supplementary materials


Acta Cryst. (2007). E63, i143    [ doi:10.1107/S1600536807024798 ]

Nd3Mo4SiO14

P. Gougeon and P. Gall

Abstract top

The title compound, trineodymium silicotetramolybdate, is isotypic with La3Mo4SiO14. The crystal structure contains ribbons made of chains of triangular Mo3O13 units and chains of edge-sharing MoO6 octahedra. The ribbons are separated from each other by the Nd3+ and Si4+ cations. The three distinct Nd3+ cations are surrounded by eight to ten O atoms, and the Si4+ is tetrahedrally coordinated. Except for two Mo and four O sites, all other sites (three Nd, one Mo, one Si and six O) are located on mirror planes.

Comment top

The title compound is isotypic with La3Mo4SiO14 (Betteridge et al., 1984). The crystal structure contains chains of triangular Mo3O13 units and chains of edge-sharing MoO6 octahedra similar to those found in MoO2 (Brandt & Skapski, 1967). Both chains run parallel to the b axis (Fig. 1). Each single Mo chain is linked through O2 and O7 atoms to two Mo3 chains to form ribbons (Fig. 2). The Mo—Mo distances within the Mo3 triangles are 2.5351 (8) and 2.5498 (9) Å and the shortest distance between adjacent Mo3 clusters is 3.0661 (9) Å. In the single Mo chains, the Mo—Mo distances are alternately 2.503 (4) and 3.145 (4) Å. The Mo—O distances of Mo1 and Mo2 forming the Mo3 cluster unit range from 1.944 (5) to 2.127 (4) Å, while those of the Mo3 atom forming the Mo2 dimer vary between 1.925 (6) and 2.187 (5) Å. From the lengths of the Mo—O bonds, we can estimate the oxidation states of each independent Mo atom by using the empirical bond length-bond strength relationship developed by Brown and Wu (1976). The calculations result in valence sums of +3.99 (6), +3.59 (6) and +3.92 (6) for Mo1, Mo2 and Mo3, respectively. Consequently, in Nd3Mo4SiO14 the number of electrons per Mo3 cluster is evaluated to 7, and to 2 per Mo atom in the single Mo chains. The Si site is tetrahedrally coordinated by O atoms with Si—O distances ranging from 1.620 (7) to 1.649 (9) Å. The bond length-bond strength calculation shows an oxidation state of +3.86 (5), in good agreement with the expected value of +4. The Nd atoms are surrounded by 8 to 10 O atoms forming considerably distorted polyhedra with Nd—O distances ranging from 2.321 (4) to 2.896 (8) Å (Table 1).

Related literature top

For the isotypic La3Mo4SiO14, see Betteridge et al. (1984). The structure contains edge-sharing MoO6 octahedra similar to those found in MoO2 (Brandt & Skapski, 1967). The oxidation states of Mo atoms were estimated using the data given by Brown & Wu (1976). Besides the title compound, crystals of NdMo5O8 (Gougeon et al., 2003) were also obtained.

Experimental top

In an attempt to prepare Nd16Mo20SiO56, single crystals of Nd3Mo4SiO14 were obtained by the reaction of Nd2O3, MoO3, SiO2 and Mo in the molar ratio 8:10:1:10. The initial mixture (ca 5 g) was cold pressed and loaded into a molybdenum crucible, which was sealed under a low argon pressure using an arc welding system. The charge was heated at the rate of 300 K/h up to 1873 K, the temperature which was held for 48 h, then cooled at 100 K/h down to 1373 K and finally cooled to room temperature by turning off the furnace. X-ray powder diffraction measurements using Cu Kα1 radiation and a INEL CPS-120 curved position sensitive detector showed that the dominant products were NdMo5O8 (Gougeon et al., 2003) and Nd3Mo4SiO14.

Refinement top

In the final refinement cycles the site occupancy factor for the Mo3 atom was constrained to 0.5. Because of the disorder of the Mo3 atom, we made reciprocal space reconstructions of different planes as well as long-exposure rotations along the three axes on the Kappa CCD diffractometer. In both cases, we did not observed any superlattice reflections or diffuse lines. The highest peak and the deepest hole in the final Fourier map are located 1.75Å from O5 and 1.43Å from Mo2, respectively.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT; data reduction: EVALCCD (Duisenberg, 1998); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. : Fragment of the chains of triangular Mo3O13 units and edge sharing MoO6 octahedra in Nd3Mo4SiO14. Displacement ellipsoids are drawn at the 97% probability level.
[Figure 2] Fig. 2. : View of Nd3Mo4SiO14 along [010]. Displacement ellipsoids are drawn at the 97% probability level. Symmetry codes: (i) x, y - 1, z; (ii) x + 1/2, -y + 1/2, -z + 1/2.
trineodymium silicotetramolybdate top
Crystal data top
Nd3Mo4SiO14F(000) = 1896
Mr = 1068.56Dx = 6.640 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2nCell parameters from 4003 reflections
a = 17.5348 (15) Åθ = 3.8–38.0°
b = 5.6159 (3) ŵ = 19.04 mm1
c = 10.8542 (11) ÅT = 293 K
V = 1068.85 (15) Å3Needle, black
Z = 40.16 × 0.02 × 0.02 mm
Data collection top
Nonius KappaCCD
diffractometer
3131 independent reflections
Radiation source: fine-focus sealed tube2619 reflections with I > 2σ(I)
graphiteRint = 0.063
φ scans (κ = 0) + additional ω scansθmax = 38.0°, θmin = 3.8°
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
h = 3029
Tmin = 0.272, Tmax = 0.710k = 89
30670 measured reflectionsl = 1817
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.037Secondary atom site location: difference Fourier map
wR(F2) = 0.085 w = 1/[σ2(Fo2) + 19.2566P]
where P = (Fo2 + 2Fc2)/3
S = 1.38(Δ/σ)max = 0.001
3131 reflectionsΔρmax = 2.32 e Å3
121 parametersΔρmin = 3.72 e Å3
Crystal data top
Nd3Mo4SiO14V = 1068.85 (15) Å3
Mr = 1068.56Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 17.5348 (15) ŵ = 19.04 mm1
b = 5.6159 (3) ÅT = 293 K
c = 10.8542 (11) Å0.16 × 0.02 × 0.02 mm
Data collection top
Nonius KappaCCD
diffractometer
3131 independent reflections
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
2619 reflections with I > 2σ(I)
Tmin = 0.272, Tmax = 0.710Rint = 0.063
30670 measured reflectionsθmax = 38.0°
Refinement top
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + 19.2566P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085Δρmax = 2.32 e Å3
S = 1.38Δρmin = 3.72 e Å3
3131 reflectionsAbsolute structure: ?
121 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nd10.16358 (3)0.75000.63158 (4)0.00610 (8)
Nd20.03477 (3)1.25000.79944 (4)0.00879 (8)
Nd30.15474 (3)0.25000.00583 (4)0.00702 (8)
Mo10.28501 (4)0.75000.36147 (6)0.00450 (11)
Mo20.16265 (3)0.52298 (8)0.32043 (4)0.00428 (8)
Mo30.00732 (5)0.7788 (4)0.50698 (9)0.0047 (4)0.50
Si0.06365 (13)0.25000.1039 (2)0.0052 (4)
O10.0800 (3)0.5018 (8)0.1775 (4)0.0077 (7)
O20.1004 (4)0.25000.4002 (6)0.0076 (10)
O30.2135 (3)0.25000.2377 (5)0.0051 (9)
O40.3506 (3)0.4958 (8)0.3020 (4)0.0084 (7)
O50.2315 (2)0.5069 (7)0.4697 (4)0.0060 (7)
O60.3766 (4)0.75000.4892 (6)0.0121 (12)
O70.0941 (4)0.75000.4146 (6)0.0089 (10)
O80.2217 (3)0.75000.2021 (6)0.0074 (10)
O90.0452 (3)0.5027 (8)0.3826 (4)0.0107 (8)
O100.0224 (4)0.25000.0497 (7)0.0141 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.00569 (17)0.00825 (17)0.00435 (17)0.0000.00015 (12)0.000
Nd20.00467 (17)0.01261 (18)0.0091 (2)0.0000.00054 (13)0.000
Nd30.00575 (17)0.00927 (17)0.00606 (17)0.0000.00034 (13)0.000
Mo10.0037 (2)0.0056 (2)0.0041 (3)0.0000.00002 (19)0.000
Mo20.00411 (18)0.00450 (16)0.00421 (18)0.00031 (13)0.00010 (13)0.00078 (13)
Mo30.0042 (3)0.0057 (12)0.0040 (3)0.0002 (3)0.0001 (2)0.0002 (3)
Si0.0045 (9)0.0073 (9)0.0037 (9)0.0000.0002 (7)0.000
O10.0079 (18)0.0077 (16)0.0075 (18)0.0002 (13)0.0015 (13)0.0036 (14)
O20.006 (2)0.009 (2)0.008 (3)0.0000.0023 (19)0.000
O30.006 (2)0.003 (2)0.006 (2)0.0000.0009 (18)0.000
O40.0075 (18)0.0094 (16)0.0083 (18)0.0028 (14)0.0002 (13)0.0014 (14)
O50.0067 (17)0.0062 (15)0.0050 (17)0.0005 (13)0.0001 (13)0.0018 (12)
O60.006 (3)0.021 (3)0.009 (3)0.0000.004 (2)0.000
O70.005 (2)0.011 (3)0.010 (3)0.0000.003 (2)0.000
O80.004 (2)0.012 (2)0.007 (3)0.0000.0003 (18)0.000
O90.010 (2)0.0061 (17)0.016 (2)0.0008 (14)0.0043 (15)0.0003 (15)
O100.006 (3)0.019 (3)0.018 (3)0.0000.002 (2)0.000
Geometric parameters (Å, °) top
Nd1—O4i2.321 (4)Mo2—O22.072 (4)
Nd1—O4ii2.321 (4)Mo2—O82.084 (5)
Nd1—O3ii2.444 (6)Mo2—O12.127 (4)
Nd1—O9iii2.520 (5)Mo2—Mo2v2.5498 (9)
Nd1—O9iv2.520 (5)Mo2—Mo2xvii3.0661 (9)
Nd1—O5v2.524 (4)Mo3—Mo3v0.323 (4)
Nd1—O52.524 (4)Mo3—O2iii1.925 (6)
Nd1—O72.651 (7)Mo3—O9v1.941 (5)
Nd1—Mo33.2916 (11)Mo3—O9iv1.966 (5)
Nd1—Mo3v3.2916 (11)Mo3—O72.047 (6)
Nd1—Mo23.6099 (7)Mo3—O92.160 (5)
Nd1—Mo2v3.6099 (7)Mo3—O9iii2.187 (5)
Nd2—O9iv2.422 (5)Mo3—Mo3vi2.503 (4)
Nd2—O9vi2.422 (5)Mo3—Mo3iv2.8237 (2)
Nd2—O1iv2.461 (4)Mo3—Mo3xviii2.8237 (2)
Nd2—O1vi2.461 (4)Mo3—Mo3iii3.145 (4)
Nd2—O4vii2.465 (4)Si—O101.620 (7)
Nd2—O4i2.465 (4)Si—O6xix1.626 (7)
Nd2—O6vii2.580 (7)Si—O11.649 (4)
Nd2—O10viii2.896 (8)Si—O1xvii1.649 (4)
Nd2—Mo1vii3.2310 (9)Si—Nd2xx3.343 (2)
Nd2—Siviii3.343 (2)Si—Nd3xi3.4428 (14)
Nd2—Mo3vi3.3645 (11)Si—Nd3xxi3.4428 (14)
Nd2—Mo3iv3.3645 (11)Si—Nd2iii3.4590 (14)
Nd3—O102.368 (7)Si—Nd2vi3.4590 (14)
Nd3—O5ix2.476 (4)O1—Nd2vi2.461 (4)
Nd3—O5x2.476 (4)O1—Nd3xi2.760 (5)
Nd3—O4x2.503 (4)O2—Mo3iii1.925 (6)
Nd3—O4ix2.503 (4)O2—Mo3xviii1.925 (6)
Nd3—O8xi2.544 (6)O2—Mo2xvii2.072 (4)
Nd3—O1xii2.760 (5)O3—Mo2xvii1.988 (4)
Nd3—O1xi2.760 (5)O3—Nd1xix2.444 (6)
Nd3—O6x2.8617 (13)O4—Nd1xix2.321 (4)
Nd3—O6xiii2.8617 (13)O4—Nd2xiv2.465 (4)
Nd3—Mo1x3.3280 (5)O4—Nd3xvi2.503 (4)
Nd3—Mo1xiii3.3280 (5)O5—Nd3xvi2.476 (4)
Mo1—O4v1.944 (5)O6—Siii1.626 (7)
Mo1—O41.944 (5)O6—Nd2xiv2.580 (7)
Mo1—O52.030 (4)O6—Nd3xvi2.8617 (13)
Mo1—O5v2.030 (4)O6—Nd3xv2.8617 (13)
Mo1—O82.055 (6)O7—Mo2v2.029 (5)
Mo1—O62.122 (6)O7—Mo3v2.047 (6)
Mo1—Mo22.5351 (8)O8—Mo2v2.084 (5)
Mo1—Mo2v2.5351 (8)O8—Nd3xi2.544 (6)
Mo1—Nd2xiv3.2310 (9)O9—Mo3v1.941 (5)
Mo1—Nd3xv3.3280 (5)O9—Mo3xviii1.966 (5)
Mo1—Nd3xvi3.3280 (5)O9—Mo3iii2.187 (5)
Mo2—O31.988 (4)O9—Nd2vi2.422 (5)
Mo2—O52.023 (4)O9—Nd1iii2.520 (5)
Mo2—O72.029 (5)O10—Nd2xx2.896 (8)
O4i—Nd1—O4ii73.0 (2)O5—Mo2—Mo2v92.56 (12)
O4i—Nd1—O3ii73.68 (16)O7—Mo2—Mo2v51.08 (11)
O4ii—Nd1—O3ii73.68 (16)O2—Mo2—Mo2v137.73 (13)
O4i—Nd1—O9iii107.18 (16)O8—Mo2—Mo2v52.29 (10)
O4ii—Nd1—O9iii68.00 (16)O1—Mo2—Mo2v93.21 (12)
O3ii—Nd1—O9iii139.08 (13)Mo1—Mo2—Mo2v59.808 (13)
O4i—Nd1—O9iv68.00 (16)O3—Mo2—Mo2xvii39.53 (13)
O4ii—Nd1—O9iv107.18 (16)O5—Mo2—Mo2xvii87.44 (12)
O3ii—Nd1—O9iv139.08 (13)O7—Mo2—Mo2xvii128.92 (11)
O9iii—Nd1—O9iv68.6 (2)O2—Mo2—Mo2xvii42.27 (13)
O4i—Nd1—O5v106.48 (15)O8—Mo2—Mo2xvii127.71 (10)
O4ii—Nd1—O5v157.96 (15)O1—Mo2—Mo2xvii86.79 (12)
O3ii—Nd1—O5v84.93 (15)Mo1—Mo2—Mo2xvii120.192 (13)
O9iii—Nd1—O5v130.62 (15)Mo2v—Mo2—Mo2xvii180.00 (6)
O9iv—Nd1—O5v92.40 (14)O3—Mo2—Nd1133.87 (17)
O4i—Nd1—O5157.96 (15)O5—Mo2—Nd142.60 (12)
O4ii—Nd1—O5106.48 (14)O7—Mo2—Nd146.31 (19)
O3ii—Nd1—O584.93 (15)O2—Mo2—Nd182.68 (16)
O9iii—Nd1—O592.40 (14)O8—Mo2—Nd1110.98 (14)
O9iv—Nd1—O5130.62 (15)O1—Mo2—Nd1134.87 (12)
O5v—Nd1—O565.47 (19)Mo1—Mo2—Nd169.77 (2)
O4i—Nd1—O7131.17 (14)Mo2v—Mo2—Nd169.319 (8)
O4ii—Nd1—O7131.17 (14)Mo2xvii—Mo2—Nd1110.681 (8)
O3ii—Nd1—O7145.5 (2)Mo3v—Mo3—O2iii85.19 (7)
O9iii—Nd1—O764.33 (15)Mo3v—Mo3—O9v129.21 (15)
O9iv—Nd1—O764.33 (15)O2iii—Mo3—O9v97.3 (2)
O5v—Nd1—O766.35 (14)Mo3v—Mo3—O9iv129.78 (15)
O5—Nd1—O766.35 (14)O2iii—Mo3—O9iv97.6 (2)
O9iv—Nd2—O9vi70.0 (2)O9v—Mo3—O9iv100.3 (2)
O9iv—Nd2—O1iv79.63 (15)Mo3v—Mo3—O785.48 (6)
O9vi—Nd2—O1iv118.00 (15)O2iii—Mo3—O7170.39 (14)
O9iv—Nd2—O1vi118.00 (15)O9v—Mo3—O790.4 (2)
O9vi—Nd2—O1vi79.63 (15)O9iv—Mo3—O786.7 (2)
O1iv—Nd2—O1vi69.0 (2)Mo3v—Mo3—O944.14 (14)
O9iv—Nd2—O4vii106.24 (15)O2iii—Mo3—O990.35 (19)
O9vi—Nd2—O4vii67.40 (15)O9v—Mo3—O985.1 (3)
O1iv—Nd2—O4vii173.48 (15)O9iv—Mo3—O9169.71 (13)
O1vi—Nd2—O4vii109.73 (15)O7—Mo3—O984.51 (19)
O9iv—Nd2—O4i67.40 (15)Mo3v—Mo3—O9iii43.71 (13)
O9vi—Nd2—O4i106.24 (15)O2iii—Mo3—O9iii90.55 (19)
O1iv—Nd2—O4i109.73 (15)O9v—Mo3—O9iii169.09 (14)
O1vi—Nd2—O4i173.48 (15)O9iv—Mo3—O9iii86.1 (3)
O4vii—Nd2—O4i70.8 (2)O7—Mo3—O9iii81.12 (18)
O9iv—Nd2—O6vii127.30 (15)O9—Mo3—O9iii87.3 (2)
O9vi—Nd2—O6vii127.30 (15)Mo3v—Mo3—Mo3vi173.16 (4)
O1iv—Nd2—O6vii114.28 (15)O2iii—Mo3—Mo3vi101.65 (9)
O1vi—Nd2—O6vii114.28 (15)O9v—Mo3—Mo3vi50.60 (15)
O4vii—Nd2—O6vii60.01 (15)O9iv—Mo3—Mo3vi49.73 (15)
O4i—Nd2—O6vii60.01 (15)O7—Mo3—Mo3vi87.69 (6)
O9iv—Nd2—O10viii142.32 (12)O9—Mo3—Mo3vi134.93 (14)
O9vi—Nd2—O10viii142.32 (12)O9iii—Mo3—Mo3vi135.05 (14)
O1iv—Nd2—O10viii67.74 (15)Mo3v—Mo3—Mo3iv173.94 (4)
O1vi—Nd2—O10viii67.74 (15)O2iii—Mo3—Mo3iv100.87 (8)
O4vii—Nd2—O10viii105.78 (15)O9v—Mo3—Mo3iv50.59 (15)
O4i—Nd2—O10viii105.78 (15)O9iv—Mo3—Mo3iv49.75 (15)
O6vii—Nd2—O10viii57.3 (2)O7—Mo3—Mo3iv88.47 (7)
O10—Nd3—O5ix140.12 (12)O9—Mo3—Mo3iv135.08 (14)
O10—Nd3—O5x140.12 (12)O9iii—Mo3—Mo3iv135.23 (14)
O5ix—Nd3—O5x71.3 (2)Mo3vi—Mo3—Mo3iv0.780 (13)
O10—Nd3—O4x78.21 (18)Mo3v—Mo3—Mo3xviii6.06 (4)
O5ix—Nd3—O4x105.19 (14)O2iii—Mo3—Mo3xviii91.24 (7)
O5x—Nd3—O4x67.62 (14)O9v—Mo3—Mo3xviii128.49 (16)
O10—Nd3—O4ix78.21 (18)O9iv—Mo3—Mo3xviii128.78 (15)
O5ix—Nd3—O4ix67.62 (14)O7—Mo3—Mo3xviii79.42 (7)
O5x—Nd3—O4ix105.19 (14)O9—Mo3—Mo3xviii44.01 (13)
O4x—Nd3—O4ix66.9 (2)O9iii—Mo3—Mo3xviii43.31 (13)
O10—Nd3—O8xi129.1 (2)Mo3vi—Mo3—Mo3xviii167.10 (8)
O5ix—Nd3—O8xi73.97 (14)Mo3iv—Mo3—Mo3xviii167.88 (7)
O5x—Nd3—O8xi73.97 (14)Mo3v—Mo3—Mo3iii5.44 (3)
O4x—Nd3—O8xi139.17 (13)O2iii—Mo3—Mo3iii90.62 (8)
O4ix—Nd3—O8xi139.17 (13)O9v—Mo3—Mo3iii128.59 (15)
O10—Nd3—O1xii71.33 (18)O9iv—Mo3—Mo3iii128.91 (15)
O5ix—Nd3—O1xii99.53 (13)O7—Mo3—Mo3iii80.04 (6)
O5x—Nd3—O1xii138.96 (13)O9—Mo3—Mo3iii43.99 (13)
O4x—Nd3—O1xii149.47 (14)O9iii—Mo3—Mo3iii43.32 (13)
O4ix—Nd3—O1xii107.72 (13)Mo3vi—Mo3—Mo3iii167.73 (7)
O8xi—Nd3—O1xii65.13 (14)Mo3iv—Mo3—Mo3iii168.51 (7)
O10—Nd3—O1xi71.33 (18)Mo3xviii—Mo3—Mo3iii0.621 (8)
O5ix—Nd3—O1xi138.96 (13)O10—Si—O6xix108.8 (4)
O5x—Nd3—O1xi99.53 (13)O10—Si—O1109.7 (2)
O4x—Nd3—O1xi107.72 (13)O6xix—Si—O1105.0 (2)
O4ix—Nd3—O1xi149.47 (14)O10—Si—O1xvii109.7 (2)
O8xi—Nd3—O1xi65.13 (14)O6xix—Si—O1xvii105.0 (2)
O1xii—Nd3—O1xi60.67 (17)O1—Si—O1xvii118.0 (3)
O10—Nd3—O6x78.94 (13)Si—O1—Mo2121.3 (2)
O5ix—Nd3—O6x136.43 (16)Si—O1—Nd2vi113.1 (2)
O5x—Nd3—O6x65.21 (16)Mo2—O1—Nd2vi116.82 (18)
O4x—Nd3—O6x55.67 (17)Si—O1—Nd3xi99.6 (2)
O4ix—Nd3—O6x121.22 (17)Mo2—O1—Nd3xi100.03 (16)
O8xi—Nd3—O6x96.04 (14)Nd2vi—O1—Nd3xi100.11 (15)
O1xii—Nd3—O6x114.70 (16)Mo3iii—O2—Mo2xvii127.12 (13)
O1xi—Nd3—O6x55.02 (16)Mo3xviii—O2—Mo2xvii136.69 (16)
O10—Nd3—O6xiii78.94 (13)Mo3iii—O2—Mo2136.69 (16)
O5ix—Nd3—O6xiii65.21 (16)Mo3xviii—O2—Mo2127.12 (13)
O5x—Nd3—O6xiii136.43 (16)Mo2xvii—O2—Mo295.5 (3)
O4x—Nd3—O6xiii121.22 (17)Mo2—O3—Mo2xvii100.9 (3)
O4ix—Nd3—O6xiii55.67 (17)Mo2—O3—Nd1xix127.47 (15)
O8xi—Nd3—O6xiii96.04 (14)Mo2xvii—O3—Nd1xix127.47 (15)
O1xii—Nd3—O6xiii55.02 (16)Mo1—O4—Nd1xix129.6 (2)
O1xi—Nd3—O6xiii114.70 (16)Mo1—O4—Nd2xiv93.50 (17)
O6x—Nd3—O6xiii157.8 (3)Nd1xix—O4—Nd2xiv115.01 (18)
O4v—Mo1—O494.5 (3)Mo1—O4—Nd3xvi96.08 (17)
O4v—Mo1—O5163.60 (18)Nd1xix—O4—Nd3xvi109.39 (17)
O4—Mo1—O588.37 (18)Nd2xiv—O4—Nd3xvi111.05 (17)
O4v—Mo1—O5v88.37 (18)Mo2—O5—Mo177.44 (15)
O4—Mo1—O5v163.60 (18)Mo2—O5—Nd3xvi126.38 (19)
O5—Mo1—O5v84.5 (2)Mo1—O5—Nd3xvi94.71 (16)
O4v—Mo1—O892.31 (17)Mo2—O5—Nd1104.56 (17)
O4—Mo1—O892.31 (17)Mo1—O5—Nd1104.90 (17)
O5—Mo1—O8103.72 (17)Nd3xvi—O5—Nd1128.36 (17)
O5v—Mo1—O8103.72 (17)Siii—O6—Mo1170.9 (4)
O4v—Mo1—O676.65 (18)Siii—O6—Nd2xiv102.9 (3)
O4—Mo1—O676.65 (18)Mo1—O6—Nd2xiv86.2 (2)
O5—Mo1—O688.36 (18)Siii—O6—Nd3xvi96.28 (14)
O5v—Mo1—O688.36 (18)Mo1—O6—Nd3xvi82.35 (13)
O8—Mo1—O6163.5 (3)Nd2xiv—O6—Nd3xvi97.50 (14)
O4v—Mo1—Mo2144.28 (13)Siii—O6—Nd3xv96.28 (14)
O4—Mo1—Mo294.20 (13)Mo1—O6—Nd3xv82.35 (13)
O5—Mo1—Mo251.15 (12)Nd2xiv—O6—Nd3xv97.50 (14)
O5v—Mo1—Mo292.81 (12)Nd3xvi—O6—Nd3xv157.8 (3)
O8—Mo1—Mo252.76 (13)Mo2v—O7—Mo277.8 (2)
O6—Mo1—Mo2139.06 (12)Mo2v—O7—Mo3135.39 (13)
O4v—Mo1—Mo2v94.20 (13)Mo2—O7—Mo3144.19 (16)
O4—Mo1—Mo2v144.28 (13)Mo2v—O7—Mo3v144.19 (16)
O5—Mo1—Mo2v92.81 (12)Mo2—O7—Mo3v135.39 (13)
O5v—Mo1—Mo2v51.15 (12)Mo2v—O7—Nd1100.1 (2)
O8—Mo1—Mo2v52.76 (13)Mo2—O7—Nd1100.1 (2)
O6—Mo1—Mo2v139.06 (12)Mo3—O7—Nd188.0 (2)
Mo2—Mo1—Mo2v60.38 (3)Mo3v—O7—Nd188.0 (2)
O3—Mo2—O593.4 (2)Mo1—O8—Mo275.52 (19)
O3—Mo2—O7167.96 (18)Mo1—O8—Mo2v75.52 (19)
O5—Mo2—O788.8 (2)Mo2—O8—Mo2v75.4 (2)
O3—Mo2—O281.62 (18)Mo1—O8—Nd3xi174.8 (3)
O5—Mo2—O287.0 (2)Mo2—O8—Nd3xi108.5 (2)
O7—Mo2—O286.67 (17)Mo2v—O8—Nd3xi108.5 (2)
O3—Mo2—O888.33 (17)Mo3v—O9—Mo3xviii79.7 (2)
O5—Mo2—O8102.9 (2)Mo3xviii—O9—Mo386.24 (19)
O7—Mo2—O8102.73 (16)Mo3v—O9—Mo3iii86.11 (19)
O2—Mo2—O8166.3 (2)Mo3v—O9—Nd2vi100.32 (19)
O3—Mo2—O186.1 (2)Mo3xviii—O9—Nd2vi146.0 (2)
O5—Mo2—O1171.44 (17)Mo3—O9—Nd2vi94.31 (17)
O7—Mo2—O189.9 (2)Mo3iii—O9—Nd2vi146.1 (2)
O2—Mo2—O184.5 (2)Mo3v—O9—Nd1iii132.9 (2)
O8—Mo2—O185.6 (2)Mo3xviii—O9—Nd1iii93.60 (18)
O3—Mo2—Mo195.04 (16)Mo3—O9—Nd1iii134.1 (2)
O5—Mo2—Mo151.41 (12)Mo3iii—O9—Nd1iii88.46 (16)
O7—Mo2—Mo195.57 (15)Nd2vi—O9—Nd1iii109.58 (19)
O2—Mo2—Mo1138.13 (18)Si—O10—Nd3170.3 (5)
O8—Mo2—Mo151.72 (17)Si—O10—Nd2xx91.0 (3)
O1—Mo2—Mo1137.15 (12)Nd3—O10—Nd2xx98.7 (2)
O3—Mo2—Mo2v140.47 (13)
Symmetry codes: (i) −x+1/2, y+1/2, z+1/2; (ii) −x+1/2, −y+1, z+1/2; (iii) −x, −y+1, −z+1; (iv) −x, y+1/2, −z+1; (v) x, −y+3/2, z; (vi) −x, −y+2, −z+1; (vii) −x+1/2, −y+2, z+1/2; (viii) x, y+1, z+1; (ix) x−1/2, −y+1/2, −z+1/2; (x) x−1/2, y, −z+1/2; (xi) −x, −y+1, −z; (xii) −x, y−1/2, −z; (xiii) x−1/2, y−1, −z+1/2; (xiv) −x+1/2, −y+2, z−1/2; (xv) x+1/2, y+1, −z+1/2; (xvi) x+1/2, y, −z+1/2; (xvii) x, −y+1/2, z; (xviii) −x, y−1/2, −z+1; (xix) −x+1/2, −y+1, z−1/2; (xx) x, y−1, z−1; (xxi) −x, −y, −z.
Table 1
Selected geometric parameters (Å)
top
Nd1—O4i2.321 (4)Mo1—Mo22.5351 (8)
Nd1—O3ii2.444 (6)Mo2—O31.988 (4)
Nd1—O9iii2.520 (5)Mo2—O52.023 (4)
Nd1—O52.524 (4)Mo2—O72.029 (5)
Nd1—O72.651 (7)Mo2—O22.072 (4)
Nd2—O9iv2.422 (5)Mo2—O82.084 (5)
Nd2—O1iv2.461 (4)Mo2—O12.127 (4)
Nd2—O4v2.465 (4)Mo2—Mo2xi2.5498 (9)
Nd2—O6v2.580 (7)Mo2—Mo2xii3.0661 (9)
Nd2—O10vi2.896 (8)Mo3—O2iii1.925 (6)
Nd3—O102.368 (7)Mo3—O9xi1.941 (5)
Nd3—O5vii2.476 (4)Mo3—O9iv1.966 (5)
Nd3—O4viii2.503 (4)Mo3—O72.047 (6)
Nd3—O8ix2.544 (6)Mo3—O92.160 (5)
Nd3—O1x2.760 (5)Mo3—O9iii2.187 (5)
Nd3—O6viii2.8617 (13)Mo3—Mo3xiii2.503 (4)
Mo1—O41.944 (5)Mo3—Mo3iii3.145 (4)
Mo1—O52.030 (4)Si—O101.620 (7)
Mo1—O82.055 (6)Si—O6xiv1.626 (7)
Mo1—O62.122 (6)Si—O11.649 (4)
Symmetry codes: (i) −x+1/2, y+1/2, z+1/2; (ii) −x+1/2, −y+1, z+1/2; (iii) −x, −y+1, −z+1; (iv) −x, y+1/2, −z+1; (v) −x+1/2, −y+2, z+1/2; (vi) x, y+1, z+1; (vii) x−1/2, −y+1/2, −z+1/2; (viii) x−1/2, y, −z+1/2; (ix) −x, −y+1, −z; (x) −x, y−1/2, −z; (xi) x, −y+3/2, z; (xii) x, −y+1/2, z; (xiii) −x, −y+2, −z+1; (xiv) −x+1/2, −y+1, z−1/2.
references
References top

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Bergerhoff, G. (1996). DIAMOND. University of Bonn, Germany.

Betteridge, P. W., Cheetham, A. K., Howard, J. A. K., Jakubicki, G. & McCarroll, W. H. (1984). Inorg. Chem. 23, 737–740.

Brandt, B. G. & Skapski, A. C. (1967). Acta Chem. Scand. 21, 661–672.

Brown, I. D. & Wu, K. K. (1976). Acta Cryst. B32, 1957–1959.

Duisenberg, A. J. M. (1998). PhD thesis, University of Utrecht, The Netherlands.

Gougeon, P., Gall, P., Halet, J.-F. & Gautier, R. (2003). Acta Cryst. B59, 472–478.

Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.