Download citation
Download citation
link to html
The title compound, (H2ABOB)2(HABOB)2[TeVIMoVI6O24]·4H2O, consists of an Anderson-type heteropolyanion, [TeVIMoVI6O24]6-, two monoprotonated ABOB cations, two diprotonated ABOB cations and four water mol­ecules (ABOB = N-amidino-4-morpholincarboxamidine). The hetero­polyanion [TeVIMoVI6O24]6- is located on an inversion center. Electrostatic forces and hydrogen-bonding inter­actions among the [TeVIMoVI6O24]6-anions, the water mol­ecules and the ABOB cations result in a three-dimensional supra­molecular structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807023525/ng2263sup1.cif
Contains datablocks I, New_Global_Publ_Block

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807023525/ng2263Isup2.hkl
Contains datablock I

CCDC reference: 650701

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.025
  • wR factor = 0.056
  • Data-to-parameter ratio = 13.0

checkCIF/PLATON results

No syntax errors found



Datablock: I


Alert level B PLAT432_ALERT_2_B Short Inter X...Y Contact O4 .. C8 .. 2.90 Ang.
Alert level C PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Te1 - Mo1 .. 5.96 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Te1 - Mo3 .. 7.14 su PLAT414_ALERT_2_C Short Intra D-H..H-X H9A .. H17 .. 1.94 Ang. PLAT420_ALERT_2_C D-H Without Acceptor N6 - H12 ... ? PLAT432_ALERT_2_C Short Inter X...Y Contact O9 .. C11 .. 2.94 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H2 .. O12 .. 2.61 Ang.
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Te1 (6) 5.86 PLAT794_ALERT_5_G Check Predicted Bond Valency for Mo1 (6) 5.94 PLAT794_ALERT_5_G Check Predicted Bond Valency for Mo2 (6) 5.98 PLAT794_ALERT_5_G Check Predicted Bond Valency for Mo3 (6) 5.99
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 4 ALERT type 5 Informative message, check

Comment top

N-Amidino-4-morpholincarboxamidine (ABOB) is an effective broad-spectrum antiviral medicine to influenza, chickenpox and measles. In our chemical studies (Chen et al., 2007; Li et al., 2005; Liu et al., 2004), we found it is a versatile ligand capable of interacting with different types of polyanions. As a part of our ongoing work, we have investigated the reaction of ABOB and the Anderson type [TeVIMoVI6O24]6- polyanion to give a compound formulated as (H2ABOB)2(HABOB)2[TeVIMoVI6O24].4H2O (I).

The compound consists of [TeVIMoVI6O24]6-, protonated ABOB, and lattice water molecules. The three-dimensional supramolecular structure is formed by electrostatic forces and hydrogen bonding interactions among these components (Fig. 1). The [TeVIMoVI6O24]6- anion lies on an inversion center and is close to having D3 d symmetry. It is made up of six MoO6 octahedra surrounding one TeO6 octahedron by entirely edge-shared contacts; bond lengths and angles are in accordance with those of reported examples (Drewes et al., 2004; Gao et al., 2006) The diprotonated ABOB acquires two protons with its two imine groups (N2, N4). The monoprotonated ABOB acquires two protons with two imine groups (N6, N9) as well but loses one proton on the third imine groups (N8). Electrostatic forces and hydrogen bonding interactions result in a three-dimensional supramolecular structure (Figure 2, Figure 3). The hydrogen-bond donors are the protonated imines groups and water molecules whereas the acceptors are mostly the O atoms of the Anderson type polyanion.

Related literature top

Similar structures have been reported, see: Chen et al. (2007); Li et al. (2005); Liu et al. (2004); Drewes et al. (2004); Gao et al. (2006). For the synthesis of the [Te^VI^Mo^VI^~6Õ~24~]^6-^ polyanion see Saito (1994).

Experimental top

A mixture of Na6[TeVIMoVI6O24]6-.22H2O (0.32 g, 0.2 mmol) (Saito, 1994)) and ABOB (0.21 g, 1.2 mmol) in water (30 ml) treated with dilute hydrochloric acid to pH 5–6. The solution was stirred for 2 h. It was then filtered; the filtrate was set aside for the formation of crystals after two weeks; yield 65% based on Te.

Refinement top

The H atoms on water molecules, amine, and protonated imine groups were located in a difference Fourier map, and refined with distance restraints of with O–H = 0.85 Å, N–H = 0.90 Å and Uiso(H) = 1.2 Ueq(O,N). Those on C atoms are placed in calculated positions and refined in the riding model approximation with C–H = 0.97 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

N-Amidino-4-morpholincarboxamidine (ABOB) is an effective broad-spectrum antiviral medicine to influenza, chickenpox and measles. In our chemical studies (Chen et al., 2007; Li et al., 2005; Liu et al., 2004), we found it is a versatile ligand capable of interacting with different types of polyanions. As a part of our ongoing work, we have investigated the reaction of ABOB and the Anderson type [TeVIMoVI6O24]6- polyanion to give a compound formulated as (H2ABOB)2(HABOB)2[TeVIMoVI6O24].4H2O (I).

The compound consists of [TeVIMoVI6O24]6-, protonated ABOB, and lattice water molecules. The three-dimensional supramolecular structure is formed by electrostatic forces and hydrogen bonding interactions among these components (Fig. 1). The [TeVIMoVI6O24]6- anion lies on an inversion center and is close to having D3 d symmetry. It is made up of six MoO6 octahedra surrounding one TeO6 octahedron by entirely edge-shared contacts; bond lengths and angles are in accordance with those of reported examples (Drewes et al., 2004; Gao et al., 2006) The diprotonated ABOB acquires two protons with its two imine groups (N2, N4). The monoprotonated ABOB acquires two protons with two imine groups (N6, N9) as well but loses one proton on the third imine groups (N8). Electrostatic forces and hydrogen bonding interactions result in a three-dimensional supramolecular structure (Figure 2, Figure 3). The hydrogen-bond donors are the protonated imines groups and water molecules whereas the acceptors are mostly the O atoms of the Anderson type polyanion.

Similar structures have been reported, see: Chen et al. (2007); Li et al. (2005); Liu et al. (2004); Drewes et al. (2004); Gao et al. (2006). For the synthesis of the [Te^VI^Mo^VI^~6Õ~24~]^6-^ polyanion see Saito (1994).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. ORTEP view of (I) with displacement ellipsoids drawn at 50% probability level. [Symmetry code: (i) 2 - x, 2 - y, -z.]
[Figure 2] Fig. 2. Hydrogen bonds (yellow dotted line) around a polyanion which is represented as polyhedra.
[Figure 3] Fig. 3. The crystal packing in a unit cell, with hydrogen bonds showed as yellow dotted line and polyanions represented as polyhedra.
Bis(amino{[iminio(morpholino)methyl]amino}iminium) bis(amino{[imino(morpholino)methyl]amino}iminium) tetracosaoxidotellurohexamolybdate(6-) tetrahydrate top
Crystal data top
(C6H15N5O)2(C6H14N5O)2[TeMo6O24].4H2OF(000) = 1820
Mr = 1850.21Dx = 2.205 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 875 reflections
a = 15.722 (3) Åθ = 3.1–25.0°
b = 9.2364 (18) ŵ = 1.93 mm1
c = 19.256 (4) ÅT = 298 K
β = 94.67 (3)°Block, white
V = 2787.0 (10) Å30.24 × 0.24 × 0.22 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4883 independent reflections
Radiation source: fine-focus sealed tube4465 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = 1818
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1010
Tmin = 0.643, Tmax = 0.657l = 2222
20771 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0189P)2 + 3.249P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.002
4883 reflectionsΔρmax = 0.63 e Å3
377 parametersΔρmin = 0.86 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00488 (13)
Crystal data top
(C6H15N5O)2(C6H14N5O)2[TeMo6O24].4H2OV = 2787.0 (10) Å3
Mr = 1850.21Z = 2
Monoclinic, P21/nMo Kα radiation
a = 15.722 (3) ŵ = 1.93 mm1
b = 9.2364 (18) ÅT = 298 K
c = 19.256 (4) Å0.24 × 0.24 × 0.22 mm
β = 94.67 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4883 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4465 reflections with I > 2σ(I)
Tmin = 0.643, Tmax = 0.657Rint = 0.030
20771 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.09Δρmax = 0.63 e Å3
4883 reflectionsΔρmin = 0.86 e Å3
377 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te11.00001.00000.00000.01336 (7)
Mo10.840705 (14)0.97463 (2)0.121498 (12)0.01725 (8)
Mo20.962462 (15)1.03579 (3)0.163987 (12)0.01902 (8)
Mo30.804183 (14)1.00883 (2)0.045455 (12)0.01829 (8)
O11.06718 (11)0.87503 (19)0.05424 (9)0.0177 (4)
O20.89805 (11)0.88611 (19)0.01551 (9)0.0166 (4)
O30.96442 (11)1.09343 (19)0.08720 (9)0.0176 (4)
O40.91282 (14)1.1756 (2)0.20215 (11)0.0333 (5)
O50.92935 (12)0.8616 (2)0.15719 (9)0.0212 (4)
O60.75632 (13)1.1543 (2)0.08024 (11)0.0330 (5)
O70.76252 (12)0.8424 (2)0.12693 (11)0.0276 (5)
O80.72660 (13)0.8813 (2)0.02944 (11)0.0323 (5)
O90.99343 (13)0.9194 (2)0.22975 (10)0.0296 (5)
O100.79802 (11)1.09461 (19)0.04971 (9)0.0192 (4)
O110.81680 (13)1.0896 (2)0.18973 (10)0.0293 (5)
O120.86502 (12)0.9258 (2)0.12556 (9)0.0219 (4)
O130.51701 (15)0.1569 (3)0.10142 (15)0.0582 (8)
O140.70371 (14)1.0881 (2)0.31912 (13)0.0397 (6)
O1W0.96255 (14)0.6375 (2)0.11550 (12)0.0370 (5)
H10.98890.71410.10550.044*
H20.91400.65560.13010.044*
O2W1.07989 (17)0.4426 (3)0.18435 (15)0.0540 (7)
H31.06760.36070.16610.065*
H41.04340.49790.16290.065*
N10.83492 (18)0.6090 (3)0.03895 (14)0.0344 (6)
H50.87120.67050.01550.041*
H60.79790.63760.07440.041*
N20.90623 (15)0.4192 (3)0.01555 (13)0.0282 (6)
H70.93530.48230.04410.034*
H80.91360.32370.02320.034*
N30.79856 (16)0.3705 (3)0.06762 (13)0.0277 (6)
H90.80080.27760.05340.033*
N40.75224 (18)0.4803 (3)0.17227 (14)0.0354 (6)
H100.80710.50250.17740.042*
H110.71130.50170.20610.042*
N50.65933 (16)0.3408 (3)0.11197 (13)0.0300 (6)
N61.0938 (2)0.7734 (4)0.45693 (18)0.0577 (9)
H121.06690.78430.49610.069*
H131.14690.73630.46070.069*
N71.08581 (17)0.7464 (3)0.33860 (16)0.0453 (8)
H141.13800.70590.34250.054*
H151.06420.76750.29500.054*
N80.96948 (16)0.8341 (3)0.39610 (14)0.0358 (6)
N90.90343 (17)0.6720 (3)0.31506 (16)0.0418 (7)
H160.94320.60510.32790.050*
H170.86570.65750.27800.050*
N100.84324 (15)0.8936 (3)0.33528 (13)0.0263 (5)
C10.5878 (2)0.1522 (4)0.05053 (19)0.0438 (9)
H1A0.62830.07990.06370.053*
H1B0.56840.12460.00580.053*
C20.5475 (2)0.1889 (5)0.1672 (2)0.0537 (10)
H2A0.49980.18790.20260.064*
H2B0.58720.11400.17880.064*
C30.5913 (2)0.3336 (4)0.16842 (18)0.0416 (8)
H3A0.61510.34700.21290.050*
H3B0.55020.41030.16290.050*
C40.6308 (2)0.2974 (4)0.04428 (17)0.0381 (8)
H4A0.59120.36890.02880.046*
H4B0.67940.29250.00990.046*
C50.7344 (2)0.4006 (3)0.11897 (15)0.0263 (6)
C60.84770 (18)0.4686 (3)0.03086 (15)0.0228 (6)
C70.7724 (2)1.1139 (4)0.3706 (2)0.0452 (9)
H7A0.75751.07540.41490.054*
H7B0.78061.21750.37610.054*
C80.6910 (2)0.9357 (3)0.31187 (19)0.0371 (8)
H8A0.64230.91780.27880.045*
H8B0.67840.89540.35640.045*
C90.76780 (19)0.8614 (4)0.28752 (17)0.0320 (7)
H9A0.75820.75770.28580.038*
H9B0.77740.89420.24090.038*
C100.8540 (2)1.0472 (4)0.35268 (18)0.0367 (8)
H10A0.87461.09800.31330.044*
H10B0.89641.05730.39190.044*
C110.90742 (19)0.8001 (3)0.34730 (16)0.0288 (7)
C121.0479 (2)0.7821 (4)0.39541 (19)0.0372 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.01484 (13)0.01183 (12)0.01295 (13)0.00084 (8)0.00163 (9)0.00035 (9)
Mo10.01854 (13)0.01554 (13)0.01677 (13)0.00164 (9)0.00401 (9)0.00015 (9)
Mo20.02178 (14)0.02072 (14)0.01437 (13)0.00030 (9)0.00025 (9)0.00023 (9)
Mo30.01674 (13)0.01865 (13)0.01923 (13)0.00111 (9)0.00005 (9)0.00082 (9)
O10.0194 (9)0.0156 (9)0.0179 (9)0.0014 (7)0.0009 (7)0.0018 (8)
O20.0170 (9)0.0144 (9)0.0179 (9)0.0031 (7)0.0019 (7)0.0007 (7)
O30.0196 (9)0.0168 (9)0.0157 (9)0.0010 (7)0.0036 (7)0.0028 (8)
O40.0345 (12)0.0342 (12)0.0315 (11)0.0043 (9)0.0054 (9)0.0070 (10)
O50.0244 (10)0.0188 (9)0.0201 (9)0.0027 (8)0.0005 (8)0.0035 (8)
O60.0318 (12)0.0371 (12)0.0298 (11)0.0105 (9)0.0017 (9)0.0031 (10)
O70.0233 (10)0.0250 (10)0.0334 (11)0.0050 (8)0.0051 (9)0.0030 (9)
O80.0286 (12)0.0341 (12)0.0329 (11)0.0120 (9)0.0046 (9)0.0071 (10)
O90.0335 (12)0.0330 (12)0.0216 (10)0.0047 (9)0.0028 (9)0.0083 (9)
O100.0194 (10)0.0149 (9)0.0226 (9)0.0018 (7)0.0021 (7)0.0017 (8)
O110.0361 (12)0.0257 (11)0.0245 (11)0.0008 (9)0.0077 (9)0.0050 (9)
O120.0221 (10)0.0234 (10)0.0202 (10)0.0035 (8)0.0014 (8)0.0042 (8)
O130.0313 (14)0.076 (2)0.0657 (18)0.0082 (13)0.0048 (12)0.0279 (16)
O140.0301 (12)0.0254 (11)0.0622 (16)0.0041 (9)0.0047 (11)0.0019 (11)
O1W0.0405 (13)0.0229 (11)0.0482 (14)0.0051 (9)0.0074 (11)0.0027 (11)
O2W0.0557 (17)0.0388 (14)0.0658 (18)0.0077 (12)0.0047 (14)0.0036 (14)
N10.0478 (17)0.0171 (12)0.0358 (15)0.0010 (11)0.0125 (12)0.0008 (11)
N20.0320 (14)0.0203 (12)0.0307 (14)0.0021 (10)0.0074 (11)0.0000 (11)
N30.0379 (15)0.0123 (11)0.0306 (13)0.0008 (10)0.0105 (11)0.0038 (10)
N40.0389 (16)0.0341 (15)0.0312 (15)0.0047 (12)0.0085 (12)0.0095 (12)
N50.0314 (14)0.0328 (14)0.0249 (13)0.0016 (11)0.0042 (11)0.0049 (11)
N60.0385 (18)0.078 (2)0.053 (2)0.0157 (17)0.0173 (15)0.0055 (19)
N70.0240 (15)0.060 (2)0.0519 (19)0.0129 (13)0.0017 (13)0.0115 (16)
N80.0272 (14)0.0463 (17)0.0325 (14)0.0086 (12)0.0049 (11)0.0024 (13)
N90.0308 (15)0.0335 (15)0.0598 (19)0.0085 (12)0.0045 (14)0.0079 (14)
N100.0199 (12)0.0285 (13)0.0299 (13)0.0014 (10)0.0011 (10)0.0025 (11)
C10.0363 (19)0.052 (2)0.043 (2)0.0019 (16)0.0027 (16)0.0171 (18)
C20.041 (2)0.068 (3)0.049 (2)0.0111 (19)0.0164 (17)0.012 (2)
C30.0325 (18)0.055 (2)0.0356 (18)0.0014 (16)0.0110 (14)0.0133 (17)
C40.0416 (19)0.046 (2)0.0274 (17)0.0097 (15)0.0064 (14)0.0049 (16)
C50.0373 (17)0.0163 (14)0.0239 (15)0.0037 (12)0.0062 (12)0.0000 (12)
C60.0293 (15)0.0156 (13)0.0237 (14)0.0022 (11)0.0028 (12)0.0002 (12)
C70.044 (2)0.0358 (19)0.056 (2)0.0023 (16)0.0007 (17)0.0128 (18)
C80.0277 (17)0.0307 (17)0.052 (2)0.0008 (13)0.0016 (15)0.0033 (16)
C90.0257 (16)0.0342 (17)0.0352 (17)0.0002 (13)0.0037 (13)0.0047 (15)
C100.0341 (18)0.0343 (18)0.0407 (19)0.0018 (14)0.0024 (14)0.0083 (15)
C110.0226 (15)0.0345 (17)0.0295 (16)0.0014 (12)0.0040 (12)0.0045 (14)
C120.0279 (17)0.0330 (17)0.049 (2)0.0014 (14)0.0065 (15)0.0101 (16)
Geometric parameters (Å, º) top
Te1—O21.9202 (17)N3—C51.382 (4)
Te1—O2i1.9202 (17)N3—H90.9000
Te1—O11.9283 (17)N4—C51.312 (4)
Te1—O1i1.9283 (17)N4—H100.8998
Te1—O31.9298 (17)N4—H110.9000
Te1—O3i1.9298 (17)N5—C51.320 (4)
Mo1—O111.7075 (19)N5—C31.464 (4)
Mo1—O71.7298 (19)N5—C41.468 (4)
Mo1—O51.9131 (19)N6—C121.339 (4)
Mo1—O101.9339 (18)N6—H120.9001
Mo1—O32.2834 (18)N6—H130.9000
Mo1—O22.3123 (18)N7—C121.329 (4)
Mo2—O91.702 (2)N7—H140.9001
Mo2—O41.706 (2)N7—H150.9001
Mo2—O121.9343 (19)N8—C121.324 (4)
Mo2—O5i1.9606 (19)N8—C111.336 (4)
Mo2—O1i2.2806 (18)N9—C111.335 (4)
Mo2—O3i2.2823 (18)N9—H160.8999
Mo3—O61.704 (2)N9—H170.9000
Mo3—O81.706 (2)N10—C111.334 (4)
Mo3—O121.9084 (19)N10—C101.464 (4)
Mo3—O101.9916 (18)N10—C91.471 (4)
Mo3—O22.2634 (18)C1—C41.503 (5)
Mo3—O1i2.2835 (18)C1—H1A0.9700
O1—Mo2i2.2806 (18)C1—H1B0.9700
O1—Mo3i2.2835 (18)C2—C31.504 (5)
O3—Mo2i2.2823 (18)C2—H2A0.9700
O5—Mo2i1.9606 (18)C2—H2B0.9700
O13—C21.422 (5)C3—H3A0.9700
O13—C11.422 (4)C3—H3B0.9700
O14—C71.426 (4)C4—H4A0.9700
O14—C81.427 (4)C4—H4B0.9700
O1W—H10.8500C7—C101.488 (5)
O1W—H20.8500C7—H7A0.9700
O2W—H30.8499C7—H7B0.9700
O2W—H40.8500C8—C91.497 (4)
N1—C61.319 (4)C8—H8A0.9700
N1—H50.8999C8—H8B0.9700
N1—H60.9001C9—H9A0.9700
N2—C61.311 (4)C9—H9B0.9700
N2—H70.9001C10—H10A0.9700
N2—H80.9000C10—H10B0.9700
N3—C61.353 (4)
O2—Te1—O2i180.0C6—N3—C5126.3 (2)
O2—Te1—O194.30 (8)C6—N3—H9118.2
O2i—Te1—O185.70 (8)C5—N3—H9114.6
O2—Te1—O1i85.70 (8)C5—N4—H10118.8
O2i—Te1—O1i94.30 (8)C5—N4—H11120.2
O1—Te1—O1i180.00 (8)H10—N4—H11120.5
O2—Te1—O386.01 (8)C5—N5—C3123.3 (3)
O2i—Te1—O393.99 (8)C5—N5—C4123.1 (3)
O1—Te1—O385.94 (8)C3—N5—C4112.9 (3)
O1i—Te1—O394.06 (8)C12—N6—H12118.6
O2—Te1—O3i93.99 (8)C12—N6—H13121.6
O2i—Te1—O3i86.01 (8)H12—N6—H13118.1
O1—Te1—O3i94.06 (8)C12—N7—H14120.1
O1i—Te1—O3i85.94 (8)C12—N7—H15123.6
O3—Te1—O3i180.00 (10)H14—N7—H15116.1
O11—Mo1—O7106.37 (10)C12—N8—C11122.3 (3)
O11—Mo1—O5100.61 (9)C11—N9—H16118.4
O7—Mo1—O597.36 (9)C11—N9—H17120.3
O11—Mo1—O1097.24 (9)H16—N9—H17120.9
O7—Mo1—O1099.29 (9)C11—N10—C10121.1 (3)
O5—Mo1—O10151.01 (8)C11—N10—C9122.5 (3)
O11—Mo1—O393.01 (9)C10—N10—C9114.3 (2)
O7—Mo1—O3160.24 (8)O13—C1—C4110.4 (3)
O5—Mo1—O374.79 (7)O13—C1—H1A109.6
O10—Mo1—O381.66 (7)C4—C1—H1A109.6
O11—Mo1—O2160.86 (8)O13—C1—H1B109.6
O7—Mo1—O291.60 (8)C4—C1—H1B109.6
O5—Mo1—O283.17 (7)H1A—C1—H1B108.1
O10—Mo1—O272.83 (7)O13—C2—C3112.7 (3)
O3—Mo1—O269.69 (6)O13—C2—H2A109.1
O9—Mo2—O4105.72 (10)C3—C2—H2A109.1
O9—Mo2—O1297.04 (9)O13—C2—H2B109.1
O4—Mo2—O12100.74 (9)C3—C2—H2B109.1
O9—Mo2—O5i99.08 (9)H2A—C2—H2B107.8
O4—Mo2—O5i95.33 (9)N5—C3—C2109.7 (3)
O12—Mo2—O5i153.20 (8)N5—C3—H3A109.7
O9—Mo2—O1i160.41 (8)C2—C3—H3A109.7
O4—Mo2—O1i93.42 (9)N5—C3—H3B109.7
O12—Mo2—O1i74.90 (7)C2—C3—H3B109.7
O5i—Mo2—O1i82.91 (7)H3A—C3—H3B108.2
O9—Mo2—O3i91.31 (9)N5—C4—C1109.9 (3)
O4—Mo2—O3i161.30 (9)N5—C4—H4A109.7
O12—Mo2—O3i84.42 (7)C1—C4—H4A109.7
O5i—Mo2—O3i73.98 (7)N5—C4—H4B109.7
O1i—Mo2—O3i70.38 (6)C1—C4—H4B109.7
O6—Mo3—O8106.47 (11)H4A—C4—H4B108.2
O6—Mo3—O12101.97 (9)N4—C5—N5124.4 (3)
O8—Mo3—O1299.94 (9)N4—C5—N3118.8 (3)
O6—Mo3—O1093.33 (9)N5—C5—N3116.7 (3)
O8—Mo3—O1097.35 (9)N2—C6—N1121.0 (3)
O12—Mo3—O10152.52 (8)N2—C6—N3117.5 (3)
O6—Mo3—O2157.88 (9)N1—C6—N3121.4 (3)
O8—Mo3—O292.71 (9)O14—C7—C10112.8 (3)
O12—Mo3—O285.01 (7)O14—C7—H7A109.0
O10—Mo3—O272.96 (7)C10—C7—H7A109.0
O6—Mo3—O1i90.99 (9)O14—C7—H7B109.0
O8—Mo3—O1i162.53 (9)C10—C7—H7B109.0
O12—Mo3—O1i75.30 (7)H7A—C7—H7B107.8
O10—Mo3—O1i81.82 (7)O14—C8—C9111.9 (3)
O2—Mo3—O1i70.29 (6)O14—C8—H8A109.2
Te1—O1—Mo2i101.89 (8)C9—C8—H8A109.2
Te1—O1—Mo3i101.51 (8)O14—C8—H8B109.2
Mo2i—O1—Mo3i90.68 (7)C9—C8—H8B109.2
Te1—O2—Mo3102.49 (8)H8A—C8—H8B107.9
Te1—O2—Mo1101.78 (8)N10—C9—C8110.0 (3)
Mo3—O2—Mo193.26 (7)N10—C9—H9A109.7
Te1—O3—Mo2i101.78 (8)C8—C9—H9A109.7
Te1—O3—Mo1102.51 (8)N10—C9—H9B109.7
Mo2i—O3—Mo191.35 (6)C8—C9—H9B109.7
Mo1—O5—Mo2i114.94 (9)H9A—C9—H9B108.2
Mo1—O10—Mo3115.85 (9)N10—C10—C7111.7 (3)
Mo3—O12—Mo2115.31 (9)N10—C10—H10A109.3
C2—O13—C1108.6 (3)C7—C10—H10A109.3
C7—O14—C8109.0 (2)N10—C10—H10B109.3
H1—O1W—H2112.3C7—C10—H10B109.3
H3—O2W—H4102.2H10A—C10—H10B107.9
C6—N1—H5118.5N10—C11—N9119.1 (3)
C6—N1—H6117.5N10—C11—N8118.0 (3)
H5—N1—H6122.6N9—C11—N8122.6 (3)
C6—N2—H7119.0N8—C12—N7125.3 (3)
C6—N2—H8121.8N8—C12—N6116.6 (3)
H7—N2—H8118.8N7—C12—N6117.9 (3)
O2—Te1—O1—Mo2i86.08 (8)O10—Mo1—O5—Mo2i56.2 (2)
O2i—Te1—O1—Mo2i93.92 (8)O3—Mo1—O5—Mo2i19.37 (8)
O3—Te1—O1—Mo2i0.40 (7)O2—Mo1—O5—Mo2i90.12 (10)
O3i—Te1—O1—Mo2i179.60 (7)O11—Mo1—O10—Mo3177.24 (10)
O2—Te1—O1—Mo3i179.25 (7)O7—Mo1—O10—Mo369.26 (11)
O2i—Te1—O1—Mo3i0.75 (7)O5—Mo1—O10—Mo355.0 (2)
O3—Te1—O1—Mo3i93.57 (8)O3—Mo1—O10—Mo390.76 (10)
O3i—Te1—O1—Mo3i86.43 (8)O2—Mo1—O10—Mo319.54 (8)
O1—Te1—O2—Mo3179.24 (7)O6—Mo3—O10—Mo1177.72 (11)
O1i—Te1—O2—Mo30.76 (7)O8—Mo3—O10—Mo170.63 (12)
O3—Te1—O2—Mo395.14 (8)O12—Mo3—O10—Mo158.1 (2)
O3i—Te1—O2—Mo384.86 (8)O2—Mo3—O10—Mo119.96 (8)
O1—Te1—O2—Mo184.69 (8)O1i—Mo3—O10—Mo191.76 (10)
O1i—Te1—O2—Mo195.31 (8)O6—Mo3—O12—Mo270.74 (12)
O3—Te1—O2—Mo10.92 (7)O8—Mo3—O12—Mo2179.91 (11)
O3i—Te1—O2—Mo1179.08 (7)O10—Mo3—O12—Mo251.7 (2)
O6—Mo3—O2—Te134.3 (3)O2—Mo3—O12—Mo288.02 (10)
O8—Mo3—O2—Te1175.22 (9)O1i—Mo3—O12—Mo217.12 (9)
O12—Mo3—O2—Te175.47 (8)O9—Mo2—O12—Mo3178.97 (11)
O10—Mo3—O2—Te187.92 (9)O4—Mo2—O12—Mo373.50 (12)
O1i—Mo3—O2—Te10.68 (6)O5i—Mo2—O12—Mo352.3 (2)
O6—Mo3—O2—Mo168.6 (2)O1i—Mo2—O12—Mo317.17 (9)
O8—Mo3—O2—Mo181.95 (9)O3i—Mo2—O12—Mo388.33 (10)
O12—Mo3—O2—Mo1178.30 (7)C2—O13—C1—C462.7 (4)
O10—Mo3—O2—Mo114.91 (6)C1—O13—C2—C361.4 (4)
O1i—Mo3—O2—Mo1102.15 (7)C5—N5—C3—C2140.0 (3)
O11—Mo1—O2—Te127.3 (3)C4—N5—C3—C249.8 (4)
O7—Mo1—O2—Te1172.66 (9)O13—C2—C3—N554.6 (4)
O5—Mo1—O2—Te175.44 (8)C5—N5—C4—C1137.4 (3)
O10—Mo1—O2—Te188.10 (9)C3—N5—C4—C152.3 (4)
O3—Mo1—O2—Te10.83 (6)O13—C1—C4—N558.5 (4)
O11—Mo1—O2—Mo376.2 (3)C3—N5—C5—N411.6 (5)
O7—Mo1—O2—Mo383.85 (8)C4—N5—C5—N4157.6 (3)
O5—Mo1—O2—Mo3178.93 (7)C3—N5—C5—N3165.4 (3)
O10—Mo1—O2—Mo315.38 (6)C4—N5—C5—N325.3 (4)
O3—Mo1—O2—Mo3102.65 (7)C6—N3—C5—N455.3 (4)
O2—Te1—O3—Mo2i95.00 (8)C6—N3—C5—N5127.5 (3)
O2i—Te1—O3—Mo2i85.00 (8)C5—N3—C6—N2179.4 (3)
O1—Te1—O3—Mo2i0.40 (7)C5—N3—C6—N13.6 (5)
O1i—Te1—O3—Mo2i179.60 (7)C8—O14—C7—C1059.6 (4)
O2—Te1—O3—Mo10.94 (7)C7—O14—C8—C962.0 (4)
O2i—Te1—O3—Mo1179.06 (7)C11—N10—C9—C8148.7 (3)
O1—Te1—O3—Mo193.67 (8)C10—N10—C9—C847.8 (4)
O1i—Te1—O3—Mo186.33 (8)O14—C8—C9—N1056.0 (4)
O11—Mo1—O3—Te1172.42 (9)C11—N10—C10—C7150.2 (3)
O7—Mo1—O3—Te118.7 (3)C9—N10—C10—C746.0 (4)
O5—Mo1—O3—Te187.41 (9)O14—C7—C10—N1051.7 (4)
O10—Mo1—O3—Te175.53 (8)C10—N10—C11—N9162.6 (3)
O2—Mo1—O3—Te10.83 (6)C9—N10—C11—N90.1 (4)
O11—Mo1—O3—Mo2i85.20 (9)C10—N10—C11—N823.3 (4)
O7—Mo1—O3—Mo2i83.6 (2)C9—N10—C11—N8174.2 (3)
O5—Mo1—O3—Mo2i14.98 (7)C12—N8—C11—N10154.6 (3)
O10—Mo1—O3—Mo2i177.91 (7)C12—N8—C11—N931.6 (5)
O2—Mo1—O3—Mo2i103.21 (7)C11—N8—C12—N730.2 (5)
O11—Mo1—O5—Mo2i70.89 (11)C11—N8—C12—N6154.1 (3)
O7—Mo1—O5—Mo2i179.14 (10)
Symmetry code: (i) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H6···O70.902.202.916 (3)137
N1—H5···O20.902.042.769 (3)138
N2—H8···O1ii0.901.952.840 (3)172
N2—H7···O1W0.902.012.877 (3)162
N3—H9···O10iii0.901.692.571 (3)165
N4—H11···O11iv0.902.182.965 (3)146
N4—H10···O2Wii0.901.862.762 (4)177
N9—H17···O14v0.902.183.067 (4)167
N7—H15···O90.902.142.925 (4)146
N7—H14···O7vi0.902.052.921 (3)164
N6—H13···O8vi0.902.062.806 (4)140
O1W—H1···O3i0.851.972.810 (3)172
O1W—H2···O120.852.613.087 (3)117
O1W—H2···O14v0.852.253.027 (3)152
O2W—H3···O5ii0.852.062.860 (3)156
O2W—H4···O1W0.851.982.829 (4)176
Symmetry codes: (i) x+2, y+2, z; (ii) x+2, y+1, z; (iii) x, y1, z; (iv) x+3/2, y1/2, z1/2; (v) x+3/2, y1/2, z+1/2; (vi) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C6H15N5O)2(C6H14N5O)2[TeMo6O24].4H2O
Mr1850.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)15.722 (3), 9.2364 (18), 19.256 (4)
β (°) 94.67 (3)
V3)2787.0 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.93
Crystal size (mm)0.24 × 0.24 × 0.22
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.643, 0.657
No. of measured, independent and
observed [I > 2σ(I)] reflections
20771, 4883, 4465
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.056, 1.09
No. of reflections4883
No. of parameters377
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.86

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1998), SHELXTL (Bruker, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H6···O70.902.202.916 (3)136.6
N1—H5···O20.902.042.769 (3)137.8
N2—H8···O1i0.901.952.840 (3)171.5
N2—H7···O1W0.902.012.877 (3)161.7
N3—H9···O10ii0.901.692.571 (3)164.6
N4—H11···O11iii0.902.182.965 (3)145.9
N4—H10···O2Wi0.901.862.762 (4)176.7
N9—H17···O14iv0.902.183.067 (4)166.9
N7—H15···O90.902.142.925 (4)146.1
N7—H14···O7v0.902.052.921 (3)163.6
N6—H13···O8v0.902.062.806 (4)140.0
O1W—H1···O3vi0.851.972.810 (3)171.6
O1W—H2···O120.852.613.087 (3)116.5
O1W—H2···O14iv0.852.253.027 (3)151.7
O2W—H3···O5i0.852.062.860 (3)156.2
O2W—H4···O1W0.851.982.829 (4)176.3
Symmetry codes: (i) x+2, y+1, z; (ii) x, y1, z; (iii) x+3/2, y1/2, z1/2; (iv) x+3/2, y1/2, z+1/2; (v) x+1/2, y+3/2, z+1/2; (vi) x+2, y+2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds