Download citation
Download citation
link to html
In the title compound, {[Co(1,4-chdc)(L)2]·H2O}n, where 1,4-chdc is the cyclo­hexa­ne-1,4-dicarboxyl­ate dianion, C8H10O42−, and L is 2-methyl-1H-imidazole, C4H6N2, each CoII atom is four-coordinated by two O atoms from two 1,4-chdc ligands and two N atoms from two L mol­ecules in a distorted tetra­hedral geometry. Each 1,4-chdc anion acts as a bidentate ligand that links two CoII atoms, thus generating a helical chain. These chains are decorated with L ligands alternately on the two sides. In addition, O—H...O and N—H...O hydrogen bonds complete the structure of (I).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807024063/om2125sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807024063/om2125Isup2.hkl
Contains datablock I

CCDC reference: 651355

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.041
  • wR factor = 0.094
  • Data-to-parameter ratio = 17.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C1 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Co1 (2) 1.63 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Helical structures have received much attention in coordination chemistry (Chen & Liu, 2002). The flexible bidentate organic acid may be useful in the generation of helical chains in the presence of secondary ligands (Zhang et al., 2007). The N atoms from the secondary ligand may occupy one or two coordination positions of metal ions. The rest of the coordination positions are available for other carboxylate ligands to allow the formation of a helical structure. Here, we selected cyclohexane-1,4-dicarboxylic acid (1,4-chdcH2) as a organic acid ligand and 2-methyl-1H-imidazole (L) as a secondary ligand, resulting in a new helical chain structure, [Co(1,4-chdc)(L)2].H2O, (I), which is reported.

Selected bond lengths and angles for (I) are given in Table 1. In compound (I), each Co(II) atom is four-coordinated by two O atoms from two 1,4-chdc ligands, and two N atoms from two L molecules in a distorted tetrahedral geometry (Fig. 1). The Co1—O1 and Co1—O3i distances are 1.955 (2) and 2.0042 (16) Å, respectively (Table 1). The Co1—N1 and Co1—N4 distances are 2.0460 (19) and 2.024 (2) Å, respectively (Table 1). Each 1,4-chdc ligand links two neighboring Co(II) atoms in a bidentate mode, generating a unique helical chain (Fig. 2). These chains are decorated with L ligands alternately at two sides. Finally, the O—H···O and N—H···O hydrogen bonds complete the structure of (I).

Related literature top

Two isomorphous structures (Qi et al., 2003) of coordination polymers with cyclohexane-1,4-dicarboxylate (1,4-chdc) have been reported, viz. [Co2(phen)2(1,4-chdc)2(H2O)2]n and [Ni2(phen)2(1,4-chdc)2(H2O)2]n (phen is 1,10-phenanthroline). The striking feature of the two compounds is that they both exhibit an infinite helical chain-like structure with 21 helices.

For related literature, see: Chen & Liu (2002); Zhang et al. (2007).

Experimental top

A mixture of CoCl2.2H2O (0.5 mmol), 1,4-chdc acid (0.5 mmol), and L (0.5 mmol) was adjusted to pH=6.5 by addition of aqueous NaOH solution. The resulting solution was filtered, the filtrate was allowed to stand in air at room temperature for one week, and the pink crystals of (I) were obtained (yield 39% based on Co).

Refinement top

All H atoms on C and N atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93 Å) and refined as riding, with Uiso(H)=1.2Ueq(carrier). The water H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H = 0.85 Å.

Structure description top

Helical structures have received much attention in coordination chemistry (Chen & Liu, 2002). The flexible bidentate organic acid may be useful in the generation of helical chains in the presence of secondary ligands (Zhang et al., 2007). The N atoms from the secondary ligand may occupy one or two coordination positions of metal ions. The rest of the coordination positions are available for other carboxylate ligands to allow the formation of a helical structure. Here, we selected cyclohexane-1,4-dicarboxylic acid (1,4-chdcH2) as a organic acid ligand and 2-methyl-1H-imidazole (L) as a secondary ligand, resulting in a new helical chain structure, [Co(1,4-chdc)(L)2].H2O, (I), which is reported.

Selected bond lengths and angles for (I) are given in Table 1. In compound (I), each Co(II) atom is four-coordinated by two O atoms from two 1,4-chdc ligands, and two N atoms from two L molecules in a distorted tetrahedral geometry (Fig. 1). The Co1—O1 and Co1—O3i distances are 1.955 (2) and 2.0042 (16) Å, respectively (Table 1). The Co1—N1 and Co1—N4 distances are 2.0460 (19) and 2.024 (2) Å, respectively (Table 1). Each 1,4-chdc ligand links two neighboring Co(II) atoms in a bidentate mode, generating a unique helical chain (Fig. 2). These chains are decorated with L ligands alternately at two sides. Finally, the O—H···O and N—H···O hydrogen bonds complete the structure of (I).

Two isomorphous structures (Qi et al., 2003) of coordination polymers with cyclohexane-1,4-dicarboxylate (1,4-chdc) have been reported, viz. [Co2(phen)2(1,4-chdc)2(H2O)2]n and [Ni2(phen)2(1,4-chdc)2(H2O)2]n (phen is 1,10-phenanthroline). The striking feature of the two compounds is that they both exhibit an infinite helical chain-like structure with 21 helices.

For related literature, see: Chen & Liu (2002); Zhang et al. (2007).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (i) 1 - x, y - 1/2, 1.5 - z.
[Figure 2] Fig. 2. View of the helical chain structure of (I).
catena-Poly[[[bis(2-methyl-1H-imidazole)cobalt(II)] -µ-cyclohexane-1,4-dicarboxylato] monohydrate] top
Crystal data top
[Co(C8H10O4)(C4H6N2)2]·H2OF(000) = 860
Mr = 411.32Dx = 1.450 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11934 reflections
a = 13.300 (3) Åθ = 3.2–27.5°
b = 11.075 (2) ŵ = 0.95 mm1
c = 14.334 (3) ÅT = 293 K
β = 116.82 (3)°Block, pink
V = 1884.2 (8) Å30.29 × 0.27 × 0.24 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4295 independent reflections
Radiation source: rotating anode3311 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scanh = 1517
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1414
Tmin = 0.752, Tmax = 0.798l = 1816
15286 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.039P)2 + 0.6548P]
where P = (Fo2 + 2Fc2)/3
4295 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.37 e Å3
3 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Co(C8H10O4)(C4H6N2)2]·H2OV = 1884.2 (8) Å3
Mr = 411.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.300 (3) ŵ = 0.95 mm1
b = 11.075 (2) ÅT = 293 K
c = 14.334 (3) Å0.29 × 0.27 × 0.24 mm
β = 116.82 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4295 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3311 reflections with I > 2σ(I)
Tmin = 0.752, Tmax = 0.798Rint = 0.046
15286 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0413 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.37 e Å3
4295 reflectionsΔρmin = 0.25 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4008 (2)0.2780 (2)0.71383 (18)0.0401 (6)
C20.4978 (2)0.2657 (2)0.68613 (18)0.0360 (5)
H2A0.48890.18730.65160.043*
C30.6113 (2)0.2625 (2)0.78389 (18)0.0410 (6)
H3A0.62280.33820.82140.049*
H3B0.61090.19810.82950.049*
C40.7079 (2)0.2425 (2)0.7561 (2)0.0432 (6)
H4A0.70220.16170.72800.052*
H4B0.77880.24790.81920.052*
C50.7085 (2)0.3338 (2)0.67631 (17)0.0327 (5)
H50.76320.30540.65290.039*
C60.5928 (2)0.3373 (2)0.58001 (17)0.0386 (6)
H6A0.59280.40030.53300.046*
H6B0.57960.26090.54330.046*
C70.4978 (2)0.3608 (2)0.60950 (17)0.0374 (5)
H7A0.50720.44020.64090.045*
H7B0.42610.35930.54710.045*
C80.74491 (19)0.4602 (2)0.72160 (17)0.0319 (5)
C90.3517 (2)0.4190 (2)0.92264 (19)0.0464 (6)
H90.40150.43460.89480.056*
C100.3467 (3)0.4798 (3)1.0017 (2)0.0540 (8)
H100.39190.54451.03830.065*
C110.2184 (2)0.3384 (2)0.94879 (17)0.0397 (6)
C120.1208 (3)0.2644 (3)0.9383 (3)0.0629 (8)
H12A0.06130.31660.93420.094*
H12B0.14340.21230.99790.094*
H12C0.09460.21650.87590.094*
C130.0093 (2)0.1407 (2)0.6170 (2)0.0453 (6)
H130.02390.05830.62690.054*
C140.0897 (2)0.1900 (3)0.5501 (2)0.0553 (7)
H140.15490.14910.50560.066*
C150.0311 (2)0.3347 (2)0.63310 (17)0.0347 (5)
C160.0767 (2)0.4585 (2)0.6651 (2)0.0508 (7)
H16A0.03270.51470.61100.076*
H16B0.15350.46090.67660.076*
H16C0.07320.48000.72850.076*
N10.27049 (17)0.32969 (17)0.88959 (14)0.0362 (5)
N20.2633 (2)0.42856 (19)1.01784 (15)0.0485 (6)
H20.24270.45011.06430.058*
N30.08621 (16)0.23135 (16)0.66915 (14)0.0338 (4)
N40.07494 (17)0.3123 (2)0.56069 (16)0.0445 (5)
H40.12500.36580.52680.053*
O10.3881 (2)0.19246 (18)0.76549 (19)0.0648 (6)
O20.33529 (19)0.3642 (2)0.68658 (16)0.0742 (7)
O1W0.23698 (18)0.48020 (19)0.47705 (16)0.0562 (5)
O30.74594 (15)0.54197 (14)0.65811 (12)0.0387 (4)
O40.77284 (16)0.48266 (16)0.81481 (13)0.0480 (5)
Co10.24756 (3)0.20400 (3)0.77712 (2)0.03035 (10)
HW120.249 (2)0.503 (2)0.5266 (16)0.054 (9)*
HW110.271 (3)0.521 (3)0.4237 (16)0.077 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0397 (14)0.0493 (15)0.0358 (12)0.0085 (12)0.0209 (11)0.0083 (11)
C20.0381 (13)0.0353 (12)0.0393 (12)0.0057 (10)0.0216 (10)0.0058 (10)
C30.0417 (14)0.0449 (14)0.0376 (13)0.0004 (11)0.0190 (11)0.0097 (11)
C40.0386 (14)0.0353 (12)0.0543 (15)0.0063 (11)0.0198 (12)0.0078 (11)
C50.0336 (12)0.0315 (11)0.0394 (12)0.0013 (9)0.0221 (10)0.0063 (9)
C60.0436 (15)0.0450 (13)0.0310 (11)0.0108 (11)0.0203 (11)0.0070 (10)
C70.0322 (13)0.0462 (14)0.0306 (11)0.0018 (11)0.0112 (10)0.0010 (10)
C80.0304 (12)0.0341 (12)0.0344 (11)0.0029 (10)0.0175 (9)0.0047 (9)
C90.0522 (17)0.0449 (15)0.0409 (13)0.0072 (12)0.0201 (12)0.0042 (11)
C100.069 (2)0.0444 (15)0.0386 (14)0.0037 (14)0.0160 (13)0.0106 (11)
C110.0526 (16)0.0381 (13)0.0303 (11)0.0099 (11)0.0205 (11)0.0046 (10)
C120.077 (2)0.066 (2)0.0678 (19)0.0042 (17)0.0528 (18)0.0046 (15)
C130.0416 (15)0.0364 (14)0.0538 (15)0.0033 (11)0.0178 (12)0.0026 (11)
C140.0375 (15)0.0544 (18)0.0625 (17)0.0095 (13)0.0125 (13)0.0024 (14)
C150.0363 (13)0.0384 (12)0.0335 (11)0.0039 (10)0.0195 (10)0.0020 (9)
C160.0540 (17)0.0361 (14)0.0571 (16)0.0071 (12)0.0206 (13)0.0013 (12)
N10.0447 (12)0.0351 (10)0.0295 (10)0.0014 (9)0.0174 (9)0.0018 (8)
N20.0738 (17)0.0435 (12)0.0314 (10)0.0133 (12)0.0264 (11)0.0012 (9)
N30.0343 (10)0.0319 (10)0.0345 (10)0.0025 (8)0.0149 (8)0.0012 (8)
N40.0337 (11)0.0502 (13)0.0471 (12)0.0109 (10)0.0160 (9)0.0083 (10)
O10.0752 (15)0.0534 (12)0.0987 (16)0.0031 (11)0.0682 (14)0.0062 (11)
O20.0662 (14)0.1131 (19)0.0603 (12)0.0437 (14)0.0436 (11)0.0330 (13)
O1W0.0605 (13)0.0701 (14)0.0449 (11)0.0277 (11)0.0298 (10)0.0136 (10)
O30.0531 (11)0.0310 (8)0.0398 (9)0.0039 (7)0.0279 (8)0.0035 (7)
O40.0548 (12)0.0573 (11)0.0340 (9)0.0179 (9)0.0219 (8)0.0143 (8)
Co10.03402 (18)0.03078 (16)0.02738 (16)0.00234 (13)0.01485 (12)0.00074 (12)
Geometric parameters (Å, º) top
C1—O21.231 (3)C10—H100.9300
C1—O11.260 (3)C11—N11.319 (3)
C1—C21.518 (4)C11—N21.342 (3)
C2—C71.521 (3)C11—C121.484 (4)
C2—C31.528 (3)C12—H12A0.9600
C2—H2A0.9800C12—H12B0.9600
C3—C41.523 (4)C12—H12C0.9600
C3—H3A0.9700C13—C141.346 (4)
C3—H3B0.9700C13—N31.387 (3)
C4—C51.530 (3)C13—H130.9300
C4—H4A0.9700C14—N41.367 (3)
C4—H4B0.9700C14—H140.9300
C5—C81.526 (3)C15—N31.332 (3)
C5—C61.536 (3)C15—N41.344 (3)
C5—H50.9800C15—C161.486 (3)
C6—C71.524 (3)C16—H16A0.9600
C6—H6A0.9700C16—H16B0.9600
C6—H6B0.9700C16—H16C0.9600
C7—H7A0.9700Co1—N12.0460 (19)
C7—H7B0.9700N2—H20.8600
C8—O41.240 (3)Co1—N32.024 (2)
C8—O31.289 (3)N4—H40.8600
C9—C101.346 (4)Co1—O11.955 (2)
C9—N11.382 (3)O1W—HW120.837 (16)
C9—H90.9300O1W—HW110.826 (17)
C10—N21.356 (4)Co1—O3i2.0042 (16)
O2—C1—O1120.4 (3)N2—C10—H10126.6
O2—C1—C2123.4 (2)N1—C11—N2110.0 (2)
O1—C1—C2116.2 (2)N1—C11—C12125.7 (2)
C1—C2—C7113.8 (2)N2—C11—C12124.3 (2)
C1—C2—C3111.52 (19)C11—C12—H12A109.5
C7—C2—C3110.88 (19)C11—C12—H12B109.5
C1—C2—H2A106.7H12A—C12—H12B109.5
C7—C2—H2A106.7C11—C12—H12C109.5
C3—C2—H2A106.7H12A—C12—H12C109.5
C4—C3—C2111.4 (2)H12B—C12—H12C109.5
C4—C3—H3A109.4C14—C13—N3109.7 (2)
C2—C3—H3A109.4C14—C13—H13125.2
C4—C3—H3B109.4N3—C13—H13125.2
C2—C3—H3B109.4C13—C14—N4106.1 (2)
H3A—C3—H3B108.0C13—C14—H14126.9
C3—C4—C5112.9 (2)N4—C14—H14126.9
C3—C4—H4A109.0N3—C15—N4110.0 (2)
C5—C4—H4A109.0N3—C15—C16126.6 (2)
C3—C4—H4B109.0N4—C15—C16123.3 (2)
C5—C4—H4B109.0C15—C16—H16A109.5
H4A—C4—H4B107.8C15—C16—H16B109.5
C8—C5—C4113.31 (19)H16A—C16—H16B109.5
C8—C5—C6110.85 (19)C15—C16—H16C109.5
C4—C5—C6110.3 (2)H16A—C16—H16C109.5
C8—C5—H5107.4H16B—C16—H16C109.5
C4—C5—H5107.4C11—N1—C9106.5 (2)
C6—C5—H5107.4C11—N1—Co1128.45 (18)
C7—C6—C5112.02 (18)C9—N1—Co1124.96 (18)
C7—C6—H6A109.2C11—N2—C10108.2 (2)
C5—C6—H6A109.2C11—N2—H2125.9
C7—C6—H6B109.2C10—N2—H2125.9
C5—C6—H6B109.2C15—N3—C13105.7 (2)
H6A—C6—H6B107.9C15—N3—Co1129.33 (16)
C2—C7—C6110.6 (2)C13—N3—Co1125.00 (16)
C2—C7—H7A109.5C15—N4—C14108.5 (2)
C6—C7—H7A109.5C15—N4—H4125.8
C2—C7—H7B109.5C14—N4—H4125.8
C6—C7—H7B109.5C1—O1—Co1112.82 (19)
H7A—C7—H7B108.1HW12—O1W—HW11113 (2)
O4—C8—O3121.7 (2)C8—O3—Co1ii108.32 (14)
O4—C8—C5121.7 (2)O1—Co1—O3i97.93 (8)
O3—C8—C5116.51 (18)O1—Co1—N3132.04 (9)
C10—C9—N1108.6 (3)O3i—Co1—N3107.31 (8)
C10—C9—H9125.7O1—Co1—N1107.66 (9)
N1—C9—H9125.7O3i—Co1—N1106.51 (7)
C9—C10—N2106.8 (2)N3—Co1—N1103.32 (8)
C9—C10—H10126.6
O2—C1—C2—C77.7 (3)N4—C15—N3—C130.9 (3)
O1—C1—C2—C7170.7 (2)C16—C15—N3—C13179.6 (3)
O2—C1—C2—C3118.6 (3)N4—C15—N3—Co1179.31 (16)
O1—C1—C2—C363.0 (3)C16—C15—N3—Co10.2 (4)
C1—C2—C3—C4176.5 (2)C14—C13—N3—C150.7 (3)
C7—C2—C3—C455.5 (3)C14—C13—N3—Co1179.42 (19)
C2—C3—C4—C553.8 (3)N3—C15—N4—C140.7 (3)
C3—C4—C5—C872.4 (3)C16—C15—N4—C14179.8 (3)
C3—C4—C5—C652.6 (3)C13—C14—N4—C150.2 (3)
C8—C5—C6—C772.2 (2)O2—C1—O1—Co18.0 (3)
C4—C5—C6—C754.1 (3)C2—C1—O1—Co1170.51 (16)
C1—C2—C7—C6176.17 (19)O4—C8—O3—Co1ii16.5 (3)
C3—C2—C7—C657.1 (3)C5—C8—O3—Co1ii164.01 (15)
C5—C6—C7—C257.0 (3)C1—O1—Co1—O3i171.49 (18)
C4—C5—C8—O41.4 (3)C1—O1—Co1—N349.5 (2)
C6—C5—C8—O4126.1 (2)C1—O1—Co1—N178.3 (2)
C4—C5—C8—O3179.2 (2)C15—N3—Co1—O187.9 (2)
C6—C5—C8—O354.5 (3)C13—N3—Co1—O192.3 (2)
N1—C9—C10—N20.1 (3)C15—N3—Co1—O3i153.67 (19)
N3—C13—C14—N40.3 (3)C13—N3—Co1—O3i26.1 (2)
N2—C11—N1—C90.3 (3)C15—N3—Co1—N141.4 (2)
C12—C11—N1—C9176.8 (3)C13—N3—Co1—N1138.4 (2)
N2—C11—N1—Co1175.74 (15)C11—N1—Co1—O1154.1 (2)
C12—C11—N1—Co17.1 (4)C9—N1—Co1—O121.3 (2)
C10—C9—N1—C110.1 (3)C11—N1—Co1—O3i49.9 (2)
C10—C9—N1—Co1176.08 (18)C9—N1—Co1—O3i125.47 (19)
N1—C11—N2—C100.3 (3)C11—N1—Co1—N363.0 (2)
C12—C11—N2—C10176.8 (3)C9—N1—Co1—N3121.63 (19)
C9—C10—N2—C110.3 (3)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW11···O2iii0.83 (2)1.90 (2)2.723 (3)171 (3)
O1W—HW12···O3iv0.84 (2)1.96 (2)2.790 (3)170 (3)
N2—H2···O4v0.861.982.827 (3)168
N4—H4···O1W0.861.842.685 (3)169
Symmetry codes: (iii) x, y+1, z+1; (iv) x1, y, z; (v) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Co(C8H10O4)(C4H6N2)2]·H2O
Mr411.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.300 (3), 11.075 (2), 14.334 (3)
β (°) 116.82 (3)
V3)1884.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.29 × 0.27 × 0.24
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.752, 0.798
No. of measured, independent and
observed [I > 2σ(I)] reflections
15286, 4295, 3311
Rint0.046
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.094, 1.06
No. of reflections4295
No. of parameters245
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.25

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990), SHELXL97.

Selected geometric parameters (Å, º) top
Co1—N12.0460 (19)Co1—O11.955 (2)
Co1—N32.024 (2)Co1—O3i2.0042 (16)
O1—Co1—O3i97.93 (8)O1—Co1—N1107.66 (9)
O1—Co1—N3132.04 (9)O3i—Co1—N1106.51 (7)
O3i—Co1—N3107.31 (8)N3—Co1—N1103.32 (8)
Symmetry code: (i) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW11···O2ii0.826 (17)1.904 (18)2.723 (3)171 (3)
O1W—HW12···O3iii0.837 (16)1.962 (16)2.790 (3)170 (3)
N2—H2···O4iv0.861.982.827 (3)167.6
N4—H4···O1W0.861.842.685 (3)168.7
Symmetry codes: (ii) x, y+1, z+1; (iii) x1, y, z; (iv) x+1, y+1, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds