Download citation
Download citation
link to html
The erbium(III) atom in the title compound, {(H3O)[Er(C10H12N2O8)]·H2O}n, is N,N′,O,O′,O′′,O′′′-chelated by the ethyl­enediamine­tetra­acetate tetra­anion. It is also linked to the O atoms of two other tetra­aanions in the polyanionic layer. The metal atom, which lies on a special position of site symmetry m, exists in a square-anti­prismatic geometry. The tetra­anion is disordered across a mirror plane. The oxonium cation and water mol­ecule are disordered in a ratio of 2:1; they occupy the space between adjacent layers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807024361/wn2139sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807024361/wn2139Isup2.hkl
Contains datablock I

CCDC reference: 650704

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](O-C) = 0.005 Å
  • H-atom completeness 71%
  • Disorder in main residue
  • R factor = 0.022
  • wR factor = 0.055
  • Data-to-parameter ratio = 10.4

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT301_ALERT_3_B Main Residue Disorder ......................... 40.00 Perc. PLAT430_ALERT_2_B Short Inter D...A Contact O2 .. O1W .. 2.81 Ang.
Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.397 0.516 Tmin and Tmax expected: 0.232 0.396 RR = 1.312 Please check that your absorption correction is appropriate. CHEMW03_ALERT_2_C The ratio of given/expected molecular weight as calculated from the _atom_site* data lies outside the range 0.99 <> 1.01 From the CIF: _cell_formula_units_Z 4 From the CIF: _chemical_formula_weight 492.52 TEST: Calculate formula weight from _atom_site_* atom mass num sum C 12.01 10.00 120.11 H 1.01 12.00 12.10 N 14.01 2.00 28.01 O 16.00 10.00 159.99 Er 167.26 1.00 167.26 Calculated formula weight 487.47 PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT043_ALERT_1_C Check Reported Molecular Weight ................ 492.52 PLAT044_ALERT_1_C Calculated and Reported Dx Differ .............. ? PLAT060_ALERT_3_C Ratio Tmax/Tmin (Exp-to-Rep) (too) Large ....... 1.28 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.77 PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing)... ? PLAT220_ALERT_2_C Large Non-Solvent O Ueq(max)/Ueq(min) ... 2.85 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O1 PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 50.00 Perc. PLAT311_ALERT_2_C Isolated Disordered Oxygen Atom (No H's ?) ..... >O3O PLAT311_ALERT_2_C Isolated Disordered Oxygen Atom (No H's ?) ..... <O1W PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 6
Alert level G FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C10 H17 Er1 N2 O10 Atom count from _chemical_formula_moiety: FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C10 H17 Er1 N2 O10 Atom count from the _atom_site data: C10 H12 Er1 N2 O10 ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.767 Tmax scaled 0.396 Tmin scaled 0.305 CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected. CELLZ01_ALERT_1_G WARNING: H atoms missing from atom site list. Is this intentional? From the CIF: _cell_formula_units_Z 4 From the CIF: _chemical_formula_sum C10 H17 Er N2 O10 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 40.00 40.00 0.00 H 68.00 48.00 20.00 Er 4.00 4.00 0.00 N 8.00 8.00 0.00 O 40.00 40.00 0.00 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 127
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 15 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 8 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 7 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The edta tetraanion chelates a large number of lanthanide atoms (CSD Version 5.28, November 2006; Allen, 2002); among these are several examples of [edta-Ln]- anions whose negative charge is balanced by a unipositive cation. One erbium(III) derivative has an ammonium cation as the counterion; the metal atom itself exists in an eight-coordinate environment, and the water-coordinated cation, anion and solvent water molecules are linked through hydrogen bonds into a three-dimensional network structure (Filippova et al., 1977; Polynova et al., 1986). A hydrothermal synthesis yields the expected [edta-Er]- as a hydronium monohydrate (Fig. 1). The edta chelates the metal atom, and it also functions as a bridge to link adjacent anions into a polyanionic layer. The disordered hydronium cation and water molecules occupy the space between the layers; the metal shows a square-antiprismatic coordination (Fig. 2).

Related literature top

For related literature, see: Allen (2002); Filippova et al. (1977); Polynova et al. (1986).

Experimental top

Erbium(III) oxide (0.163 g, 0.5 mmol), edta (0.286 g, 0.8 mmol) and perchloric acid (0.385 mmol) were dissolved in methanol (5 ml) and water (5 ml). This solution was sealed in a Teflon-lined, stainless-steel autoclave (20 ml capacity) and heated to 433 K for 4 days. It was cooled to room temperature at 5 K h-1 to obtain colorless block-shaped crystals. CH&N elemental analysis. Calc. for C10H17ErN2O10: C 24.38, H 3.48, N 5.69%. Found 24.20, H 3.50, N 5.66%.

Refinement top

The edta tetraanion is disordered across a mirror plane; only atoms O1, O2 and C1 have full site occupany, the other atoms having 0.5 occupancy. For the disordered atoms, the C—O distances were restrained to 1.25±0.01 Å, the C—N distances to 1.45±0.01 Å and the C—C distances to 1.50±0.01 Å. The displacement parameters of the ordered and disordered C, N and O atoms were restrained to be nearly isotropic.

Together with the [(C10H12N2O8)Er] monoanion, the formula unit has one hydronium ion and one water molecule. Because Z is 4, as well as the fact that O3o and O1w both lie on general positions, these two O atoms are disordered; the sum of their site occupancies should be unity. The occupancies refined to 0.67 (1) and 0.33 (1), and were then fixed at these values. The 'o' and 'w' labels are arbitrary and do not imply that O3o is the hydronium and O1w the water O atoms. Their H atoms could not be placed in any chemically sensible positions.

The carbon-bound H atoms were placed at calculated positions (C—H 0.97 Å), and they were included in the refinement in the riding model approximation with Uiso(H) set equal to 1.2Ueq(C).

Structure description top

The edta tetraanion chelates a large number of lanthanide atoms (CSD Version 5.28, November 2006; Allen, 2002); among these are several examples of [edta-Ln]- anions whose negative charge is balanced by a unipositive cation. One erbium(III) derivative has an ammonium cation as the counterion; the metal atom itself exists in an eight-coordinate environment, and the water-coordinated cation, anion and solvent water molecules are linked through hydrogen bonds into a three-dimensional network structure (Filippova et al., 1977; Polynova et al., 1986). A hydrothermal synthesis yields the expected [edta-Er]- as a hydronium monohydrate (Fig. 1). The edta chelates the metal atom, and it also functions as a bridge to link adjacent anions into a polyanionic layer. The disordered hydronium cation and water molecules occupy the space between the layers; the metal shows a square-antiprismatic coordination (Fig. 2).

For related literature, see: Allen (2002); Filippova et al. (1977); Polynova et al. (1986).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. A view of a portion of the polyanionic structure (I). Displacement ellipsoids are drawn at the 50% probability level, and H atoms are shown as spheres of arbitrary radius. Symmetry codes are as given in the Table. The disordered hydronium ion and water molecule are not shown.
[Figure 2] Fig. 2. Square-antiprismatic geometry of Er. Symmetry codes are as given in the Table.
Poly[hydronium [µ-(ethylenediaminetetraacetato- κ8N,N',O,O',O'',O''':O'''',O''''')erbate(III)] monohydrate] top
Crystal data top
(H3O)[Er(C10H12N2O8)]·H2OF(000) = 956
Mr = 492.52Dx = 2.103 Mg m3
Orthorhombic, PbcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2c 2bCell parameters from 4071 reflections
a = 6.5783 (1) Åθ = 3.4–27.6°
b = 12.8191 (2) ŵ = 5.45 mm1
c = 18.4454 (3) ÅT = 295 K
V = 1555.46 (4) Å3Block, colourless
Z = 40.28 × 0.25 × 0.17 mm
Data collection top
Bruker APEXII
diffractometer
1844 independent reflections
Radiation source: medium-focus sealed tube1625 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.397, Tmax = 0.516k = 1516
13530 measured reflectionsl = 2321
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0306P)2 + 0.6341P]
where P = (Fo2 + 2Fc2)/3
1844 reflections(Δ/σ)max = 0.001
178 parametersΔρmax = 0.58 e Å3
127 restraintsΔρmin = 0.60 e Å3
Crystal data top
(H3O)[Er(C10H12N2O8)]·H2OV = 1555.46 (4) Å3
Mr = 492.52Z = 4
Orthorhombic, PbcmMo Kα radiation
a = 6.5783 (1) ŵ = 5.45 mm1
b = 12.8191 (2) ÅT = 295 K
c = 18.4454 (3) Å0.28 × 0.25 × 0.17 mm
Data collection top
Bruker APEXII
diffractometer
1844 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1625 reflections with I > 2σ(I)
Tmin = 0.397, Tmax = 0.516Rint = 0.042
13530 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022127 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 1.05Δρmax = 0.58 e Å3
1844 reflectionsΔρmin = 0.60 e Å3
178 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Er10.10963 (3)0.056040 (16)0.25000.01744 (9)
O10.0662 (5)0.0340 (3)0.12694 (17)0.0470 (8)
O20.1143 (5)0.0745 (3)0.0123 (2)0.0657 (12)
O3O0.2598 (19)0.2009 (9)0.0529 (6)0.193 (4)0.67
O1W0.467 (3)0.0586 (11)0.0724 (9)0.110 (5)0.33
C10.1464 (6)0.0880 (4)0.0798 (2)0.0353 (10)
O30.4409 (6)0.0109 (4)0.2763 (3)0.0257 (12)0.50
O40.7699 (6)0.0110 (3)0.2591 (12)0.023 (3)0.50
N10.3667 (8)0.1616 (5)0.1747 (3)0.0215 (12)0.50
C20.296 (5)0.178 (2)0.1012 (6)0.026 (6)0.50
H2A0.41040.17920.06810.031*0.50
H2B0.22650.24480.09790.031*0.50
C30.429 (3)0.2612 (12)0.2061 (14)0.018 (4)0.50
H3A0.33590.31580.19100.021*0.50
H3B0.56410.27940.18950.021*0.50
C40.5488 (10)0.0954 (6)0.1695 (4)0.0259 (16)0.50
H4A0.66520.13890.15810.031*0.50
H4B0.53100.04620.13000.031*0.50
C50.5917 (7)0.0360 (5)0.2383 (5)0.020 (2)0.50
O3'0.0518 (7)0.2097 (3)0.2261 (3)0.0277 (14)0.50
O4'0.1176 (5)0.3776 (3)0.2392 (8)0.023 (3)0.50
N1'0.2526 (8)0.2089 (4)0.3255 (3)0.0220 (12)0.50
C2'0.279 (5)0.171 (2)0.3991 (6)0.038 (9)0.50
H2'10.41880.14800.40470.046*0.50
H2'20.25920.22940.43220.046*0.50
C3'0.427 (3)0.2520 (16)0.2867 (15)0.031 (6)0.50
H3'10.54450.21010.30000.037*0.50
H3'20.45100.32130.30600.037*0.50
C4'0.0935 (9)0.2884 (6)0.3296 (4)0.0277 (16)0.50
H4'10.15570.35580.33840.033*0.50
H4'20.00510.27290.37030.033*0.50
C5'0.0325 (8)0.2940 (4)0.2612 (6)0.022 (2)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.01162 (11)0.01093 (13)0.02976 (15)0.00036 (8)0.0000.000
O10.0624 (19)0.0457 (19)0.0329 (17)0.0331 (16)0.0058 (15)0.0023 (14)
O20.093 (3)0.071 (3)0.0324 (19)0.039 (2)0.0147 (17)0.0000 (18)
O3O0.181 (7)0.192 (8)0.206 (8)0.049 (7)0.044 (7)0.036 (7)
O1W0.122 (8)0.108 (9)0.099 (8)0.043 (7)0.022 (8)0.007 (7)
C10.039 (2)0.036 (2)0.031 (2)0.0068 (18)0.0096 (18)0.0033 (19)
O30.017 (2)0.020 (2)0.041 (3)0.0008 (19)0.0019 (18)0.006 (2)
O40.0124 (15)0.0214 (19)0.035 (9)0.0022 (14)0.002 (3)0.002 (3)
N10.021 (3)0.021 (3)0.022 (3)0.000 (2)0.004 (2)0.003 (3)
C20.032 (7)0.022 (7)0.024 (9)0.014 (5)0.006 (5)0.009 (5)
C30.024 (6)0.016 (6)0.013 (5)0.005 (5)0.005 (4)0.008 (5)
C40.022 (3)0.025 (4)0.030 (4)0.000 (3)0.006 (3)0.003 (3)
C50.015 (2)0.011 (3)0.033 (7)0.0030 (18)0.001 (3)0.005 (3)
O3'0.0187 (17)0.016 (2)0.048 (4)0.0036 (18)0.0081 (18)0.006 (2)
O4'0.0220 (17)0.0112 (18)0.037 (8)0.0022 (14)0.004 (3)0.003 (3)
N1'0.022 (2)0.017 (3)0.027 (3)0.008 (3)0.000 (2)0.001 (3)
C2'0.040 (10)0.043 (12)0.032 (10)0.008 (7)0.004 (6)0.008 (7)
C3'0.031 (7)0.022 (7)0.040 (10)0.016 (5)0.005 (5)0.006 (6)
C4'0.028 (3)0.019 (4)0.036 (4)0.003 (3)0.007 (3)0.003 (3)
C5'0.0131 (19)0.016 (3)0.036 (7)0.001 (2)0.003 (3)0.001 (4)
Geometric parameters (Å, º) top
Er1—O12.305 (3)C3—C3'1.491 (8)
Er1—O1i2.305 (3)C3—H3A0.9700
Er1—O32.307 (4)C3—H3B0.9700
Er1—O4ii2.314 (4)C4—C51.508 (8)
Er1—O3'2.281 (4)C4—H4A0.9700
Er1—O4'iii2.297 (5)C4—H4B0.9700
Er1—N12.574 (6)O3'—C5'1.266 (7)
Er1—N1'2.582 (6)O4'—C5'1.274 (7)
O1—C11.231 (5)O4'—Er1v2.297 (5)
O2—C11.273 (6)N1'—C2'1.452 (10)
C1—C2'i1.44 (3)N1'—C4'1.462 (7)
C1—C21.57 (3)N1'—C3'1.464 (10)
O3—C51.256 (7)C2'—C1i1.44 (3)
O4—C51.274 (7)C2'—H2'10.9700
O4—Er1iv2.314 (4)C2'—H2'20.9700
N1—C31.461 (9)C3'—H3'10.9700
N1—C21.449 (10)C3'—H3'20.9700
N1—C41.471 (7)C4'—C5'1.512 (8)
C2—H2A0.9700C4'—H4'10.9700
C2—H2B0.9700C4'—H4'20.9700
O3'i—Er1—O3'22.3 (2)N1i—Er1—N165.4 (2)
O3'i—Er1—O4'iii152.57 (17)C1—O1—Er1125.0 (3)
O3'—Er1—O4'iii148.6 (2)O1—C1—O2122.9 (4)
O3'i—Er1—O4'vi148.6 (2)O1—C1—C2'i119.3 (8)
O3'—Er1—O4'vi152.57 (17)O2—C1—C2'i117.8 (8)
O4'iii—Er1—O4'vi10.0 (8)O1—C1—C2120.4 (7)
O3'i—Er1—O1i81.84 (15)O2—C1—C2116.7 (7)
O3'—Er1—O1i103.82 (15)C5—O3—Er1124.3 (4)
O4'iii—Er1—O1i88.1 (4)C5—O4—Er1iv143.5 (9)
O4'vi—Er1—O1i78.2 (4)C3—N1—C2109.5 (15)
O3'i—Er1—O1103.82 (15)C3—N1—C4107.6 (9)
O3'—Er1—O181.84 (15)C2—N1—C4106.6 (10)
O4'iii—Er1—O178.2 (4)C3—N1—Er1115.4 (12)
O4'vi—Er1—O188.1 (4)C2—N1—Er1111.7 (15)
O1i—Er1—O1159.90 (15)C4—N1—Er1105.5 (4)
O3'i—Er1—O4vii77.28 (19)N1—C2—C1109.2 (19)
O3'—Er1—O4vii75.62 (19)N1—C2—H2A109.8
O4'iii—Er1—O4vii76.55 (14)C1—C2—H2A109.8
O4'vi—Er1—O4vii77.29 (16)N1—C2—H2B109.8
O1i—Er1—O4vii85.5 (5)C1—C2—H2B109.8
O1—Er1—O4vii77.2 (5)H2A—C2—H2B108.3
O3'i—Er1—O4ii75.62 (19)N1—C3—C3'109 (2)
O3'—Er1—O4ii77.28 (19)N1—C3—H3A109.9
O4'iii—Er1—O4ii77.29 (16)C3'—C3—H3A109.9
O4'vi—Er1—O4ii76.55 (14)N1—C3—H3B109.9
O1i—Er1—O4ii77.2 (5)C3'—C3—H3B109.9
O1—Er1—O4ii85.5 (5)H3A—C3—H3B108.3
O4vii—Er1—O4ii8.3 (11)N1—C4—C5112.9 (5)
O3'i—Er1—O3128.02 (17)N1—C4—H4A109.0
O3'—Er1—O3134.21 (16)C5—C4—H4A109.0
O4'iii—Er1—O375.33 (18)N1—C4—H4B109.0
O4'vi—Er1—O373.15 (17)C5—C4—H4B109.0
O1i—Er1—O383.05 (14)H4A—C4—H4B107.8
O1—Er1—O3107.07 (15)O4—C5—O3119.6 (10)
O4vii—Er1—O3149.9 (2)O4—C5—C4123.6 (9)
O4ii—Er1—O3146.6 (3)O3—C5—C4116.8 (5)
O3'i—Er1—O3i134.21 (16)C5'—O3'—Er1126.3 (4)
O3'—Er1—O3i128.02 (17)C5'—O4'—Er1v143.0 (7)
O4'iii—Er1—O3i73.15 (17)C2'—N1'—C4'105.6 (11)
O4'vi—Er1—O3i75.33 (18)C2'—N1'—C3'119.2 (19)
O1i—Er1—O3i107.07 (15)C4'—N1'—C3'109.0 (11)
O1—Er1—O3i83.05 (14)C2'—N1'—Er1107.3 (14)
O4vii—Er1—O3i146.6 (3)C4'—N1'—Er1107.2 (4)
O4ii—Er1—O3i149.9 (2)C3'—N1'—Er1108.0 (11)
O3—Er1—O3i24.3 (2)C1i—C2'—N1'115 (2)
O3'i—Er1—N1i75.35 (18)C1i—C2'—H2'1108.5
O3'—Er1—N1i87.47 (17)N1'—C2'—H2'1108.5
O4'iii—Er1—N1i123.8 (3)C1i—C2'—H2'2108.5
O4'vi—Er1—N1i117.5 (3)N1'—C2'—H2'2108.5
O1i—Er1—N1i67.31 (14)H2'1—C2'—H2'2107.5
O1—Er1—N1i132.67 (14)N1'—C3'—C3122 (2)
O4vii—Er1—N1i143.6 (4)N1'—C3'—H3'1107.0
O4ii—Er1—N1i136.6 (5)C3—C3'—H3'1107.0
O3—Er1—N1i52.96 (18)N1'—C3'—H3'2107.0
O3i—Er1—N1i67.97 (16)C3—C3'—H3'2107.0
O3'i—Er1—N187.47 (17)H3'1—C3'—H3'2106.7
O3'—Er1—N175.35 (18)N1'—C4'—C5'112.5 (5)
O4'iii—Er1—N1117.5 (3)N1'—C4'—H4'1109.1
O4'vi—Er1—N1123.8 (3)C5'—C4'—H4'1109.1
O1i—Er1—N1132.67 (14)N1'—C4'—H4'2109.1
O1—Er1—N167.31 (14)C5'—C4'—H4'2109.1
O4vii—Er1—N1136.6 (5)H4'1—C4'—H4'2107.8
O4ii—Er1—N1143.6 (4)O4'—C5'—O3'120.7 (8)
O3—Er1—N167.97 (16)O4'—C5'—C4'123.2 (8)
O3i—Er1—N152.96 (18)O3'—C5'—C4'116.1 (5)
O3'i—Er1—O1—C168.8 (4)Er1iv—O4—C5—O3155.3 (15)
O3'—Er1—O1—C165.0 (4)Er1iv—O4—C5—C425 (2)
O4'iii—Er1—O1—C1139.2 (4)Er1—O3—C5—O4177.0 (7)
O4'vi—Er1—O1—C1140.5 (4)Er1—O3—C5—C42.8 (9)
O1i—Er1—O1—C1173.1 (3)N1—C4—C5—O4149.2 (9)
O4vii—Er1—O1—C1142.1 (4)N1—C4—C5—O330.6 (9)
O4ii—Er1—O1—C1142.8 (4)O3'i—Er1—O3'—C5'37.7 (6)
O3—Er1—O1—C168.8 (4)O4'iii—Er1—O3'—C5'157.3 (9)
O3i—Er1—O1—C165.1 (4)O4'vi—Er1—O3'—C5'138.5 (9)
N1i—Er1—O1—C113.8 (5)O1i—Er1—O3'—C5'47.6 (6)
N1—Er1—O1—C112.4 (4)O1—Er1—O3'—C5'152.0 (6)
Er1—O1—C1—O2178.3 (3)O4vii—Er1—O3'—C5'129.2 (8)
Er1—O1—C1—C2'i0.6 (13)O4ii—Er1—O3'—C5'120.8 (8)
Er1—O1—C1—C21.8 (11)O3—Er1—O3'—C5'46.1 (7)
O3'i—Er1—O3—C581.7 (6)O3i—Er1—O3'—C5'77.5 (6)
O3'—Er1—O3—C553.1 (6)N1i—Er1—O3'—C5'18.3 (6)
O4'iii—Er1—O3—C5114.5 (7)N1—Er1—O3'—C5'83.5 (6)
O4'vi—Er1—O3—C5124.6 (7)O3'i—Er1—N1'—C2'116.0 (12)
O1i—Er1—O3—C5155.7 (6)O3'—Er1—N1'—C2'136.3 (12)
O1—Er1—O3—C542.1 (6)O4'iii—Er1—N1'—C2'32.6 (13)
O4vii—Er1—O3—C5135.9 (11)O4'vi—Er1—N1'—C2'23.9 (13)
O4ii—Er1—O3—C5150.5 (10)O1i—Er1—N1'—C2'19.0 (12)
O3i—Er1—O3—C533.1 (6)O1—Er1—N1'—C2'169.1 (12)
N1i—Er1—O3—C588.9 (6)O4vii—Er1—N1'—C2'84.9 (13)
N1—Er1—O3—C513.9 (6)O4ii—Er1—N1'—C2'77.2 (13)
O3'i—Er1—N1—C340.9 (8)O3—Er1—N1'—C2'69.9 (12)
O3'—Er1—N1—C359.8 (8)O3i—Er1—N1'—C2'90.6 (12)
O4'iii—Er1—N1—C3151.0 (9)N1i—Er1—N1'—C2'67.5 (13)
O4'vi—Er1—N1—C3141.9 (9)N1—Er1—N1'—C2'141.7 (12)
O1i—Er1—N1—C335.6 (9)O3'i—Er1—N1'—C4'2.9 (4)
O1—Er1—N1—C3147.0 (8)O3'—Er1—N1'—C4'23.2 (4)
O4vii—Er1—N1—C3109.3 (9)O4'iii—Er1—N1'—C4'145.7 (5)
O4ii—Er1—N1—C3102.3 (10)O4'vi—Er1—N1'—C4'137.0 (5)
O3—Er1—N1—C392.2 (8)O1i—Er1—N1'—C4'94.1 (4)
O3i—Er1—N1—C3114.3 (9)O1—Er1—N1'—C4'77.8 (5)
N1i—Er1—N1—C334.2 (8)O4vii—Er1—N1'—C4'28.2 (7)
O3'i—Er1—N1—C285.1 (9)O4ii—Er1—N1'—C4'35.8 (6)
O3'—Er1—N1—C266.1 (9)O3—Er1—N1'—C4'177.0 (4)
O4'iii—Er1—N1—C283.1 (10)O3i—Er1—N1'—C4'156.3 (4)
O4'vi—Er1—N1—C292.1 (10)N1i—Er1—N1'—C4'179.4 (8)
O1i—Er1—N1—C2161.6 (9)N1—Er1—N1'—C4'105.2 (4)
O1—Er1—N1—C221.0 (9)O3'i—Er1—N1'—C3'114.4 (12)
O4vii—Er1—N1—C216.7 (10)O3'—Er1—N1'—C3'94.1 (11)
O4ii—Er1—N1—C223.7 (11)O4'iii—Er1—N1'—C3'97.0 (12)
O3—Er1—N1—C2141.8 (9)O4'vi—Er1—N1'—C3'105.7 (12)
O3i—Er1—N1—C2119.7 (9)O1i—Er1—N1'—C3'148.6 (11)
N1i—Er1—N1—C2160.1 (9)O1—Er1—N1'—C3'39.5 (12)
O3'i—Er1—N1—C4159.4 (4)O4vii—Er1—N1'—C3'145.5 (12)
O3'—Er1—N1—C4178.4 (4)O4ii—Er1—N1'—C3'153.1 (12)
O4'iii—Er1—N1—C432.4 (6)O3—Er1—N1'—C3'59.7 (11)
O4'vi—Er1—N1—C423.3 (6)O3i—Er1—N1'—C3'39.0 (11)
O1i—Er1—N1—C483.0 (5)N1i—Er1—N1'—C3'62.1 (12)
O1—Er1—N1—C494.5 (4)N1—Er1—N1'—C3'12.1 (11)
O4vii—Er1—N1—C4132.1 (5)C4'—N1'—C2'—C1i86.9 (16)
O4ii—Er1—N1—C4139.2 (7)C3'—N1'—C2'—C1i150.2 (16)
O3—Er1—N1—C426.4 (4)Er1—N1'—C2'—C1i27.2 (18)
O3i—Er1—N1—C44.2 (4)C2'—N1'—C3'—C3161 (2)
N1i—Er1—N1—C484.4 (4)C4'—N1'—C3'—C378 (2)
C3—N1—C2—C1155.5 (14)Er1—N1'—C3'—C338 (3)
C4—N1—C2—C188.4 (15)N1—C3—C3'—N1'49 (3)
Er1—N1—C2—C126.4 (15)C2'—N1'—C4'—C5'148.8 (16)
O1—C1—C2—N118.6 (18)C3'—N1'—C4'—C5'82.1 (14)
O2—C1—C2—N1161.3 (9)Er1—N1'—C4'—C5'34.6 (6)
C2—N1—C3—C3'159 (2)Er1v—O4'—C5'—O3'161.0 (10)
C4—N1—C3—C3'85 (2)Er1v—O4'—C5'—C4'19.5 (18)
Er1—N1—C3—C3'32 (2)Er1—O3'—C5'—O4'174.1 (6)
C3—N1—C4—C585.9 (13)Er1—O3'—C5'—C4'6.5 (9)
C2—N1—C4—C5156.7 (15)N1'—C4'—C5'—O4'150.5 (8)
Er1—N1—C4—C537.8 (6)N1'—C4'—C5'—O3'30.0 (9)
Symmetry codes: (i) x, y, z+1/2; (ii) x1, y, z; (iii) x, y1/2, z; (iv) x+1, y, z; (v) x, y+1/2, z; (vi) x, y1/2, z+1/2; (vii) x1, y, z+1/2.

Experimental details

Crystal data
Chemical formula(H3O)[Er(C10H12N2O8)]·H2O
Mr492.52
Crystal system, space groupOrthorhombic, Pbcm
Temperature (K)295
a, b, c (Å)6.5783 (1), 12.8191 (2), 18.4454 (3)
V3)1555.46 (4)
Z4
Radiation typeMo Kα
µ (mm1)5.45
Crystal size (mm)0.28 × 0.25 × 0.17
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.397, 0.516
No. of measured, independent and
observed [I > 2σ(I)] reflections
13530, 1844, 1625
Rint0.042
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.055, 1.05
No. of reflections1844
No. of parameters178
No. of restraints127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.60

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), X-SEED (Barbour, 2001), publCIF (Westrip, 2007).

Selected bond lengths (Å) top
Er1—O12.305 (3)Er1—O4'ii2.297 (5)
Er1—O32.307 (4)Er1—N12.574 (6)
Er1—O4i2.314 (4)Er1—N1'2.582 (6)
Er1—O3'2.281 (4)
Symmetry codes: (i) x1, y, z; (ii) x, y1/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds