0.6176 (5)0.2737 (11)0.1119 (3)0.130 (2)
O20.487 (2)0.9428 (11)0.3240 (6)0.155 (6)0.50
O30.6310 (13)0.9327 (13)0.2453 (14)0.280 (14)0.50
O40.3858 (18)0.9310 (14)0.1877 (9)0.68 (6)0.50
O50.50001.1640 (7)0.25000.414 (15)
Cl10.50000.9901 (4)0.25000.1092 (10)
H1WA0.593 (9)0.231 (12)0.148 (4)0.164*
H1WB0.700 (6)0.312 (12)0.138 (4)0.164*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0537 (3)0.0570 (3)0.0476 (3)0.0000.0184 (2)0.000
O10.078 (2)0.070 (2)0.071 (2)0.0126 (19)0.0116 (19)0.0031 (19)
N10.053 (2)0.057 (2)0.055 (2)0.0023 (17)0.0175 (17)0.0029 (17)
N20.048 (2)0.061 (2)0.057 (2)0.0040 (16)0.0187 (17)0.0046 (17)
C10.058 (3)0.075 (3)0.073 (3)0.007 (2)0.018 (3)0.001 (3)
C20.072 (4)0.081 (4)0.086 (4)0.014 (3)0.011 (3)0.010 (3)
C30.089 (4)0.075 (4)0.070 (4)0.010 (3)0.000 (3)0.009 (3)
C40.081 (3)0.058 (3)0.052 (3)0.008 (2)0.012 (2)0.001 (2)
C50.113 (5)0.084 (4)0.053 (3)0.013 (4)0.022 (3)0.006 (3)
C60.117 (5)0.087 (4)0.058 (3)0.026 (4)0.047 (3)0.011 (3)
C70.082 (3)0.067 (3)0.059 (3)0.022 (3)0.035 (3)0.018 (2)
C80.080 (4)0.093 (4)0.082 (4)0.024 (3)0.049 (3)0.027 (4)
C90.057 (3)0.101 (5)0.105 (5)0.004 (3)0.038 (3)0.024 (4)
C100.056 (3)0.085 (3)0.081 (4)0.002 (3)0.026 (3)0.004 (3)
C110.058 (3)0.052 (2)0.050 (2)0.0127 (19)0.019 (2)0.0140 (19)
C120.063 (3)0.046 (2)0.045 (2)0.0106 (19)0.0150 (19)0.0072 (17)
C130.098 (6)0.052 (4)0.055 (4)0.0000.032 (4)0.000
C140.194 (16)0.055 (5)0.131 (11)0.0000.039 (11)0.000
O1W0.069 (3)0.202 (7)0.113 (4)0.007 (4)0.020 (3)0.048 (4)
O20.145 (9)0.180 (10)0.145 (9)0.008 (7)0.050 (7)0.058 (7)
O30.285 (16)0.296 (17)0.277 (16)0.038 (10)0.114 (11)0.010 (10)
O40.68 (6)0.69 (6)0.68 (6)0.009 (11)0.22 (2)0.015 (11)
O50.424 (17)0.394 (17)0.439 (17)0.0000.158 (11)0.000
Cl10.155 (3)0.0983 (16)0.101 (2)0.0000.078 (2)0.000
Geometric parameters (Å, º) top
Cd1—N1i2.308 (4)C8—C91.320 (10)
Cd1—N12.308 (4)C8—H80.9300
Cd1—N2i2.327 (4)C9—C101.405 (9)
Cd1—N22.327 (4)C9—H90.9300
Cd1—O12.341 (4)C10—H100.9300
Cd1—O1i2.341 (4)C11—C121.467 (6)
Cd1—C132.700 (7)C13—O1i1.253 (5)
O1—C131.253 (5)C13—C141.498 (11)
N1—C11.328 (6)C14—H14A0.9600
N1—C121.348 (6)C14—H14B0.9600
N2—C101.348 (7)C14—H14C0.9600
N2—C111.352 (6)O1W—H1WA0.84 (2)
C1—C21.376 (8)O1W—H1WB0.86 (2)
C1—H10.9300O2—O4ii1.345 (17)
C2—C31.349 (9)O2—O3ii1.403 (15)
C2—H20.9300O2—Cl11.419 (5)
C3—C41.385 (8)O3—O4ii1.254 (16)
C3—H30.9300O3—O2ii1.403 (15)
C4—C121.399 (7)O3—Cl11.405 (6)
C4—C51.434 (8)O4—O3ii1.254 (16)
C5—C61.315 (9)O4—O2ii1.345 (17)
C5—H50.9300O4—Cl11.392 (6)
C6—C71.442 (9)O5—Cl11.422 (6)
C6—H60.9300Cl1—O4ii1.392 (6)
C7—C111.395 (6)Cl1—O3ii1.405 (6)
C7—C81.397 (9)Cl1—O2ii1.419 (5)
N1i—Cd1—N1119.55 (19)C10—C9—H9119.2
N1i—Cd1—N2i72.68 (14)N2—C10—C9120.8 (6)
N1—Cd1—N2i100.75 (14)N2—C10—H10119.6
N1i—Cd1—N2100.75 (14)C9—C10—H10119.6
N1—Cd1—N272.68 (14)N2—C11—C7122.5 (5)
N2i—Cd1—N2167.32 (19)N2—C11—C12117.7 (4)
N1i—Cd1—O1142.90 (14)C7—C11—C12119.8 (5)
N1—Cd1—O195.42 (14)N1—C12—C4122.1 (5)
N2i—Cd1—O189.99 (14)N1—C12—C11118.9 (4)
N2—Cd1—O1101.29 (13)C4—C12—C11119.0 (4)
N1i—Cd1—O1i95.42 (14)O1i—C13—O1120.0 (7)
N1—Cd1—O1i142.90 (14)O1i—C13—C14120.0 (3)
N2i—Cd1—O1i101.29 (13)O1—C13—C14120.0 (3)
N2—Cd1—O1i89.99 (14)O1i—C13—Cd160.0 (3)
O1—Cd1—O1i55.2 (2)O1—C13—Cd160.0 (3)
N1i—Cd1—C13120.22 (10)C14—C13—Cd1180.000 (1)
N1—Cd1—C13120.22 (10)C13—C14—H14A109.5
N2i—Cd1—C1396.34 (9)C13—C14—H14B109.5
N2—Cd1—C1396.34 (9)H14A—C14—H14B109.5
O1—Cd1—C1327.62 (10)C13—C14—H14C109.5
O1i—Cd1—C1327.62 (10)H14A—C14—H14C109.5
C13—O1—Cd192.4 (4)H14B—C14—H14C109.5
C1—N1—C12118.4 (4)H1WA—O1W—H1WB100 (3)
C1—N1—Cd1126.2 (3)O4ii—O2—O3ii114.5 (10)
C12—N1—Cd1115.5 (3)O4ii—O2—Cl160.4 (5)
C10—N2—C11117.9 (4)O3ii—O2—Cl159.7 (4)
C10—N2—Cd1126.7 (4)O4ii—O3—O2ii120.8 (10)
C11—N2—Cd1115.3 (3)O4ii—O3—Cl162.8 (5)
N1—C1—C2122.9 (5)O2ii—O3—Cl160.7 (4)
N1—C1—H1118.5O3ii—O4—O2ii124.2 (10)
C2—C1—H1118.5O3ii—O4—Cl163.9 (5)
C3—C2—C1118.5 (6)O2ii—O4—Cl162.4 (5)
C3—C2—H2120.7O4ii—Cl1—O4139.3 (10)
C1—C2—H2120.7O4ii—Cl1—O353.3 (7)
C2—C3—C4121.2 (5)O4—Cl1—O3111.5 (5)
C2—C3—H3119.4O4ii—Cl1—O3ii111.5 (5)
C4—C3—H3119.4O4—Cl1—O3ii53.3 (7)
C3—C4—C12116.8 (5)O3—Cl1—O3ii141.0 (10)
C3—C4—C5124.3 (5)O4ii—Cl1—O2ii110.6 (5)
C12—C4—C5118.8 (5)O4—Cl1—O2ii57.2 (7)
C6—C5—C4122.1 (5)O3—Cl1—O2ii59.6 (6)
C6—C5—H5118.9O3ii—Cl1—O2ii108.9 (5)
C4—C5—H5118.9O4ii—Cl1—O257.2 (7)
C5—C6—C7121.8 (5)O4—Cl1—O2110.6 (5)
C5—C6—H6119.1O3—Cl1—O2108.9 (5)
C7—C6—H6119.1O3ii—Cl1—O259.6 (6)
C11—C7—C8118.3 (5)O2ii—Cl1—O2148.3 (8)
C11—C7—C6118.5 (5)O4ii—Cl1—O5110.3 (5)
C8—C7—C6123.2 (5)O4—Cl1—O5110.3 (5)
C9—C8—C7119.0 (5)O3—Cl1—O5109.5 (5)
C9—C8—H8120.5O3ii—Cl1—O5109.5 (5)
C7—C8—H8120.5O2ii—Cl1—O5105.8 (4)
C8—C9—C10121.5 (6)O2—Cl1—O5105.8 (4)
C8—C9—H9119.2
N1i—Cd1—O1—C1343.4 (3)C1—N1—C12—C40.1 (7)
N1—Cd1—O1—C13155.4 (2)Cd1—N1—C12—C4179.1 (3)
N2i—Cd1—O1—C13103.8 (2)C1—N1—C12—C11179.3 (4)
N2—Cd1—O1—C1382.0 (2)Cd1—N1—C12—C110.0 (5)
O1i—Cd1—O1—C130.0C3—C4—C12—N10.7 (7)
N1i—Cd1—N1—C187.6 (4)C5—C4—C12—N1177.5 (5)
N2i—Cd1—N1—C111.5 (4)C3—C4—C12—C11179.8 (4)
N2—Cd1—N1—C1179.7 (4)C5—C4—C12—C111.7 (7)
O1—Cd1—N1—C179.5 (4)N2—C11—C12—N10.9 (6)
O1i—Cd1—N1—C1114.1 (4)C7—C11—C12—N1177.6 (4)
C13—Cd1—N1—C192.4 (4)N2—C11—C12—C4179.9 (4)
N1i—Cd1—N1—C1293.3 (3)C7—C11—C12—C41.6 (6)
N2i—Cd1—N1—C12169.3 (3)Cd1—O1—C13—O1i0.0
N2—Cd1—N1—C120.5 (3)Cd1—O1—C13—C14180.0
O1—Cd1—N1—C1299.7 (3)N1i—Cd1—C13—O1i28.7 (2)
O1i—Cd1—N1—C1265.1 (4)N1—Cd1—C13—O1i151.3 (2)
C13—Cd1—N1—C1286.7 (3)N2i—Cd1—C13—O1i102.3 (2)
N1i—Cd1—N2—C1065.9 (5)N2—Cd1—C13—O1i77.7 (2)
N1—Cd1—N2—C10176.3 (5)O1—Cd1—C13—O1i180.0
N2i—Cd1—N2—C10123.5 (4)N1i—Cd1—C13—O1151.3 (2)
O1—Cd1—N2—C1084.0 (4)N1—Cd1—C13—O128.7 (2)
O1i—Cd1—N2—C1029.6 (4)N2i—Cd1—C13—O177.7 (2)
C13—Cd1—N2—C1056.5 (4)N2—Cd1—C13—O1102.3 (2)
N1i—Cd1—N2—C11118.8 (3)O1i—Cd1—C13—O1180.0
N1—Cd1—N2—C111.0 (3)O3ii—O4—Cl1—O4ii80.3 (7)
N2i—Cd1—N2—C1161.3 (3)O2ii—O4—Cl1—O4ii83.8 (6)
O1—Cd1—N2—C1191.2 (3)O3ii—O4—Cl1—O3138.4 (12)
O1i—Cd1—N2—C11145.7 (3)O2ii—O4—Cl1—O325.7 (10)
C13—Cd1—N2—C11118.7 (3)O2ii—O4—Cl1—O3ii164.2 (12)
C12—N1—C1—C21.2 (8)O3ii—O4—Cl1—O2ii164.2 (12)
Cd1—N1—C1—C2179.7 (5)O3ii—O4—Cl1—O217.1 (12)
N1—C1—C2—C31.9 (10)O2ii—O4—Cl1—O2147.1 (9)
C1—C2—C3—C41.2 (10)O3ii—O4—Cl1—O599.7 (7)
C2—C3—C4—C120.0 (9)O2ii—O4—Cl1—O596.2 (6)
C2—C3—C4—C5178.1 (6)O2ii—O3—Cl1—O4ii161.4 (12)
C3—C4—C5—C6180.0 (6)O4ii—O3—Cl1—O4136.3 (12)
C12—C4—C5—C62.0 (9)O2ii—O3—Cl1—O425.0 (10)
C4—C5—C6—C72.1 (10)O4ii—O3—Cl1—O3ii78.7 (8)
C5—C6—C7—C112.0 (9)O2ii—O3—Cl1—O3ii82.7 (6)
C5—C6—C7—C8177.8 (6)O4ii—O3—Cl1—O2ii161.4 (12)
C11—C7—C8—C90.6 (8)O4ii—O3—Cl1—O214.0 (11)
C6—C7—C8—C9179.2 (6)O2ii—O3—Cl1—O2147.4 (9)
C7—C8—C9—C100.4 (10)O4ii—O3—Cl1—O5101.3 (8)
C11—N2—C10—C91.6 (8)O2ii—O3—Cl1—O597.3 (6)
Cd1—N2—C10—C9176.7 (4)O3ii—O2—Cl1—O4ii152.0 (10)
C8—C9—C10—N20.7 (10)O4ii—O2—Cl1—O4136.2 (12)
C10—N2—C11—C71.4 (7)O3ii—O2—Cl1—O415.9 (11)
Cd1—N2—C11—C7177.1 (3)O4ii—O2—Cl1—O313.4 (11)
C10—N2—C11—C12177.1 (4)O3ii—O2—Cl1—O3138.7 (11)
Cd1—N2—C11—C121.3 (5)O4ii—O2—Cl1—O3ii152.0 (10)
C8—C7—C11—N20.3 (7)O4ii—O2—Cl1—O2ii75.7 (7)
C6—C7—C11—N2179.9 (5)O3ii—O2—Cl1—O2ii76.3 (6)
C8—C7—C11—C12178.1 (5)O4ii—O2—Cl1—O5104.3 (7)
C6—C7—C11—C121.7 (7)O3ii—O2—Cl1—O5103.7 (6)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O5iii0.84 (2)2.34 (3)3.165 (6)168 (10)
O1W—H1WA···O2iv0.84 (2)2.58 (8)3.230 (13)135 (9)
O1W—H1WB···O1v0.86 (2)1.93 (6)2.713 (6)152 (10)
Symmetry codes: (iii) x, y1, z; (iv) x+1, y1, z+1/2; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cd(C2H4O2)(C12H8N2)2]ClO4·2H2O
Mr667.33
Crystal system, space groupMonoclinic, P2/c
Temperature (K)298
a, b, c (Å)9.887 (4), 8.177 (4), 17.791 (7)
β (°) 108.612 (19)
V3)1363.1 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.32 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8986, 3118, 2584
Rint0.058
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.155, 1.05
No. of reflections3118
No. of parameters204
No. of restraints64
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.27, 0.59

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXTL (Bruker, 2000), SHELXTL.

Selected bond lengths (Å) top
Cd1—N12.308 (4)Cd1—O12.341 (4)
Cd1—N22.327 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O5i0.84 (2)2.34 (3)3.165 (6)168 (10)
O1W—H1WA···O2ii0.84 (2)2.58 (8)3.230 (13)135 (9)
O1W—H1WB···O1iii0.86 (2)1.93 (6)2.713 (6)152 (10)
Symmetry codes: (i) x, y1, z; (ii) x+1, y1, z+1/2; (iii) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds