supplementary materials


Acta Cryst. (2007). E63, o3040    [ doi:10.1107/S1600536807023732 ]

(3E,4Z)-3-[(1,3-Benzodioxol-5-yl)methylene]-4-(2-pentylidene)tetrahydrofuran-2,5-dione

W.-L. Dong, J.-H. Zhang, L.-W. Zheng and B.-X. Zhao

Abstract top

In the title compound, C17H16O5, the dihydrofuran ring adopts an envelope conformation while the methylenedioxyphenyl ring system is essentially planar. The vinyl group is inclined to the dihydrofuran ring by 31.06 (18)o. The dihedral angle between the atoms defining the planar part of the dihydrofuran ring and the aryl ring is 24.86 (7)o.

Comment top

Organic photochromic compounds, such as fulgides are potential candidates for application in erasable optical information media, attempts have been made to improve their photochromic properties (Uchida et al., 1995; Asiri, 2003). In order to achieve certain desirable properties such as absorption at longer wavelengths and thus higher fatigue resistance to coloration-bleaching cycles, improvements have been made by modifying the fulgide frame (Heller et al., 2000). We report here the crystal structure of the title compound, (I).

Related literature top

For related literature, see: Asiri (2003); Heller et al. (2000); Uchida et al. (1995).

Experimental top

The 2-(benzo[d][1,3]dioxol-5-ylmethylene)-3-(pentan-2-ylidene)succinic acid (0.01 mmol) was dissolved in dichloromethane (10 ml), and to this mixture was added acetyl chloride (5 ml) dropwise with stirring at 273 K, and the mixture was stirred at room temperature for 5 h. After removal of the excess acetyl chloride and dichloromethane, the residue was purified using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1; v/v) and recrystallized with ethyl acetate to give a solid (yield 4%) as minor product. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid in ethyl acetate at room temperature for 15 days.

Refinement top

H atoms were positioned geometrically (C - H = 0.93 - 0.97 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 Software Suite (Bruker, 2005); cell refinement: APEX2 Software Suite; data reduction: APEX2 Software Suite; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme with 50% probability displacement ellipsoids; H atoms have been omitted for clarity.
(3E,4Z)-3-[1,3-Benzodioxol-5-yl)methylene]-4-(2-\ pentylidene)tetrahydrofuran-2,5-dione top
Crystal data top
C17H16O5F(000) = 632
Mr = 300.30Dx = 1.337 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4386 reflections
a = 7.8597 (11) Åθ = 2.7–23.6°
b = 15.383 (3) ŵ = 0.10 mm1
c = 12.781 (2) ÅT = 296 K
β = 105.117 (10)°Plate, yellow
V = 1491.8 (4) Å30.30 × 0.25 × 0.15 mm
Z = 4
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
3695 independent reflections
Radiation source: fine-focus sealed tube2084 reflections with I > 2.0σ(I)
graphiteRint = 0.024
φ and ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(APEX2 Software Suite; Bruker, 2005)
h = 1010
Tmin = 0.971, Tmax = 0.985k = 1320
14935 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.203H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.1P)2 + 0.6902P]
where P = (Fo2 + 2Fc2)/3
3695 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C17H16O5V = 1491.8 (4) Å3
Mr = 300.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8597 (11) ŵ = 0.10 mm1
b = 15.383 (3) ÅT = 296 K
c = 12.781 (2) Å0.30 × 0.25 × 0.15 mm
β = 105.117 (10)°
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
3695 independent reflections
Absorption correction: multi-scan
(APEX2 Software Suite; Bruker, 2005)
2084 reflections with I > 2.0σ(I)
Tmin = 0.971, Tmax = 0.985Rint = 0.024
14935 measured reflectionsθmax = 28.4°
Refinement top
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.203Δρmax = 0.40 e Å3
S = 0.94Δρmin = 0.16 e Å3
3695 reflectionsAbsolute structure: ?
201 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1718 (3)0.82579 (16)1.02559 (15)0.0841 (6)
O20.3854 (2)0.80813 (15)0.86514 (16)0.0836 (6)
O30.5532 (3)1.07745 (17)0.87030 (18)0.0974 (7)
O40.4746 (2)1.07754 (12)0.68911 (16)0.0727 (5)
O50.3415 (3)1.05288 (15)0.51414 (17)0.0840 (6)
C70.0484 (3)0.89375 (17)0.94481 (19)0.0605 (6)
H20.13340.90091.01010.073*
C130.2597 (3)0.87611 (18)0.6060 (2)0.0622 (6)
C120.2982 (3)0.95405 (16)0.65540 (19)0.0572 (6)
C50.0529 (3)0.90996 (17)0.75049 (19)0.0608 (6)
H80.03180.92800.68560.073*
C60.0795 (3)0.91969 (16)0.84621 (19)0.0569 (6)
C20.1117 (3)0.85766 (16)0.94102 (19)0.0587 (6)
C30.2401 (3)0.84713 (16)0.8457 (2)0.0592 (6)
C110.3643 (3)1.02957 (18)0.6057 (2)0.0655 (7)
C40.2156 (3)0.87400 (19)0.7491 (2)0.0661 (7)
H140.30410.86850.68500.079*
C160.0476 (3)0.87491 (19)0.4242 (2)0.0713 (7)
H15A0.02830.83850.45470.086*
H15B0.01430.93500.43090.086*
C90.3288 (3)0.97795 (17)0.7705 (2)0.0614 (6)
C150.2383 (3)0.8619 (2)0.4888 (2)0.0719 (7)
H17A0.27520.80330.47730.086*
H17B0.31330.90210.46300.086*
C80.2473 (3)0.96253 (17)0.8495 (2)0.0619 (6)
H180.30800.98250.91760.074*
C100.4634 (3)1.04727 (19)0.7889 (2)0.0678 (7)
C140.2331 (4)0.79731 (18)0.6670 (2)0.0775 (8)
H20A0.26870.80930.74340.116*
H20B0.30260.75040.65070.116*
H20C0.11080.78130.64640.116*
C10.3455 (4)0.7941 (2)0.9778 (3)0.0824 (8)
H21A0.35190.73260.99280.099*
H21B0.42980.82451.00810.099*
C170.0189 (6)0.8531 (2)0.3058 (2)0.1014 (11)
H22A0.09410.88870.27530.152*
H22B0.10200.86370.26820.152*
H22C0.04620.79290.29850.152*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0716 (11)0.1183 (17)0.0632 (11)0.0185 (11)0.0189 (9)0.0098 (11)
O20.0510 (9)0.1139 (17)0.0833 (13)0.0151 (10)0.0127 (8)0.0099 (11)
O30.0794 (13)0.1191 (19)0.0881 (14)0.0453 (13)0.0117 (11)0.0243 (13)
O40.0639 (10)0.0713 (12)0.0861 (13)0.0182 (9)0.0252 (9)0.0034 (10)
O50.0748 (12)0.1033 (16)0.0788 (13)0.0082 (11)0.0288 (10)0.0186 (11)
C70.0569 (12)0.0686 (16)0.0497 (12)0.0075 (11)0.0028 (10)0.0000 (11)
C130.0421 (10)0.0699 (17)0.0715 (15)0.0003 (10)0.0090 (10)0.0049 (12)
C120.0437 (10)0.0632 (15)0.0637 (14)0.0021 (10)0.0120 (9)0.0017 (11)
C50.0562 (12)0.0693 (16)0.0525 (13)0.0033 (11)0.0067 (10)0.0061 (11)
C60.0544 (12)0.0571 (14)0.0549 (13)0.0060 (10)0.0065 (10)0.0023 (10)
C20.0573 (12)0.0636 (15)0.0547 (13)0.0010 (11)0.0137 (10)0.0038 (11)
C30.0455 (11)0.0631 (15)0.0667 (14)0.0002 (10)0.0102 (10)0.0014 (11)
C110.0480 (11)0.0743 (18)0.0766 (17)0.0036 (11)0.0207 (11)0.0002 (14)
C40.0494 (11)0.0827 (19)0.0587 (14)0.0002 (12)0.0009 (10)0.0032 (12)
C160.0633 (14)0.0708 (18)0.0796 (18)0.0047 (12)0.0182 (13)0.0089 (14)
C90.0520 (11)0.0640 (15)0.0628 (14)0.0082 (11)0.0053 (10)0.0014 (11)
C150.0547 (13)0.085 (2)0.0785 (17)0.0023 (12)0.0225 (12)0.0165 (14)
C80.0558 (12)0.0678 (16)0.0552 (13)0.0112 (11)0.0019 (10)0.0020 (11)
C100.0529 (12)0.0734 (18)0.0745 (17)0.0109 (12)0.0122 (12)0.0091 (14)
C140.0718 (16)0.0621 (17)0.089 (2)0.0019 (13)0.0040 (14)0.0004 (14)
C10.0666 (16)0.103 (2)0.0833 (19)0.0119 (15)0.0289 (14)0.0008 (17)
C170.130 (3)0.090 (2)0.0701 (19)0.016 (2)0.0009 (18)0.0112 (16)
Geometric parameters (Å, °) top
O1—C21.377 (3)C2—C31.374 (3)
O1—C11.428 (3)C3—C41.362 (3)
O2—C31.369 (3)C4—H140.9300
O2—C11.408 (4)C16—C171.509 (4)
O3—C101.189 (3)C16—C151.524 (4)
O4—C101.382 (3)C16—H15A0.9700
O4—C111.396 (3)C16—H15B0.9700
O5—C111.192 (3)C9—C81.351 (3)
C7—C21.365 (3)C9—C101.477 (3)
C7—C61.403 (3)C15—H17A0.9700
C7—H20.9300C15—H17B0.9700
C13—C121.352 (3)C8—H180.9300
C13—C151.480 (4)C14—H20A0.9600
C13—C141.485 (4)C14—H20B0.9600
C12—C91.473 (3)C14—H20C0.9600
C12—C111.481 (4)C1—H21A0.9700
C5—C41.389 (3)C1—H21B0.9700
C5—C61.392 (3)C17—H22A0.9600
C5—H80.9300C17—H22B0.9600
C6—C81.465 (3)C17—H22C0.9600
C2—O1—C1105.7 (2)H15A—C16—H15B107.8
C3—O2—C1106.2 (2)C8—C9—C12135.8 (2)
C10—O4—C11110.5 (2)C8—C9—C10117.9 (2)
C2—C7—C6117.3 (2)C12—C9—C10105.3 (2)
C2—C7—H2121.3C13—C15—C16111.4 (2)
C6—C7—H2121.3C13—C15—H17A109.3
C12—C13—C15123.8 (3)C16—C15—H17A109.3
C12—C13—C14121.6 (2)C13—C15—H17B109.3
C15—C13—C14114.6 (2)C16—C15—H17B109.3
C13—C12—C9130.2 (2)H17A—C15—H17B108.0
C13—C12—C11123.8 (2)C9—C8—C6131.1 (2)
C9—C12—C11104.3 (2)C9—C8—H18114.5
C4—C5—C6121.9 (2)C6—C8—H18114.5
C4—C5—H8119.1O3—C10—O4120.7 (2)
C6—C5—H8119.1O3—C10—C9131.2 (3)
C5—C6—C7119.6 (2)O4—C10—C9108.1 (2)
C5—C6—C8122.3 (2)C13—C14—H20A109.5
C7—C6—C8118.0 (2)C13—C14—H20B109.5
C7—C2—C3122.5 (2)H20A—C14—H20B109.5
C7—C2—O1128.2 (2)C13—C14—H20C109.5
C3—C2—O1109.3 (2)H20A—C14—H20C109.5
C4—C3—O2128.2 (2)H20B—C14—H20C109.5
C4—C3—C2121.5 (2)O2—C1—O1108.6 (2)
O2—C3—C2110.2 (2)O2—C1—H21A110.0
O5—C11—O4119.7 (2)O1—C1—H21A110.0
O5—C11—C12132.6 (3)O2—C1—H21B110.0
O4—C11—C12107.7 (2)O1—C1—H21B110.0
C3—C4—C5117.2 (2)H21A—C1—H21B108.4
C3—C4—H14121.4C16—C17—H22A109.5
C5—C4—H14121.4C16—C17—H22B109.5
C17—C16—C15112.5 (2)H22A—C17—H22B109.5
C17—C16—H15A109.1C16—C17—H22C109.5
C15—C16—H15A109.1H22A—C17—H22C109.5
C17—C16—H15B109.1H22B—C17—H22C109.5
C15—C16—H15B109.1
C15—C13—C12—C9177.9 (2)C9—C12—C11—O418.3 (2)
C14—C13—C12—C92.9 (4)O2—C3—C4—C5178.3 (3)
C15—C13—C12—C1114.8 (4)C2—C3—C4—C52.1 (4)
C14—C13—C12—C11166.0 (2)C6—C5—C4—C31.0 (4)
C4—C5—C6—C70.9 (4)C13—C12—C9—C847.3 (5)
C4—C5—C6—C8176.0 (2)C11—C12—C9—C8147.2 (3)
C2—C7—C6—C51.6 (4)C13—C12—C9—C10145.7 (2)
C2—C7—C6—C8177.0 (2)C11—C12—C9—C1019.8 (2)
C6—C7—C2—C30.6 (4)C12—C13—C15—C1690.1 (3)
C6—C7—C2—O1178.6 (2)C14—C13—C15—C1689.1 (3)
C1—O1—C2—C7179.0 (3)C17—C16—C15—C13174.9 (3)
C1—O1—C2—C30.2 (3)C12—C9—C8—C66.4 (5)
C1—O2—C3—C4179.4 (3)C10—C9—C8—C6159.5 (3)
C1—O2—C3—C20.2 (3)C5—C6—C8—C920.4 (5)
C7—C2—C3—C41.4 (4)C7—C6—C8—C9164.4 (3)
O1—C2—C3—C4179.4 (2)C11—O4—C10—O3176.9 (3)
C7—C2—C3—O2179.0 (2)C11—O4—C10—C93.5 (3)
O1—C2—C3—O20.3 (3)C8—C9—C10—O324.7 (5)
C10—O4—C11—O5171.4 (2)C12—C9—C10—O3165.5 (3)
C10—O4—C11—C129.4 (3)C8—C9—C10—O4154.8 (2)
C13—C12—C11—O530.6 (4)C12—C9—C10—O415.0 (3)
C9—C12—C11—O5162.7 (3)C3—O2—C1—O10.1 (3)
C13—C12—C11—O4148.4 (2)C2—O1—C1—O20.1 (3)
Acknowledgements top

This study was supported by the Foundation of the Ministry of Education (No. 104112) and the Natural Science Foundation of Shandong Province (No. Y2005B12).

references
References top

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Asiri, A. M. (2003). J. Photochem. Photobiol. A Chem. 159, 1–5.

Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2005). APEX2 Software Suite (Version 2.0-2). Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Heller, H. G., Hughes, D. S., Hursthouse, M. B. & Rowles, N. G. (2000). Chem. Commun. pp. 1397–1398.

Sheldrick, G. M. (1997). SHELX97 (Release 97-2). University of Göttingen, Germany.

Uchida, S., Yamada, S., Yokoyama, Y. & Kurita, Y. (1995). Bull. Chem. Soc. Jpn, 68, 1677–1682.