supplementary materials


Acta Cryst. (2007). E63, m1683    [ doi:10.1107/S1600536807022994 ]

Bis(dimethylammonium) tetrachloridoferrate(II)

T. Morawitz, H.-W. Lerner and M. Bolte

Abstract top

The title compound, (C2H8N)2[FeCl4], is composed of discrete dimethylammonium cations and tetrachloridoferrate(II) anions, which are held together in the crystal structure by N-H...Cl hydrogen bonds. It is isostructural with dimethylammonium tetrachloridocobaltate(II) and dimethylammonium tetrachloridomercurate(II).

Comment top

We report here the X-ray crystal structure analysis of [NMe2H2]2[FeCl4]. Very recently we have described the solid-state structure of the manganese complex [NMe2H2]2[MnBr4] (Morawitz et al., 2007). The synthesis protocol of [NMe2H2]2[FeCl4] was similar to that of the manganese derivative [NMe2H2]2[MnBr4]. X-ray quality crystals of [NMe2H2]2[FeCl4] were grown by diffusion of hexane into a solution of [NMe2H2]2[FeCl4] in tetrahydrofuran at ambient temperature.

The title compound is composed of discrete dimethylammonium cations and tetrachloroiron(II) anions, which are held together in the crystal by N—H···Cl hydrogen bonds. It is isostructural with dimethylammonium tetrachlorocobaltate(II) (Williams et al., 1992) and dimethylammonium tetrachloromercurate(II) (Ben Salah et al., 1982).

Related literature top

For the tetrachlorocobaltate, see Williams et al. (1992); for the tetrachloromercurate, see Ben Salah et al. (1982).

For related literature, see: Morawitz et al. (2007).

Experimental top

By the reaction (see Fig. 2) of the 1,4-phenylene-bridged Li scorpionate (I) (0.24 g, 0.47 mmol) with FeCl2 (0.12 g, 0.94 mmol) and [NMe2H2][Br] (ca 0.1 mmol) in 30 ml THF, [NMe2H2]2[FeCl4] was obtained. X-ray quality crystals of [NMe2H2]2[FeCl4] were grown by diffusion of hexane into a solution of [NMe2H2]2[FeCl4] in tetrahydrofuran at ambient temperature.

Refinement top

H atoms bonded to C were refined with fixed individual displacement parameters [Uiso(H) = 1.5Ueq(C)] using a riding model with C—H = 0.98 Å. H atoms bonded to N were freely refined with the N—H distances restrained to 0.91 (1) Å.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with the atom numbering scheme; displacement ellipsoids are at the 50% probability level; H atoms are drawn as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The anion of the starting compound (I).
Bis(dimethylammonium) tetrachloridoferrate(II) top
Crystal data top
(C2H8N)2[FeCl4]F(000) = 592
Mr = 289.84Dx = 1.496 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 10454 reflections
a = 7.8999 (5) Åθ = 3.4–26.0°
b = 11.2878 (9) ŵ = 1.96 mm1
c = 14.5064 (9) ÅT = 173 K
β = 95.828 (5)°Block, colourless
V = 1286.89 (15) Å30.15 × 0.13 × 0.08 mm
Z = 4
Data collection top
Stoe IPDSII two-circle
diffractometer
2477 independent reflections
Radiation source: fine-focus sealed tube2026 reflections with I > 2σ(I)
graphiteRint = 0.064
ω scansθmax = 25.9°, θmin = 3.4°
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
h = 99
Tmin = 0.758, Tmax = 0.859k = 1313
18093 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0296P)2]
where P = (Fo2 + 2Fc2)/3
2477 reflections(Δ/σ)max = 0.001
120 parametersΔρmax = 0.33 e Å3
4 restraintsΔρmin = 0.71 e Å3
Crystal data top
(C2H8N)2[FeCl4]V = 1286.89 (15) Å3
Mr = 289.84Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8999 (5) ŵ = 1.96 mm1
b = 11.2878 (9) ÅT = 173 K
c = 14.5064 (9) Å0.15 × 0.13 × 0.08 mm
β = 95.828 (5)°
Data collection top
Stoe IPDSII two-circle
diffractometer
2477 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
2026 reflections with I > 2σ(I)
Tmin = 0.758, Tmax = 0.859Rint = 0.064
18093 measured reflectionsθmax = 25.9°
Refinement top
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071Δρmax = 0.33 e Å3
S = 1.02Δρmin = 0.71 e Å3
2477 reflectionsAbsolute structure: ?
120 parametersFlack parameter: ?
4 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.70968 (4)0.29611 (3)0.45336 (2)0.02135 (11)
Cl10.71106 (8)0.50045 (5)0.44186 (5)0.03030 (16)
Cl20.67392 (8)0.23483 (6)0.60487 (4)0.02816 (15)
Cl30.46470 (8)0.22615 (5)0.36767 (5)0.03004 (16)
Cl40.95767 (8)0.21556 (6)0.41103 (5)0.03347 (17)
N10.2669 (3)0.1914 (2)0.57052 (17)0.0304 (5)
H1A0.368 (2)0.227 (3)0.565 (2)0.040 (9)*
H1B0.207 (4)0.224 (3)0.5201 (16)0.048 (10)*
C10.2007 (4)0.2229 (3)0.6601 (2)0.0435 (7)
H1C0.08460.19250.66060.065*
H1D0.20000.30930.66710.065*
H1E0.27390.18770.71150.065*
C20.2777 (4)0.0616 (3)0.5549 (3)0.0454 (8)
H2C0.35630.02620.60380.068*
H2D0.31920.04690.49450.068*
H2E0.16460.02620.55590.068*
N20.3056 (3)0.4867 (2)0.32772 (16)0.0283 (5)
H2A0.344 (4)0.535 (2)0.3754 (16)0.044 (9)*
H2B0.344 (5)0.4129 (17)0.345 (3)0.068 (12)*
C30.3852 (3)0.5206 (3)0.24341 (19)0.0323 (6)
H3A0.35350.46310.19400.048*
H3B0.50930.52160.25720.048*
H3C0.34560.59960.22320.048*
C40.1171 (3)0.4845 (3)0.3142 (2)0.0373 (7)
H4A0.07490.56120.29000.056*
H4B0.07240.46900.37370.056*
H4C0.07930.42190.27010.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01938 (18)0.02096 (19)0.0236 (2)0.00109 (13)0.00171 (13)0.00027 (14)
Cl10.0325 (3)0.0207 (3)0.0377 (4)0.0013 (2)0.0031 (3)0.0037 (3)
Cl20.0308 (3)0.0283 (3)0.0250 (3)0.0009 (2)0.0008 (2)0.0049 (2)
Cl30.0281 (3)0.0271 (3)0.0330 (4)0.0023 (2)0.0066 (3)0.0033 (3)
Cl40.0247 (3)0.0349 (4)0.0416 (4)0.0068 (2)0.0077 (3)0.0039 (3)
N10.0281 (12)0.0259 (12)0.0373 (13)0.0034 (9)0.0039 (10)0.0055 (10)
C10.0531 (19)0.0374 (17)0.0420 (18)0.0013 (13)0.0151 (15)0.0073 (14)
C20.0532 (19)0.0236 (14)0.059 (2)0.0013 (13)0.0033 (16)0.0007 (14)
N20.0283 (11)0.0287 (12)0.0272 (12)0.0016 (9)0.0007 (9)0.0012 (10)
C30.0297 (13)0.0397 (16)0.0279 (14)0.0023 (11)0.0054 (11)0.0000 (12)
C40.0271 (14)0.0424 (17)0.0422 (17)0.0071 (12)0.0025 (12)0.0051 (14)
Geometric parameters (Å, °) top
Fe1—Cl42.2992 (7)C2—H2D0.9800
Fe1—Cl12.3128 (7)C2—H2E0.9800
Fe1—Cl32.3293 (7)N2—C31.482 (4)
Fe1—Cl22.3483 (7)N2—C41.483 (3)
N1—C21.486 (4)N2—H2A0.907 (10)
N1—C11.493 (4)N2—H2B0.914 (10)
N1—H1A0.904 (10)C3—H3A0.9800
N1—H1B0.907 (10)C3—H3B0.9800
C1—H1C0.9800C3—H3C0.9800
C1—H1D0.9800C4—H4A0.9800
C1—H1E0.9800C4—H4B0.9800
C2—H2C0.9800C4—H4C0.9800
Cl4—Fe1—Cl1111.39 (3)N1—C2—H2E109.5
Cl4—Fe1—Cl3114.06 (3)H2C—C2—H2E109.5
Cl1—Fe1—Cl3108.02 (3)H2D—C2—H2E109.5
Cl4—Fe1—Cl2108.68 (3)C3—N2—C4113.6 (2)
Cl1—Fe1—Cl2111.30 (3)C3—N2—H2A110 (2)
Cl3—Fe1—Cl2103.14 (3)C4—N2—H2A111 (2)
C2—N1—C1113.5 (2)C3—N2—H2B108 (3)
C2—N1—H1A111 (2)C4—N2—H2B109 (3)
C1—N1—H1A111 (2)H2A—N2—H2B105 (3)
C2—N1—H1B108 (2)N2—C3—H3A109.5
C1—N1—H1B114 (2)N2—C3—H3B109.5
H1A—N1—H1B98 (3)H3A—C3—H3B109.5
N1—C1—H1C109.5N2—C3—H3C109.5
N1—C1—H1D109.5H3A—C3—H3C109.5
H1C—C1—H1D109.5H3B—C3—H3C109.5
N1—C1—H1E109.5N2—C4—H4A109.5
H1C—C1—H1E109.5N2—C4—H4B109.5
H1D—C1—H1E109.5H4A—C4—H4B109.5
N1—C2—H2C109.5N2—C4—H4C109.5
N1—C2—H2D109.5H4A—C4—H4C109.5
H2C—C2—H2D109.5H4B—C4—H4C109.5
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl20.90 (1)2.43 (2)3.240 (2)149 (3)
N1—H1B···Cl4i0.91 (1)2.40 (2)3.201 (2)148 (3)
N2—H2A···Cl2ii0.91 (1)2.62 (3)3.291 (2)131 (3)
N2—H2A···Cl1ii0.91 (1)2.76 (3)3.362 (2)125 (3)
N2—H2B···Cl30.91 (1)2.32 (1)3.227 (2)170 (4)
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl20.90 (1)2.43 (2)3.240 (2)149 (3)
N1—H1B···Cl4i0.91 (1)2.40 (2)3.201 (2)148 (3)
N2—H2A···Cl2ii0.91 (1)2.62 (3)3.291 (2)131 (3)
N2—H2A···Cl1ii0.91 (1)2.76 (3)3.362 (2)125 (3)
N2—H2B···Cl30.91 (1)2.32 (1)3.227 (2)170 (4)
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+1.
references
References top

Ben Salah, A., Bats, J. W., Fuess, H. & Daoud, A. (1982). Inorg. Chim. Acta, 63, 169–175.

Blessing, R. H. (1995). Acta Cryst. A51, 33–38.

Morawitz, T., Kern, B., Lerner, H.-W. & Bolte, M. (2007). Acta Cryst. E63, m1433–?.

Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.10. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.

Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.

Williams, I. D., Brown, P. W. & Taylor, N. J. (1992). Acta Cryst. C48, 263–266.