supplementary materials


Acta Cryst. (2007). E63, o2955    [ doi:10.1107/S1600536807022805 ]

1,4-Diazoniabicyclo[2.2.2]octane dinitrate

K. E. Knope and C. L. Cahill

Abstract top

The title compound, C6H14N22+·2NO3-, was synthesized under hydrothermal conditions. The asymmetric unit consists of one protonated 1,4-diazabicyclo[2.2.2]octane (DABCO) molecule and two nitrate anions. The structure is stabilized by hydrogen bonding of the nitrate O atoms to the protonated DABCO N atoms, with donor-acceptor distances ranging from 2.729 (2) to 3.111 (2) Å.

Comment top

As the field of inorganic organic coordination polymers and metal organic frameworks has developed, it has become increasingly important to explore the oxidation or reduction of organic molecules utlilized in the syntheses of such materials. Consequently the title compound was synthesized as part of an investigation to understand the stability of DABCO under hydrothermal conditions, in the presence of nitrate groups.

Experimental top

1,4-Diazabicyclo[2.2.2]octane and concentrated nitric acid were obtained from Sigma-Aldrich. All reagents were used without further purification. 1,4-diazabicyclo[2.2.2]octane (0.098 g, 0.87 mmol) and distilled water (5 g, 278 mmol) were placed into a 23 ml Teflon-lined Parr bomb in the molar ratios of 1.0:320 respectively. The pH was adjusted to 1.5 using concentrated HNO3. The reaction vessel was then sealed and heated statically at 120 °C for 10 days. Upon cooling to room temperature, a clear colorless solution was obtained. The solvent was allowed to evaporate at room temperature resulting in colourless crystals of the title compound.

Refinement top

All H atoms of the DABCO carbons were placed in calculated positions whereas those of the DABCO nitrogen were located in a difference Fourier map. The bond distances to H were fixed at 0.97 Å for the carbon atoms and the H atoms were allowed to ride on their bonded C atoms with Uiso = 1.2Ueq(C). Those of the nitrogen atoms were freely refined with a distance restraint of 0.8 Å.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CrystalMaker (CrystalMaker Software, 2003) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Packing of the title compound illustrating the hydrogen bonding of the nitrate anion and the protonated DABCO nitrogen.
[Figure 2] Fig. 2. ORTEP drawing of title compound. Ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.
1,4-Diazoniabicyclo[2.2.2]octane dinitrate top
Crystal data top
C6H14N22+·2NO3F(000) = 504
Mr = 238.21Dx = 1.578 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2891 reflections
a = 11.4887 (4) Åθ = 2.4–30.4°
b = 6.8821 (2) ŵ = 0.14 mm1
c = 12.6838 (5) ÅT = 293 K
β = 91.247 (5)°Block, colourless
V = 1002.62 (6) Å30.2 × 0.2 × 0.1 mm
Z = 4
Data collection top
Bruker APEX II CCD
diffractometer
2891 independent reflections
Radiation source: fine-focus sealed tube1701 reflections with I > 2σ(I)
graphiteRint = 0.046
ω and φ scansθmax = 30.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1616
Tmin = 0.972, Tmax = 0.986k = 99
18932 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.2134P]
where P = (Fo2 + 2Fc2)/3
2891 reflections(Δ/σ)max < 0.001
153 parametersΔρmax = 0.33 e Å3
2 restraintsΔρmin = 0.21 e Å3
Crystal data top
C6H14N22+·2NO3V = 1002.62 (6) Å3
Mr = 238.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.4887 (4) ŵ = 0.14 mm1
b = 6.8821 (2) ÅT = 293 K
c = 12.6838 (5) Å0.2 × 0.2 × 0.1 mm
β = 91.247 (5)°
Data collection top
Bruker APEX II CCD
diffractometer
2891 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1701 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.986Rint = 0.046
18932 measured reflectionsθmax = 30.4°
Refinement top
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.156Δρmax = 0.33 e Å3
S = 1.04Δρmin = 0.21 e Å3
2891 reflectionsAbsolute structure: ?
153 parametersFlack parameter: ?
2 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.93691 (19)0.7655 (3)0.25071 (15)0.0463 (5)
H1A0.96940.64900.28270.056*
H1B0.87010.72860.20720.056*
C20.90005 (17)0.9055 (3)0.33541 (16)0.0421 (5)
H2A0.81640.92450.33130.051*
H2B0.92000.85300.40440.051*
C31.08900 (18)1.0677 (3)0.33089 (16)0.0457 (5)
H3A1.10941.02480.40180.055*
H3B1.12801.19030.31830.055*
C41.12770 (17)0.9181 (3)0.25179 (16)0.0463 (5)
H4A1.18830.97190.20840.056*
H4B1.15880.80490.28820.056*
C50.9751 (2)1.0361 (3)0.13096 (14)0.0422 (5)
H5A0.91220.99720.08330.051*
H5B1.03421.10060.09020.051*
C60.9296 (2)1.1734 (3)0.21419 (16)0.0491 (5)
H6A0.96411.30100.20600.059*
H6B0.84581.18610.20640.059*
N10.84994 (15)0.4322 (2)0.48142 (13)0.0409 (4)
N20.96035 (14)1.0939 (2)0.32027 (12)0.0350 (4)
N31.02573 (14)0.8620 (2)0.18482 (11)0.0333 (4)
N40.63928 (13)0.0013 (2)0.54168 (14)0.0405 (4)
O10.92260 (13)0.2997 (2)0.50023 (11)0.0527 (4)
O20.81216 (19)0.5294 (3)0.55311 (17)0.0858 (7)
O30.81960 (15)0.4576 (2)0.38782 (13)0.0601 (5)
O40.59975 (15)0.1572 (2)0.50989 (12)0.0583 (5)
O50.64042 (15)0.0298 (3)0.63862 (13)0.0630 (5)
O60.67368 (18)0.1223 (3)0.47992 (16)0.0897 (7)
H301.0467 (19)0.785 (3)0.1429 (15)0.049 (7)*
H200.9441 (19)1.169 (3)0.3691 (15)0.051 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0612 (13)0.0367 (10)0.0413 (11)0.0152 (9)0.0087 (9)0.0028 (9)
C20.0408 (11)0.0442 (11)0.0418 (10)0.0041 (9)0.0109 (8)0.0018 (9)
C30.0417 (11)0.0502 (12)0.0452 (11)0.0082 (9)0.0008 (8)0.0153 (9)
C40.0377 (10)0.0580 (13)0.0433 (11)0.0053 (9)0.0032 (8)0.0100 (10)
C50.0625 (13)0.0363 (10)0.0278 (9)0.0065 (9)0.0019 (8)0.0027 (8)
C60.0726 (15)0.0342 (10)0.0407 (11)0.0165 (10)0.0049 (10)0.0040 (8)
N10.0438 (9)0.0361 (9)0.0432 (10)0.0021 (7)0.0114 (7)0.0060 (7)
N20.0460 (9)0.0304 (8)0.0288 (8)0.0037 (7)0.0061 (6)0.0078 (6)
N30.0435 (9)0.0272 (8)0.0292 (8)0.0038 (6)0.0051 (6)0.0065 (6)
N40.0344 (8)0.0420 (9)0.0448 (9)0.0061 (7)0.0030 (7)0.0090 (8)
O10.0566 (9)0.0528 (9)0.0486 (9)0.0135 (8)0.0027 (7)0.0027 (7)
O20.0961 (15)0.0754 (13)0.0876 (14)0.0042 (11)0.0411 (11)0.0400 (11)
O30.0643 (10)0.0609 (10)0.0551 (10)0.0022 (8)0.0001 (8)0.0195 (8)
O40.0795 (12)0.0405 (9)0.0549 (10)0.0036 (8)0.0013 (8)0.0062 (7)
O50.0695 (11)0.0744 (12)0.0444 (9)0.0063 (9)0.0102 (7)0.0050 (8)
O60.0924 (15)0.0900 (15)0.0867 (14)0.0397 (12)0.0023 (11)0.0444 (12)
Geometric parameters (Å, °) top
C1—N31.489 (2)C5—C61.518 (3)
C1—C21.510 (3)C5—H5A0.9700
C1—H1A0.9700C5—H5B0.9700
C1—H1B0.9700C6—N21.488 (3)
C2—N21.484 (3)C6—H6A0.9700
C2—H2A0.9700C6—H6B0.9700
C2—H2B0.9700N1—O21.217 (2)
C3—N21.492 (3)N1—O31.242 (2)
C3—C41.511 (3)N1—O11.255 (2)
C3—H3A0.9700N2—H200.832 (15)
C3—H3B0.9700N3—H300.793 (16)
C4—N31.483 (3)N4—O61.215 (2)
C4—H4A0.9700N4—O51.245 (2)
C4—H4B0.9700N4—O41.245 (2)
C5—N31.491 (2)
N3—C1—C2108.72 (15)N3—C5—H5B110.0
N3—C1—H1A109.9C6—C5—H5B110.0
C2—C1—H1A109.9H5A—C5—H5B108.4
N3—C1—H1B109.9N2—C6—C5108.74 (15)
C2—C1—H1B109.9N2—C6—H6A109.9
H1A—C1—H1B108.3C5—C6—H6A109.9
N2—C2—C1109.03 (14)N2—C6—H6B109.9
N2—C2—H2A109.9C5—C6—H6B109.9
C1—C2—H2A109.9H6A—C6—H6B108.3
N2—C2—H2B109.9O2—N1—O3122.6 (2)
C1—C2—H2B109.9O2—N1—O1120.3 (2)
H2A—C2—H2B108.3O3—N1—O1117.11 (16)
N2—C3—C4109.12 (15)C2—N2—C6109.64 (16)
N2—C3—H3A109.9C2—N2—C3110.30 (15)
C4—C3—H3A109.9C6—N2—C3109.95 (16)
N2—C3—H3B109.9C2—N2—H20109.6 (16)
C4—C3—H3B109.9C6—N2—H20113.0 (16)
H3A—C3—H3B108.3C3—N2—H20104.3 (16)
N3—C4—C3108.51 (15)C4—N3—C1109.69 (15)
N3—C4—H4A110.0C4—N3—C5110.40 (16)
C3—C4—H4A110.0C1—N3—C5110.50 (16)
N3—C4—H4B110.0C4—N3—H30108.1 (16)
C3—C4—H4B110.0C1—N3—H30107.4 (17)
H4A—C4—H4B108.4C5—N3—H30110.7 (16)
N3—C5—C6108.56 (15)O6—N4—O5122.1 (2)
N3—C5—H5A110.0O6—N4—O4120.9 (2)
C6—C5—H5A110.0O5—N4—O4116.99 (17)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N3—H30···O4i0.79 (2)2.01 (2)2.778 (2)163 (2)
N3—H30···O5i0.79 (2)2.42 (2)3.063 (2)139 (2)
N2—H20···O1ii0.83 (2)1.91 (2)2.729 (2)167 (2)
N2—H20···O3ii0.83 (2)2.46 (2)3.111 (2)136 (2)
Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) x, y+1, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N3—H30···O4i0.79 (2)2.01 (2)2.778 (2)163 (2)
N3—H30···O5i0.79 (2)2.42 (2)3.063 (2)139 (2)
N2—H20···O1ii0.83 (2)1.91 (2)2.729 (2)167 (2)
N2—H20···O3ii0.83 (2)2.46 (2)3.111 (2)136 (2)
Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) x, y+1, z.
Acknowledgements top

This work was supported by the National Science Foundation (grant DMR-0348982, CAREER Award to CLC, and NSF-MRI grant DMR-0419754, diffractometer acquisition), the McConnell Fellowship (KEK) and Sigma Xi Grants in Aid of Research (KEK).

references
References top

Bruker (2005). APEX2 (Version 1.27) and SAINT (Version 7.20). Bruker AXS Inc., Madison, Wisconsin, USA.

CrystalMaker Software (2003). CrystalMaker. Version 5.1.3. CrystalMaker Software, Bicester, Oxfordshire, England.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565–?.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.