Download citation
Download citation
link to html
The title compound, C8H12O3, was synthesized to prove the relative configuration in the projected total synthesis of curvicollides A–C. In the crystal structure, mol­ecules are linked via a bifurcated O—H...O hydrogen bond and a chain of mol­ecules is formed along the a axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807022854/rz2139sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807022854/rz2139Isup2.hkl
Contains datablock I

CCDC reference: 652132

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.029
  • wR factor = 0.058
  • Data-to-parameter ratio = 7.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax .LT. 18) ..... 7.21
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.48 From the CIF: _reflns_number_total 1075 Count of symmetry unique reflns 1079 Completeness (_total/calc) 99.63% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT791_ALERT_1_G Confirm the Absolute Configuration of C2 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C3 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C4 = . R
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The title compound, (I), was synthesized to proof the relative configuration in the projected total synthesis of curvicollides A—C using a catalytic asymmetric Claisen rearrangement (Abraham, Körner et al., 2004; Abraham, Körner & Hiersemann, 2004) and a diastereoselective reduction with K-Selectride (Körner & Hiersemann, 2006). In order to verify the assumed relative configuration of methyl-4-(benzyloxymethyl)-2-hydroxy-3-methylhex-5-enoate (the preparation of this intermediate will be described elsewhere; Körner & Hiersemann, 2007), the δ-lactone, (I), was prepared. Fig. 1 shows that the relative configuration of C2, C3 and C4 is as expected. The configuration of the chiral C atoms in (I) (C2 S, C3 S and C4 R) were assigned based on the previously described stereochemical course of the catalytic asymmetric Claisen rearrangement (CAC) using the chiral Lewis acid [Cu{(S,S)-tert-Butyl-box}] (H2O)2(SbF6)2 (Evans et al., 1999). In the crystal the molecules are linked via a bifurcated O—H ··· O hydrogen bridge (Table 1) and a chain of molecules is formed along the a axis.

Related literature top

For related literature, see: Abraham, Körner & Hiersemann (2004); Abraham, Körner et al. (2004); Evans et al. (1999); Körner & Hiersemann (2006, 2007); Oikawa et al. (1982).

Experimental top

The synthesis of (I) was carried out under the conditions of the oxidative removal of the benzyl protecting group (Oikawa et al., 1982). To a solution of (2S,3S,4R)-Methyl-4-(benzyloxymethyl)-2-hydroxy-3-methylhex-5-enoate (200 mg, 0.72 mmol, 1.0 eq) in dry dichloromethane (4 ml) and pH 7 buffer (1 ml) was added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (0.49 g, 2.16 mmol, 3.0 eq) at 273 K. The orange mixture was stirred at room temperature for 3 days and filtered through a pad of celite and MgSO4. The solvents were removed under reduced pressure. Flash chromatography (isohexane/ethyl acetate 20/1 to 10/1) afforded (I) (78 mg, 0.49 mmol, 69%) as colourless crystals. Single crystals of (I) were obtained by vapor diffusion recrystallization technique from isohexane and ethyl acetate to yield colourless cuboids: mp 357 K; Rf = 0.5 (isohexane/ethyl acetate 1/1); 1H NMR (400 MHz, CDCl3, δ) 0.96 (d, J = 7.0 Hz, 3H), 2.42–2.46 (m, 1H), 2.93–2.95 (m, 1H), 3.28 (br. s, 1H), 4.20–4.35 (m, 1H + 2H), 5.10–5.21 (m, 2H), 5.68 (ddd, J = 17.4, 10.5, 6.9 Hz, 1H); 13C NMR (100 MHz, CDCl3, δ) 7.4 (CH3), 36.0 (CH), 40.8 (CH), 69.9 (CH2), 71.4 (CH), 118.5 (CH2=), 133.9 (CH=), 174.2 (CO); IR (in substance) ν 3250–3500, 2920, 1740 cm-1; Anal. Calcd. for C8H12O3: C, 61.5; H, 7.7. Found: C, 61.7; H, 7.7; [α]25D +18.1 (c 0.42, CHCl3).

Refinement top

H atoms were refined isotropically. In the absence of significant anomalous scattering effects, Friedel pairs were merged in the final refinement.

Structure description top

The title compound, (I), was synthesized to proof the relative configuration in the projected total synthesis of curvicollides A—C using a catalytic asymmetric Claisen rearrangement (Abraham, Körner et al., 2004; Abraham, Körner & Hiersemann, 2004) and a diastereoselective reduction with K-Selectride (Körner & Hiersemann, 2006). In order to verify the assumed relative configuration of methyl-4-(benzyloxymethyl)-2-hydroxy-3-methylhex-5-enoate (the preparation of this intermediate will be described elsewhere; Körner & Hiersemann, 2007), the δ-lactone, (I), was prepared. Fig. 1 shows that the relative configuration of C2, C3 and C4 is as expected. The configuration of the chiral C atoms in (I) (C2 S, C3 S and C4 R) were assigned based on the previously described stereochemical course of the catalytic asymmetric Claisen rearrangement (CAC) using the chiral Lewis acid [Cu{(S,S)-tert-Butyl-box}] (H2O)2(SbF6)2 (Evans et al., 1999). In the crystal the molecules are linked via a bifurcated O—H ··· O hydrogen bridge (Table 1) and a chain of molecules is formed along the a axis.

For related literature, see: Abraham, Körner & Hiersemann (2004); Abraham, Körner et al. (2004); Evans et al. (1999); Körner & Hiersemann (2006, 2007); Oikawa et al. (1982).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the labelling of all non-H atoms. Displacement ellipsoids are shown at the 30% probability level.
(3S,4S,5R)-3-Hydroxy-4-methyl-5-vinyltetrahydropyran-2-one top
Crystal data top
C8H12O3F(000) = 336
Mr = 156.18Dx = 1.329 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7057 reflections
a = 5.4490 (5) Åθ = 3.3–27.5°
b = 6.4489 (5) ŵ = 0.10 mm1
c = 22.2203 (14) ÅT = 173 K
V = 780.82 (11) Å3Block, colourless
Z = 40.45 × 0.40 × 0.40 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
727 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
Detector resolution: 19 vertical, 18 horizontal pixels mm-1h = 77
289 frames via ω rotation (Δω = 1°) and two times 20 s per frame (three sets at different κ–angles) scansk = 88
7057 measured reflectionsl = 2828
1075 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029All H-atom parameters refined
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0305P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max < 0.001
1075 reflectionsΔρmax = 0.15 e Å3
149 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.048 (5)
Crystal data top
C8H12O3V = 780.82 (11) Å3
Mr = 156.18Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.4490 (5) ŵ = 0.10 mm1
b = 6.4489 (5) ÅT = 173 K
c = 22.2203 (14) Å0.45 × 0.40 × 0.40 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
727 reflections with I > 2σ(I)
7057 measured reflectionsRint = 0.026
1075 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.058All H-atom parameters refined
S = 0.90Δρmax = 0.15 e Å3
1075 reflectionsΔρmin = 0.14 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5199 (2)0.8726 (2)0.82549 (5)0.0360 (4)
O20.6965 (2)0.6799 (2)0.89410 (6)0.0410 (4)
O30.3787 (2)0.7650 (2)0.98007 (5)0.0361 (4)
H3O0.249 (4)0.769 (4)1.0033 (10)0.058 (7)*
C10.5252 (3)0.7878 (3)0.88106 (7)0.0296 (5)
C20.3065 (3)0.8247 (3)0.92142 (7)0.0272 (4)
H20.178 (3)0.732 (3)0.9067 (7)0.028 (5)*
C30.2162 (3)1.0476 (3)0.91739 (7)0.0256 (5)
H30.064 (3)1.055 (3)0.9395 (6)0.021 (4)*
C40.1557 (3)1.0900 (3)0.85078 (8)0.0262 (4)
H40.041 (3)0.986 (3)0.8395 (7)0.024 (5)*
C50.3836 (3)1.0619 (3)0.81287 (8)0.0330 (5)
H5A0.338 (3)1.055 (2)0.7706 (8)0.025 (4)*
H5B0.502 (3)1.182 (3)0.8212 (7)0.030 (5)*
C60.3998 (4)1.1984 (4)0.94473 (9)0.0358 (5)
H6A0.415 (3)1.169 (3)0.9876 (8)0.033 (5)*
H6B0.561 (4)1.184 (3)0.9246 (8)0.046 (6)*
H6C0.335 (4)1.347 (4)0.9409 (8)0.050 (6)*
C70.0438 (3)1.3007 (3)0.84232 (8)0.0297 (5)
H70.073 (3)1.337 (3)0.8724 (7)0.033 (5)*
C80.0979 (4)1.4381 (3)0.80057 (9)0.0360 (5)
H8A0.020 (3)1.575 (3)0.8003 (7)0.034 (5)*
H8B0.225 (4)1.415 (3)0.7692 (9)0.050 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0363 (7)0.0428 (9)0.0288 (7)0.0135 (7)0.0068 (6)0.0009 (6)
O20.0334 (8)0.0448 (9)0.0448 (8)0.0126 (8)0.0043 (6)0.0038 (7)
O30.0334 (7)0.0450 (10)0.0300 (7)0.0077 (7)0.0038 (6)0.0099 (7)
C10.0289 (10)0.0290 (12)0.0308 (10)0.0010 (10)0.0019 (8)0.0027 (9)
C20.0262 (9)0.0285 (11)0.0269 (9)0.0007 (9)0.0012 (8)0.0017 (8)
C30.0218 (9)0.0284 (12)0.0267 (9)0.0006 (9)0.0045 (8)0.0006 (8)
C40.0231 (9)0.0282 (12)0.0274 (9)0.0000 (9)0.0006 (8)0.0011 (9)
C50.0315 (11)0.0398 (14)0.0278 (10)0.0082 (11)0.0002 (9)0.0023 (10)
C60.0391 (12)0.0372 (14)0.0311 (11)0.0045 (11)0.0003 (9)0.0027 (10)
C70.0264 (10)0.0348 (12)0.0278 (9)0.0028 (9)0.0012 (8)0.0002 (9)
C80.0400 (12)0.0348 (14)0.0333 (11)0.0043 (11)0.0018 (10)0.0012 (11)
Geometric parameters (Å, º) top
O1—C11.351 (2)C4—C51.512 (3)
O1—C51.456 (2)C4—H40.952 (18)
O2—C11.200 (2)C5—H5A0.973 (17)
O3—C21.415 (2)C5—H5B1.024 (19)
O3—H3O0.88 (2)C6—H6A0.974 (18)
C1—C21.510 (2)C6—H6B0.99 (2)
C2—C31.522 (3)C6—H6C1.02 (2)
C2—H20.977 (19)C7—C81.316 (3)
C3—C61.522 (3)C7—H70.952 (18)
C3—C41.541 (2)C8—H8A0.98 (2)
C3—H30.964 (17)C8—H8B1.00 (2)
C4—C71.502 (3)
C1—O1—C5121.78 (14)C5—C4—H4108.0 (10)
C2—O3—H3O108.0 (14)C3—C4—H4105.5 (10)
O2—C1—O1118.19 (16)O1—C5—C4114.33 (15)
O2—C1—C2124.20 (16)O1—C5—H5A106.3 (10)
O1—C1—C2117.49 (16)C4—C5—H5A109.5 (10)
O3—C2—C1106.53 (14)O1—C5—H5B106.0 (9)
O3—C2—C3113.67 (15)C4—C5—H5B109.2 (9)
C1—C2—C3111.67 (16)H5A—C5—H5B111.6 (13)
O3—C2—H2110.0 (10)C3—C6—H6A109.0 (11)
C1—C2—H2105.7 (10)C3—C6—H6B110.2 (12)
C3—C2—H2109.0 (10)H6A—C6—H6B110.3 (15)
C2—C3—C6111.57 (15)C3—C6—H6C109.7 (12)
C2—C3—C4107.06 (14)H6A—C6—H6C106.9 (16)
C6—C3—C4114.26 (17)H6B—C6—H6C110.7 (19)
C2—C3—H3107.0 (11)C8—C7—C4127.34 (18)
C6—C3—H3109.4 (10)C8—C7—H7118.7 (12)
C4—C3—H3107.2 (9)C4—C7—H7113.9 (12)
C7—C4—C5111.85 (16)C7—C8—H8A120.9 (10)
C7—C4—C3111.58 (15)C7—C8—H8B123.2 (13)
C5—C4—C3109.76 (15)H8A—C8—H8B115.8 (17)
C7—C4—H4109.9 (10)
C5—O1—C1—O2155.30 (18)C2—C3—C4—C7175.08 (14)
C5—O1—C1—C228.4 (2)C6—C3—C4—C760.9 (2)
O2—C1—C2—O317.4 (3)C2—C3—C4—C560.4 (2)
O1—C1—C2—O3166.52 (16)C6—C3—C4—C563.7 (2)
O2—C1—C2—C3142.05 (19)C1—O1—C5—C431.6 (3)
O1—C1—C2—C341.9 (2)C7—C4—C5—O1171.65 (15)
O3—C2—C3—C652.0 (2)C3—C4—C5—O147.2 (2)
C1—C2—C3—C668.52 (19)C5—C4—C7—C811.9 (3)
O3—C2—C3—C4177.73 (15)C3—C4—C7—C8135.3 (2)
C1—C2—C3—C457.18 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O2i0.88 (2)2.32 (2)2.9881 (18)133.0 (17)
O3—H3O···O3i0.88 (2)2.06 (2)2.8713 (8)153.1 (19)
Symmetry code: (i) x1/2, y+3/2, z+2.

Experimental details

Crystal data
Chemical formulaC8H12O3
Mr156.18
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)5.4490 (5), 6.4489 (5), 22.2203 (14)
V3)780.82 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.45 × 0.40 × 0.40
Data collection
DiffractometerNonius KappaCCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7057, 1075, 727
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.058, 0.90
No. of reflections1075
No. of parameters149
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.15, 0.14

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1991), SHELXL97 and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O2i0.88 (2)2.32 (2)2.9881 (18)133.0 (17)
O3—H3O···O3i0.88 (2)2.06 (2)2.8713 (8)153.1 (19)
Symmetry code: (i) x1/2, y+3/2, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds