Download citation
Download citation
link to html
The title compound, C17H19N3O4S, is an important inter­mediate for the synthesis of biologically active heterocyclic compounds. The thio­semicarbazide group is approximately planar and forms dihedral angles of 33.03 (6) and 45.48 (5)° with the benzene rings. The structure is stabilized by intra­molecular N—H...O, N—H...N and C—H...S, and inter­molecular N—H...O, N—H...S, C—H...S and C—H...O hydrogen-bond inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807025548/rz2142sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807025548/rz2142Isup2.hkl
Contains datablock I

CCDC reference: 651539

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.044
  • wR factor = 0.126
  • Data-to-parameter ratio = 18.9

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full Low ....... 0.94
Alert level C REFLT03_ALERT_3_C Reflection count < 95% complete From the CIF: _diffrn_reflns_theta_max 28.74 From the CIF: _diffrn_reflns_theta_full 28.74 From the CIF: _reflns_number_total 4293 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 4546 Completeness (_total/calc) 94.43%
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Thiosemicarbazide is interesting because of the formation of complexes with biological activities (Shen et al., 1998). Some substituted thiourea derivatives have shown interesting biological effects, including anti-HIV properties (Mao et al., 1999), and thiourea derivatives have also been successfully screened for various biological actions (Antholine & Taketa, 1982). As a ligand with potential S– and N-atom donors, thiosemicarbazide is interesting because of the structural chemistry of its multifunctional coordination modes (N-monodentate, S-monodentate or N,S-bidentate). In order to investigate further this kind of ligand, we synthesized the title compound and describe its structure here.

In the molecule (Fig. 1), the bond lengths and angles are in normal ranges (Allen et al., 1987; Ji et al., 2002). Selected bond distances and angles within the thiosemicarbazide group are quoted in Table 1. The thiosemicarbazide group is approximately planar (maximum displacement 0.133 (2) Å for atom N2) and forms dihedral angles of 33.03 (6) and 45.48 (5)° with the benzene rings. The dihedral angle between the benzene rings is 56.29 (6)°. The molecular structure is stabilized by intramolecular N—H···O, N—H···N and C—H···S hydrogen bonds (Table 2). Intermolecular N—H···O, N—H···S, C—H···S, C—H···O hydrogen interactions link the molecules into an extended three-dimensional network.

Related literature top

For general background see: Allen et al. (1987); Shen et al. (1998); Mao et al. (1999); Antholine & Taketa (1982); for literature on a related structure see: Ji et al. (2002).

Experimental top

The title compound was prepared by the reaction of 3,5-dimethoxy bezohydrazide (3.92 g, 20 mmol) and 2-methoxyphenyl isothiocyanate (3.3 g, 20 mmol). Single crystals suitable for X-ray measurements were obtained by slow evaporation of an ethanol/water solution (60: 40 v/v) at room temperature (yield: 80%; m.p. 435–437 K).

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å and C—H = 0.93–0.96 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C, N) or 1.2 Ueq(C) for methyl groups.

Structure description top

Thiosemicarbazide is interesting because of the formation of complexes with biological activities (Shen et al., 1998). Some substituted thiourea derivatives have shown interesting biological effects, including anti-HIV properties (Mao et al., 1999), and thiourea derivatives have also been successfully screened for various biological actions (Antholine & Taketa, 1982). As a ligand with potential S– and N-atom donors, thiosemicarbazide is interesting because of the structural chemistry of its multifunctional coordination modes (N-monodentate, S-monodentate or N,S-bidentate). In order to investigate further this kind of ligand, we synthesized the title compound and describe its structure here.

In the molecule (Fig. 1), the bond lengths and angles are in normal ranges (Allen et al., 1987; Ji et al., 2002). Selected bond distances and angles within the thiosemicarbazide group are quoted in Table 1. The thiosemicarbazide group is approximately planar (maximum displacement 0.133 (2) Å for atom N2) and forms dihedral angles of 33.03 (6) and 45.48 (5)° with the benzene rings. The dihedral angle between the benzene rings is 56.29 (6)°. The molecular structure is stabilized by intramolecular N—H···O, N—H···N and C—H···S hydrogen bonds (Table 2). Intermolecular N—H···O, N—H···S, C—H···S, C—H···O hydrogen interactions link the molecules into an extended three-dimensional network.

For general background see: Allen et al. (1987); Shen et al. (1998); Mao et al. (1999); Antholine & Taketa (1982); for literature on a related structure see: Ji et al. (2002).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing diagram of the title compound, viewed down the b axis. Intra- and intermolecular hydrogen bonds are shown as dotted lines.
1-(3,5-Dimethoxybenzoyl)-4-(2-methoxyphenyl)thiosemicarbazide top
Crystal data top
C17H19N3O4SF(000) = 760
Mr = 361.42Dx = 1.371 Mg m3
Monoclinic, P21/cMelting point: 435(2) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 15.371 (6) ÅCell parameters from 1520 reflections
b = 14.775 (6) Åθ = 2.7–24.9°
c = 7.904 (3) ŵ = 0.21 mm1
β = 102.835 (6)°T = 293 K
V = 1750.2 (12) Å3Block, colourless
Z = 40.46 × 0.26 × 0.20 mm
Data collection top
Bruker APEXII
diffractometer
4293 independent reflections
Radiation source: rotating-anode generator3033 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 28.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2020
Tmin = 0.904, Tmax = 0.960k = 1919
13047 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0179P)2 + 0.3525P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
4293 reflectionsΔρmax = 0.26 e Å3
227 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0132 (17)
Crystal data top
C17H19N3O4SV = 1750.2 (12) Å3
Mr = 361.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.371 (6) ŵ = 0.21 mm1
b = 14.775 (6) ÅT = 293 K
c = 7.904 (3) Å0.46 × 0.26 × 0.20 mm
β = 102.835 (6)°
Data collection top
Bruker APEXII
diffractometer
4293 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3033 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 0.960Rint = 0.030
13047 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.10Δρmax = 0.26 e Å3
4293 reflectionsΔρmin = 0.32 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15553 (3)0.37817 (3)0.97813 (7)0.04962 (16)
O10.11298 (9)0.03948 (9)0.8952 (2)0.0637 (4)
O20.34541 (9)0.14431 (9)1.4113 (2)0.0639 (4)
O30.61762 (8)0.06156 (8)1.2608 (2)0.0558 (4)
O40.40068 (9)0.20133 (9)1.0677 (2)0.0607 (4)
N10.13745 (9)0.19931 (9)1.0337 (2)0.0487 (4)
H1B0.16330.15261.08740.058*
N20.26333 (9)0.26783 (9)1.1842 (2)0.0487 (4)
H2B0.29100.31561.22970.058*
N30.29958 (9)0.18262 (9)1.2322 (2)0.0470 (4)
H3B0.27770.14841.30040.056*
C10.01826 (12)0.24193 (14)0.9010 (3)0.0602 (5)
H1A0.01090.29900.95190.072*
C20.10062 (14)0.21636 (17)0.7993 (4)0.0757 (7)
H2A0.14840.25650.78200.091*
C30.11147 (16)0.13246 (18)0.7247 (4)0.0800 (7)
H3A0.16650.11630.65560.096*
C40.04169 (15)0.07148 (16)0.7508 (3)0.0713 (6)
H4A0.04980.01450.69970.086*
C50.04030 (12)0.09527 (13)0.8531 (3)0.0527 (5)
C60.05241 (11)0.18213 (12)0.9261 (2)0.0468 (4)
C70.35912 (11)0.00066 (11)1.2957 (2)0.0458 (4)
H7A0.30140.01181.30690.055*
C80.39811 (11)0.08474 (11)1.3456 (2)0.0458 (4)
C90.48417 (11)0.10345 (11)1.3312 (2)0.0452 (4)
H9A0.50970.15951.36490.054*
C100.53229 (10)0.03741 (11)1.2657 (2)0.0423 (4)
C110.49472 (10)0.04567 (11)1.2121 (2)0.0425 (4)
H11A0.52670.08881.16540.051*
C120.40784 (10)0.06380 (10)1.2293 (2)0.0401 (4)
C130.18429 (10)0.27610 (10)1.0656 (2)0.0398 (4)
C140.37060 (10)0.15494 (11)1.1684 (2)0.0417 (4)
C150.10394 (18)0.05097 (14)0.8277 (4)0.0806 (7)
H15A0.15930.08270.86560.121*
H15B0.08870.04890.70320.121*
H15C0.05770.08180.86900.121*
C160.38136 (16)0.23039 (14)1.4676 (3)0.0704 (6)
H16A0.33760.26521.50880.106*
H16B0.43330.22281.55970.106*
H16C0.39750.26141.37240.106*
C170.67315 (12)0.00578 (14)1.2084 (3)0.0586 (5)
H17A0.73080.01961.20980.088*
H17B0.67960.05611.28690.088*
H17C0.64630.02601.09320.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0436 (3)0.0354 (2)0.0669 (3)0.00322 (17)0.0061 (2)0.00655 (19)
O10.0637 (9)0.0389 (7)0.0914 (12)0.0079 (6)0.0234 (8)0.0095 (7)
O20.0528 (7)0.0463 (7)0.0977 (12)0.0047 (6)0.0273 (8)0.0188 (7)
O30.0380 (6)0.0455 (7)0.0859 (10)0.0085 (5)0.0177 (6)0.0024 (6)
O40.0609 (8)0.0430 (7)0.0833 (11)0.0051 (6)0.0272 (8)0.0127 (7)
N10.0411 (8)0.0340 (7)0.0659 (11)0.0021 (6)0.0011 (7)0.0039 (6)
N20.0387 (7)0.0315 (7)0.0704 (11)0.0051 (5)0.0000 (7)0.0020 (6)
N30.0408 (7)0.0357 (7)0.0642 (10)0.0085 (6)0.0108 (7)0.0078 (6)
C10.0420 (9)0.0507 (11)0.0848 (16)0.0022 (8)0.0077 (10)0.0057 (10)
C20.0420 (11)0.0751 (15)0.103 (2)0.0069 (10)0.0004 (12)0.0210 (13)
C30.0519 (12)0.0922 (18)0.0861 (18)0.0259 (12)0.0058 (12)0.0148 (14)
C40.0697 (14)0.0672 (14)0.0735 (16)0.0310 (12)0.0083 (12)0.0093 (11)
C50.0516 (10)0.0476 (10)0.0602 (13)0.0125 (8)0.0154 (9)0.0007 (8)
C60.0393 (8)0.0426 (9)0.0568 (11)0.0077 (7)0.0070 (8)0.0033 (8)
C70.0355 (8)0.0433 (9)0.0578 (12)0.0042 (7)0.0086 (8)0.0012 (8)
C80.0425 (9)0.0393 (9)0.0546 (11)0.0003 (7)0.0089 (8)0.0023 (7)
C90.0425 (9)0.0375 (8)0.0540 (11)0.0072 (7)0.0074 (8)0.0005 (7)
C100.0353 (8)0.0403 (9)0.0500 (10)0.0048 (6)0.0068 (7)0.0047 (7)
C110.0378 (8)0.0382 (8)0.0509 (11)0.0002 (6)0.0085 (7)0.0016 (7)
C120.0360 (8)0.0365 (8)0.0453 (10)0.0030 (6)0.0038 (7)0.0018 (7)
C130.0349 (8)0.0339 (8)0.0510 (10)0.0031 (6)0.0105 (7)0.0031 (7)
C140.0361 (8)0.0359 (8)0.0499 (10)0.0015 (6)0.0029 (7)0.0013 (7)
C150.0966 (17)0.0411 (11)0.116 (2)0.0178 (11)0.0493 (16)0.0168 (12)
C160.0807 (15)0.0460 (11)0.0895 (18)0.0042 (10)0.0297 (13)0.0168 (11)
C170.0419 (9)0.0575 (11)0.0784 (15)0.0035 (8)0.0177 (10)0.0062 (10)
Geometric parameters (Å, º) top
S1—C131.6769 (17)C4—C51.383 (3)
O1—C51.369 (2)C4—H4A0.9300
O1—C151.434 (2)C5—C61.403 (3)
O2—C81.374 (2)C7—C121.385 (2)
O2—C161.418 (2)C7—C81.398 (2)
O3—C101.3681 (19)C7—H7A0.9300
O3—C171.431 (2)C8—C91.381 (2)
O4—C141.217 (2)C9—C101.392 (2)
N1—C131.337 (2)C9—H9A0.9300
N1—C61.415 (2)C10—C111.382 (2)
N1—H1B0.8600C11—C121.398 (2)
N2—C131.365 (2)C11—H11A0.9300
N2—N31.3949 (19)C12—C141.500 (2)
N2—H2B0.8600C15—H15A0.9600
N3—C141.363 (2)C15—H15B0.9600
N3—H3B0.8600C15—H15C0.9600
C1—C61.380 (3)C16—H16A0.9600
C1—C21.393 (3)C16—H16B0.9600
C1—H1A0.9300C16—H16C0.9600
C2—C31.367 (4)C17—H17A0.9600
C2—H2A0.9300C17—H17B0.9600
C3—C41.381 (3)C17—H17C0.9600
C3—H3A0.9300
C5—O1—C15117.66 (17)C8—C9—C10119.24 (15)
C8—O2—C16118.15 (15)C8—C9—H9A120.4
C10—O3—C17117.66 (14)C10—C9—H9A120.4
C13—N1—C6130.71 (15)O3—C10—C11124.11 (16)
C13—N1—H1B114.6O3—C10—C9114.81 (14)
C6—N1—H1B114.6C11—C10—C9121.07 (15)
C13—N2—N3120.56 (14)C10—C11—C12118.91 (16)
C13—N2—H2B119.7C10—C11—H11A120.5
N3—N2—H2B119.7C12—C11—H11A120.5
C14—N3—N2118.32 (15)C7—C12—C11120.92 (15)
C14—N3—H3B120.8C7—C12—C14122.62 (15)
N2—N3—H3B120.8C11—C12—C14116.45 (15)
C6—C1—C2119.7 (2)N1—C13—N2114.41 (14)
C6—C1—H1A120.2N1—C13—S1127.13 (13)
C2—C1—H1A120.2N2—C13—S1118.45 (12)
C3—C2—C1120.2 (2)O4—C14—N3121.67 (15)
C3—C2—H2A119.9O4—C14—C12122.85 (16)
C1—C2—H2A119.9N3—C14—C12115.48 (15)
C2—C3—C4120.7 (2)O1—C15—H15A109.5
C2—C3—H3A119.6O1—C15—H15B109.5
C4—C3—H3A119.6H15A—C15—H15B109.5
C3—C4—C5119.9 (2)O1—C15—H15C109.5
C3—C4—H4A120.1H15A—C15—H15C109.5
C5—C4—H4A120.1H15B—C15—H15C109.5
O1—C5—C4125.29 (19)O2—C16—H16A109.5
O1—C5—C6115.12 (16)O2—C16—H16B109.5
C4—C5—C6119.57 (19)H16A—C16—H16B109.5
C1—C6—C5119.90 (17)O2—C16—H16C109.5
C1—C6—N1124.34 (17)H16A—C16—H16C109.5
C5—C6—N1115.58 (16)H16B—C16—H16C109.5
C12—C7—C8118.96 (15)O3—C17—H17A109.5
C12—C7—H7A120.5O3—C17—H17B109.5
C8—C7—H7A120.5H17A—C17—H17B109.5
O2—C8—C9123.99 (16)O3—C17—H17C109.5
O2—C8—C7115.11 (15)H17A—C17—H17C109.5
C9—C8—C7120.89 (16)H17B—C17—H17C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O10.862.282.595 (2)102
N1—H1B···N30.862.202.645 (2)112
C1—H1A···S10.932.783.292 (2)116
N2—H2B···O3i0.862.293.088 (2)155
N3—H3B···S1ii0.862.613.377 (2)149
C4—H4A···S1iii0.932.773.618 (3)152
C9—H9A···O4iv0.932.473.386 (2)170
Symmetry codes: (i) x+1, y+1/2, z+5/2; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+3/2; (iv) x+1, y1/2, z+5/2.

Experimental details

Crystal data
Chemical formulaC17H19N3O4S
Mr361.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.371 (6), 14.775 (6), 7.904 (3)
β (°) 102.835 (6)
V3)1750.2 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.46 × 0.26 × 0.20
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.904, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
13047, 4293, 3033
Rint0.030
(sin θ/λ)max1)0.677
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.127, 1.10
No. of reflections4293
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.32

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1999), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
S1—C131.6769 (17)N2—C131.365 (2)
N1—C131.337 (2)N2—N31.3949 (19)
N1—C61.415 (2)N3—C141.363 (2)
C13—N1—C6130.71 (15)N3—N2—H2B119.7
C13—N2—N3120.56 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O10.862.282.595 (2)102.1
N1—H1B···N30.862.202.645 (2)112.2
C1—H1A···S10.932.783.292 (2)115.8
N2—H2B···O3i0.862.293.088 (2)155.2
N3—H3B···S1ii0.862.613.377 (2)148.6
C4—H4A···S1iii0.932.773.618 (3)152.4
C9—H9A···O4iv0.932.473.386 (2)169.9
Symmetry codes: (i) x+1, y+1/2, z+5/2; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+3/2; (iv) x+1, y1/2, z+5/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds